File indexing completed on 2025-12-16 10:37:38
0001
0002
0003
0004
0005 #ifdef __CINT__
0006
0007 #pragma link off all globals;
0008 #pragma link off all classes;
0009 #pragma link off all functions;
0010
0011 #pragma link C++ class PlotFile;
0012 #endif
0013
0014 #ifndef __CINT__
0015 #include <stdio.h>
0016 #include <stdlib.h>
0017 #include <fstream>
0018 #include <iostream>
0019 #include <iomanip>
0020 #include <string>
0021 #include <sys/types.h>
0022 #include <sys/stat.h>
0023 #include <dirent.h>
0024 #include "math.h"
0025 #include "string.h"
0026
0027 #include "TROOT.h"
0028 #include "TFile.h"
0029 #include "TChain.h"
0030 #include "TH1D.h"
0031 #include "TH2D.h"
0032 #include "TH3D.h"
0033 #include "THnSparse.h"
0034 #include "TStyle.h"
0035 #include "TCanvas.h"
0036 #include "TProfile.h"
0037 #include "TTree.h"
0038 #include "TNtuple.h"
0039 #include "TRandom3.h"
0040 #include "TMath.h"
0041 #include "TSystem.h"
0042 #include "TUnixSystem.h"
0043 #include "TVector2.h"
0044 #include "TVector3.h"
0045 #include "TLorentzVector.h"
0046 #include "TTreeReader.h"
0047 #include "TTreeReaderValue.h"
0048 #include "TTreeReaderArray.h"
0049 #include "TLatex.h"
0050 #include "TMinuit.h"
0051 #include "Math/Functor.h"
0052 #include "Fit/Fitter.h"
0053 #include "Math/Minimizer.h"
0054 #endif
0055 #include "StPhysicalHelix.h"
0056 #include "SystemOfUnits.h"
0057 #include "PhysicalConstants.h"
0058
0059 using namespace std;
0060
0061 const double gPionMass = 0.13957;
0062 const double gKaonMass = 0.493677;
0063 const double gProtonMass = 0.938272;
0064
0065 const double twoPi = 2.*3.1415927;
0066 const double eMass = 0.000511;
0067 const int pdg_Lcp = 4122, pdg_p = 2212, pdg_k = 321, pdg_pi = 211;
0068 bool debug = false;
0069
0070
0071 const double bField = -1.7;
0072
0073 void getDecayVertex_chi2fit(const int index1, const int index2, const int index3, double &s1, double &s2, double &s3, TVector3 &vertex, float &chi2, double *parFitErr);
0074 TVector3 GetDCAToPrimaryVertex(const int index, TVector3 vtx);
0075
0076 TLorentzVector GetDCADaughters(const int index1, const int index2, const int index3, TVector3 vtx,
0077 float *dcaDaughters, float &cosTheta, float &cosTheta_xy, float &decayLength, float &V0DcaToVtx, float &sigma_vtx, float & chi2_ndf, TVector3 &decayVertex, double *parFitErr);
0078
0079 TTreeReaderArray<float> *rcMomPx2;
0080 TTreeReaderArray<float> *rcMomPy2;
0081 TTreeReaderArray<float> *rcMomPz2;
0082 TTreeReaderArray<float> *rcCharge2;
0083
0084 TTreeReaderArray<float> *rcTrkLoca2;
0085 TTreeReaderArray<float> *rcTrkLocb2;
0086 TTreeReaderArray<float> *rcTrkTheta2;
0087 TTreeReaderArray<float> *rcTrkPhi2;
0088 TTreeReaderArray<std::array<float, 21>> *rcTrkCov;
0089
0090
0091 struct Chi2Minimization {
0092 StPhysicalHelix fhelix1, fhelix2, fhelix3;
0093 std::array<float, 21> fcov1, fcov2, fcov3;
0094
0095 Chi2Minimization(StPhysicalHelix helix1, StPhysicalHelix helix2, StPhysicalHelix helix3, std::array<float, 21> cov1, std::array<float, 21> cov2, std::array<float, 21> cov3) : fhelix1(helix1),fhelix2(helix2), fhelix3(helix3), fcov1(cov1), fcov2(cov2), fcov3(cov3) {}
0096
0097 double operator() (const double *par) {
0098 double x = par[0];
0099 double y = par[1];
0100 double z = par[2];
0101 double s1 = par[3];
0102 double s2 = par[4];
0103 double s3 = par[5];
0104 double f = 0;
0105 TVector3 vertex(x, y, z);
0106 TVector3 p1 = fhelix1.at(s1);
0107 TVector3 p2 = fhelix2.at(s2);
0108 TVector3 p3 = fhelix3.at(s3);
0109 TVector3 mom1 = fhelix1.momentumAt(s1, bField * tesla);
0110 TVector3 mom2 = fhelix2.momentumAt(s2, bField * tesla);
0111 TVector3 mom3 = fhelix3.momentumAt(s3, bField * tesla);
0112
0113
0114 float l0_track1 = p1.Pt(); float l1_track1 = p1.Z(); double phi_track1 = mom1.Phi();
0115 float l0_track2 = p2.Pt(); float l1_track2 = p2.Z(); double phi_track2 = mom2.Phi();
0116 float l0_track3 = p3.Pt(); float l1_track3 = p3.Z(); double phi_track3 = mom3.Phi();
0117
0118 float sigx1_2 = sin(phi_track1)*sin(phi_track1)*fcov1[0] + l0_track1*l0_track1*cos(phi_track1)*cos(phi_track1)*fcov1[5]+ 2.0*l0_track1*sin(phi_track1)*cos(phi_track1)*fcov1[3];
0119 float sigx2_2 = sin(phi_track2)*sin(phi_track2)*fcov2[0] + l0_track2*l0_track2*cos(phi_track2)*cos(phi_track2)*fcov2[5]+ 2.0*l0_track2*sin(phi_track2)*cos(phi_track2)*fcov2[3];
0120 float sigx3_2 = sin(phi_track3)*sin(phi_track3)*fcov3[0] + l0_track3*l0_track3*cos(phi_track3)*cos(phi_track3)*fcov3[5]+ 2.0*l0_track3*sin(phi_track3)*cos(phi_track3)*fcov3[3];
0121
0122
0123 float sigy1_2 = cos(phi_track1)*cos(phi_track1)*fcov1[0] + l0_track1*l0_track1*sin(phi_track1)*sin(phi_track1)*fcov1[5]-2.0*l0_track1*sin(phi_track1)*cos(phi_track1)*fcov1[3];
0124 float sigy2_2 = cos(phi_track2)*cos(phi_track2)*fcov2[0] + l0_track2*l0_track2*sin(phi_track2)*sin(phi_track2)*fcov2[5]-2.0*l0_track2*sin(phi_track2)*cos(phi_track2)*fcov2[3];
0125 float sigy3_2 = cos(phi_track3)*cos(phi_track3)*fcov3[0] + l0_track3*l0_track3*sin(phi_track3)*sin(phi_track3)*fcov3[5]-2.0*l0_track3*sin(phi_track3)*cos(phi_track3)*fcov3[3];
0126
0127
0128 float sigz1_2 = fcov1[2];
0129 float sigz2_2 = fcov2[2];
0130 float sigz3_2 = fcov3[2];
0131 double d1_x = 10.*(vertex - p1).X(); double d2_x = 10.*(vertex - p2).X(); double d3_x = 10.*(vertex - p3).X();
0132 double d1_y = 10.*(vertex - p1).Y(); double d2_y = 10.*(vertex - p2).Y(); double d3_y = 10.*(vertex - p3).Y();
0133 double d1_z = 10.*(vertex - p1).Z(); double d2_z = 10.*(vertex - p2).Z(); double d3_z = 10.*(vertex - p3).Z();
0134
0135 f = d1_x*d1_x/sigx1_2 + d2_x*d2_x/sigx2_2 + d3_x*d3_x/sigx3_2 + d1_y*d1_y/sigy1_2 + d2_y*d2_y/sigy2_2 + d3_y*d3_y/sigy3_2 + d1_z*d1_z/sigz1_2+ d2_z*d2_z/sigz2_2 + d3_z*d3_z/sigz3_2;
0136
0137 return f;
0138 }
0139 };
0140
0141
0142
0143 struct Distance2Minimization {
0144 StPhysicalHelix fhelix1, fhelix2, fhelix3;
0145 Distance2Minimization(StPhysicalHelix helix1, StPhysicalHelix helix2, StPhysicalHelix helix3) : fhelix1(helix1),fhelix2(helix2), fhelix3(helix3) {}
0146
0147 double operator() (const double *par) {
0148 double x = par[0];
0149 double y = par[1];
0150 double z = par[2];
0151 double s1 = par[3];
0152 double s2 = par[4];
0153 double s3 = par[5];
0154 double f = 0;
0155
0156 TVector3 vertex(x, y, z);
0157 TVector3 p1 = fhelix1.at(s1);
0158 TVector3 p2 = fhelix2.at(s2);
0159 TVector3 p3 = fhelix3.at(s3);
0160
0161 double d1 = (vertex - p1).Mag2();
0162 double d2 = (vertex - p2).Mag2();
0163 double d3 = (vertex - p3).Mag2();
0164 f = d1 + d2 + d3;
0165 return f;
0166 }
0167 };
0168
0169 int main(int argc, char **argv)
0170 {
0171 if(argc!=3 && argc!=1) return 0;
0172
0173 TString listname;
0174 TString outname;
0175
0176 if(argc==1)
0177 {
0178 listname = "test.list";
0179 outname = "test.root";
0180 }
0181
0182 if(argc==3)
0183 {
0184 listname = argv[1];
0185 outname = argv[2];
0186 }
0187
0188 TChain *chain = new TChain("events");
0189
0190 int nfiles = 0;
0191 char filename[512];
0192 ifstream *inputstream = new ifstream;
0193 inputstream->open(listname.Data());
0194 if(!inputstream)
0195 {
0196 printf("[e] Cannot open file list: %s\n", listname.Data());
0197 }
0198 while(inputstream->good())
0199 {
0200 inputstream->getline(filename, 512);
0201 if(inputstream->good())
0202 {
0203 TFile *ftmp = TFile::Open(filename, "read");
0204 if(!ftmp||!(ftmp->IsOpen())||!(ftmp->GetNkeys()))
0205 {
0206 printf("[e] Could you open file: %s\n", filename);
0207 }
0208 else
0209 {
0210 cout<<"[i] Add "<<nfiles<<"th file: "<<filename<<endl;
0211 chain->Add(filename);
0212 nfiles++;
0213 }
0214 }
0215 }
0216 inputstream->close();
0217 printf("[i] Read in %d files with %lld events in total\n", nfiles, chain->GetEntries());
0218
0219 TH1F *hEventStat = new TH1F("hEventStat", "Event statistics", 7, 0, 7);
0220 hEventStat->GetXaxis()->SetBinLabel(1, "MC events");
0221 hEventStat->GetXaxis()->SetBinLabel(2, "#Lambda_{c}^{+}");
0222 hEventStat->GetXaxis()->SetBinLabel(3, "#Lambda_{c}^{+} -> p + K^{-} + #pi^{+}");
0223 hEventStat->GetXaxis()->SetBinLabel(4, "Reco Signal #Lambda_{c}^{+}/#Lambda_{c}^{-}");
0224 hEventStat->GetXaxis()->SetBinLabel(5, "Reco Signal #Lambda_{c}^{+}");
0225 hEventStat->GetXaxis()->SetBinLabel(6, "Reco Signal #Lambda_{c}^{-}");
0226 hEventStat->GetXaxis()->SetBinLabel(7, "Reco Bkg #Lambda_{c}^{+}");
0227
0228
0229 TH1F *hMcMult = new TH1F("hMcMult", "MC multiplicity (|#eta| < 3.5);N_{MC}", 50, 0, 50);
0230
0231 TH1F *hMcVtxX = new TH1F("hMcVtxX", "x position of MC vertex;x (mm)", 500, -5.0, 5.0);
0232 TH1F *hMcVtxY = new TH1F("hMcVtxY", "y position of MC vertex;y (mm)", 500, -5.0, 5.0);
0233 TH1F *hMcVtxZ = new TH1F("hMcVtxZ", "z position of MC vertex;z (mm)", 800, -200, 200);
0234
0235 TH1F *hRecVtxX = new TH1F("hRecVtxX", "x position of Rec vertex;x (mm)", 500, -5.0, 5.0);
0236 TH1F *hRecVtxY = new TH1F("hRecVtxY", "y position of Rec vertex;y (mm)", 500, -5.0, 5.0);
0237 TH1F *hRecVtxZ = new TH1F("hRecVtxZ", "z position of Rec vertex;z (mm)", 800, -200, 200);
0238
0239 TH1F *hPullVtxX = new TH1F("hPullVtxX", "Pull x position of MC vertex;(Vx_{rec}-Vx_{mc})/#sigma_{vx}; Entries (a.u.)", 1000, -10., 10.);
0240 TH1F *hPullVtxY = new TH1F("hPullVtxY", "Pull y position of MC vertex;(Vy_{rec}-Vy_{mc})/#sigma_{vy}; Entries (a.u.)", 1000, -10., 10.);
0241 TH1F *hPullVtxZ = new TH1F("hPullVtxZ", "Pull z position of MC vertex;(Vz_{rec}-Vz_{mc})/#sigma_{vz}; Entries (a.u.)", 2000, -20, 20);
0242
0243 TH1F *hRes_SVx_Helixfit = new TH1F("hRes_SVx_Helixfit", "Fit method: Residual of SVx; SVx_{rec}-SVx_{mc} (mm); Entries (a.u.)", 200, -1.0, 1.0);
0244 TH1F *hRes_SVy_Helixfit= new TH1F("hRes_SVy_Helixfit", "Fit method: Residual of SVy; SVy_{rec}-SVy_{mc} (mm); Entries (a.u.)", 200, -1.0, 1.0);
0245 TH1F *hRes_SVz_Helixfit = new TH1F("hRes_SVz_Helixfit", "Fit method: Residual of SVz; SVz_{rec}-SVz_{mc} (mm); Entries (a.u.)", 1000, -5.0, 5.0);
0246
0247 TH1F *hRes_SVx_Helixfit_pull = new TH1F("hRes_SVx_Helixfit_pull", "Fit method: Pull of SVx; SVx_{rec}-SVx_{mc}/#sigma; Entries (a.u.)", 200, -5.0, 5.0);
0248 TH1F *hRes_SVy_Helixfit_pull = new TH1F("hRes_SVy_Helixfit_pull", "Fit method: Pull of SVy; SVy_{rec}-SVy_{mc}/#sigma; Entries (a.u.)", 200, -5.0, 5.0);
0249 TH1F *hRes_SVz_Helixfit_pull = new TH1F("hRes_SVz_Helixfit_pull", "Fit method: Pull of SVz; SVz_{rec}-SVz_{mc}/#sigma; Entries (a.u.)", 200, -5.0, 5.0);
0250
0251
0252 TH1F *hchi2_vtx = new TH1F("hchi2_vtx", "Helix Calculation: Chi2/ndf; #chi^{2}/ndf; Entries (a.u.)", 1000, 0.0, 50.0);
0253 TH1F *hchi2_vtx_sig = new TH1F("hchi2_vtx_sig", "Helix Calculation: Chi2/ndf; #chi^{2}/ndf; Entries (a.u.)", 1000, 0.0, 50.0);
0254 TH1F *hchi2_vtx_bkg = new TH1F("hchi2_vtx_bkg", "Helix Calculation: Chi2/ndf; #chi^{2}/ndf; Entries (a.u.)", 1000, 0.0, 50.0);
0255
0256 TH2F *hLcpDecayVxVy = new TH2F("hLcpDecayVxVy", "#Lambda_{c}^{+} decay vertex to primary vertex;#Deltav_{x} (mm);#Deltav_{y} (mm)", 400, -1-0.0025, 1-0.0025, 400, -1-0.0025, 1-0.0025);
0257 TH2F *hLcpDecayVrVz = new TH2F("hLcpDecayVrVz", "#Lambda_{c}^{+} decay vertex to primary vertex;#Deltav_{z} (mm);#Deltav_{r} (mm)", 100, -2, 2, 100, -0.2, 1.8);
0258
0259 TH2F *hMCLcpPtRap = new TH2F("hMCLcpPtRap", "MC #Lambda_{c}^{+};y;p_{T} (GeV/c)", 20, -5, 5, 100, 0, 10);
0260
0261 TH2F *hMcPPtEta = new TH2F("hMcPPtEta", "MC P from #Lambda_{c}^{+} decay;#eta^{MC};p_{T}^{MC} (GeV/c)", 20, -5, 5, 100, 0, 10);
0262 TH2F *hMcPPtEtaReco = new TH2F("hMcPPtEtaReco", "RC P from #Lambda_{c}^{+} decay;#eta^{MC};p_{T}^{MC} (GeV/c)", 20, -5, 5, 100, 0, 10);
0263
0264 TH2F *hMcKPtEta = new TH2F("hMcKPtEta", "MC K from #Lambda_{c}^{+} decay;#eta^{MC};p_{T}^{MC} (GeV/c)", 20, -5, 5, 100, 0, 10);
0265 TH2F *hMcKPtEtaReco = new TH2F("hMcKPtEtaReco", "RC K from #Lambda_{c}^{+} decay;#eta^{MC};p_{T}^{MC} (GeV/c)", 20, -5, 5, 100, 0, 10);
0266
0267 TH2F *hMcPiPtEta = new TH2F("hMcPiPtEta", "MC #pi from #Lambda_{c}^{+} decay;#eta^{MC};p_{T}^{MC} (GeV/c)", 20, -5, 5, 100, 0, 10);
0268 TH2F *hMcPiPtEtaReco = new TH2F("hMcPiPtEtaReco", "RC #pi from #Lambda_{c}^{+} decay;#eta^{MC};p_{T}^{MC} (GeV/c)", 20, -5, 5, 100, 0, 10);
0269
0270 TH1F *hNRecoVtx = new TH1F("hNRecoVtx", "Number of reconstructed vertices;N", 10, 0, 10);
0271
0272 const char* part_name[3] = {"P", "K", "Pi"};
0273 const char* part_title[3] = {"P", "K", "#pi"};
0274 TH3F *hRcSecPartLocaToRCVtx[3];
0275 TH3F *hRcSecPartLocbToRCVtx[3];
0276 TH3F *hRcPrimPartLocaToRCVtx[3];
0277 TH3F *hRcPrimPartLocbToRCVtx[3];
0278 for(int i=0; i<3; i++)
0279 {
0280 hRcSecPartLocaToRCVtx[i] = new TH3F(Form("hRcSec%sLocaToRCVtx",part_name[i]), Form( "DCA_{xy} distribution for #Lambda_{c}^{+} decayed %s;p_{T} (GeV/c);#eta;DCA_{xy} (mm)", part_title[i]), 100, 0, 10, 20, -5, 5, 100, 0, 1);
0281 hRcSecPartLocbToRCVtx[i] = new TH3F(Form("hRcSec%sLocbToRCVtx",part_name[i]), Form( "DCA_{z} distribution for #Lambda_{c}^{+} decayed %s;p_{T} (GeV/c);#eta;DCA_{z} (mm)", part_title[i]), 100, 0, 10, 20, -5, 5, 100, -0.5, 0.5);
0282 hRcPrimPartLocaToRCVtx[i] = new TH3F(Form("hRcPrim%sLocaToRCVtx",part_name[i]), Form( "DCA_{xy} distribution for primary %s;p_{T} (GeV/c);#eta;DCA_{xy} (mm)", part_title[i]), 100, 0, 10, 20, -5, 5, 100, 0, 1);
0283 hRcPrimPartLocbToRCVtx[i] = new TH3F(Form("hRcPrim%sLocbToRCVtx",part_name[i]), Form( "DCA_{z} distribution for primary %s;p_{T} (GeV/c);#eta;DCA_{z} (mm)", part_title[i]), 100, 0, 10, 20, -5, 5, 100, -0.5, 0.5);
0284 }
0285
0286 const char* axis_name[3] = {"x", "y", "z"};
0287 const int nDimDca = 4;
0288 const int nBinsDca[nDimDca] = {50, 20, 500, 50};
0289 const double minBinDca[nDimDca] = {0, -5, -1+0.002, 0};
0290 const double maxBinDca[nDimDca] = {5, 5, 1+0.002, 50};
0291 THnSparseF *hPrimTrkDcaToRCVtx[3][3];
0292 for(int i=0; i<3; i++)
0293 {
0294 for(int j=0; j<3; j++)
0295 {
0296 hPrimTrkDcaToRCVtx[i][j] = new THnSparseF(Form("hPrim%sDca%sToRCVtx",part_name[i],axis_name[j]), Form("DCA_{%s} distribution for primary %s;p_{T} (GeV/c);#eta;DCA_{%s} (mm);N_{MC}",axis_name[j],part_title[i],axis_name[j]), nDimDca, nBinsDca, minBinDca, maxBinDca);
0297 }
0298 }
0299
0300 TH3F *h3PairDca12[2], *h3PairDca23[2], *h3PairDca13[2];
0301 TH3F *h3PairCosTheta[2];
0302 TH3F *h3PairDca[2];
0303 TH3F *h3PairDecayLength[2];
0304 const char* pair_name[2] = {"signal", "bkg"};
0305 const char* pair_title[2] = {"Signal", "Background"};
0306 for(int i=0; i<2; i++)
0307 {
0308 h3PairDca12[i] = new TH3F(Form("h3PairDca12_%s", pair_name[i]), Form("%s pair DCA_{12};p_{T} (GeV/c);#eta;DCA_{12} (mm)", pair_title[i]), 100, 0, 10, 20, -5, 5, 100, 0, 1);
0309 h3PairDca23[i] = new TH3F(Form("h3PairDca23_%s", pair_name[i]), Form("%s pair DCA_{23};p_{T} (GeV/c);#eta;DCA_{23} (mm)", pair_title[i]), 100, 0, 10, 20, -5, 5, 100, 0, 1);
0310 h3PairDca13[i] = new TH3F(Form("h3PairDca13_%s", pair_name[i]), Form("%s pair DCA_{13};p_{T} (GeV/c);#eta;DCA_{13} (mm)", pair_title[i]), 100, 0, 10, 20, -5, 5, 100, 0, 1);
0311 h3PairCosTheta[i] = new TH3F(Form("h3PairCosTheta_%s", pair_name[i]), Form("%s pair cos(#theta);p_{T} (GeV/c);#eta;cos(#theta)", pair_title[i]), 100, 0, 10, 20, -5, 5, 100, -1, 1);
0312
0313 h3PairDca[i] = new TH3F(Form("h3PairDca_%s", pair_name[i]), Form("%s pair DCA;p_{T} (GeV/c);#eta;DCA_{pair} (mm)", pair_title[i]), 100, 0, 10, 20, -5, 5, 100, 0, 1);
0314
0315 h3PairDecayLength[i] = new TH3F(Form("h3PairDecayLength_%s", pair_name[i]), Form("%s pair decay length;p_{T} (GeV/c);#eta;L (mm)", pair_title[i]), 100, 0, 10, 20, -5, 5, 100, 0, 1);
0316 }
0317
0318
0319 const char* cut_name[2] = {"all", "DCA"};
0320 TH3F *h3InvMass[2][2];
0321 for(int i=0; i<2; i++)
0322 {
0323 for(int j=0; j<2; j++)
0324 {
0325 h3InvMass[i][j] = new TH3F(Form("h3InvMass_%s_%s", pair_name[i], cut_name[j]), "Invariant mass of unlike-sign #piK pairs;p_{T} (GeV/c);y;M_{#piK} (GeV/c^{2})", 100, 0, 10, 20, -5, 5, 100, 2.0, 3.0);
0326 }
0327 }
0328
0329 TTreeReader treereader(chain);
0330
0331 TTreeReaderArray<int> mcPartGenStatus = {treereader, "MCParticles.generatorStatus"};
0332 TTreeReaderArray<int> mcPartPdg = {treereader, "MCParticles.PDG"};
0333 TTreeReaderArray<float> mcPartCharge = {treereader, "MCParticles.charge"};
0334 TTreeReaderArray<unsigned int> mcPartParent_begin = {treereader, "MCParticles.parents_begin"};
0335 TTreeReaderArray<unsigned int> mcPartParent_end = {treereader, "MCParticles.parents_end"};
0336 TTreeReaderArray<int> mcPartParent_index = {treereader, "_MCParticles_parents.index"};
0337 TTreeReaderArray<unsigned int> mcPartDaughter_begin = {treereader, "MCParticles.daughters_begin"};
0338 TTreeReaderArray<unsigned int> mcPartDaughter_end = {treereader, "MCParticles.daughters_end"};
0339 TTreeReaderArray<int> mcPartDaughter_index = {treereader, "_MCParticles_daughters.index"};
0340 TTreeReaderArray<double> mcPartMass = {treereader, "MCParticles.mass"};
0341 TTreeReaderArray<double> mcPartVx = {treereader, "MCParticles.vertex.x"};
0342 TTreeReaderArray<double> mcPartVy = {treereader, "MCParticles.vertex.y"};
0343 TTreeReaderArray<double> mcPartVz = {treereader, "MCParticles.vertex.z"};
0344 TTreeReaderArray<float> mcMomPx = {treereader, "MCParticles.momentum.x"};
0345 TTreeReaderArray<float> mcMomPy = {treereader, "MCParticles.momentum.y"};
0346 TTreeReaderArray<float> mcMomPz = {treereader, "MCParticles.momentum.z"};
0347 TTreeReaderArray<double> mcEndPointX = {treereader, "MCParticles.endpoint.x"};
0348 TTreeReaderArray<double> mcEndPointY = {treereader, "MCParticles.endpoint.y"};
0349 TTreeReaderArray<double> mcEndPointZ = {treereader, "MCParticles.endpoint.z"};
0350
0351 TTreeReaderArray<unsigned int> assocChSimID = {treereader, "ReconstructedChargedParticleAssociations.simID"};
0352 TTreeReaderArray<unsigned int> assocChRecID = {treereader, "ReconstructedChargedParticleAssociations.recID"};
0353 TTreeReaderArray<float> assocWeight = {treereader, "ReconstructedChargedParticleAssociations.weight"};
0354
0355 TTreeReaderArray<float> rcMomPx = {treereader, "ReconstructedChargedParticles.momentum.x"};
0356 TTreeReaderArray<float> rcMomPy = {treereader, "ReconstructedChargedParticles.momentum.y"};
0357 TTreeReaderArray<float> rcMomPz = {treereader, "ReconstructedChargedParticles.momentum.z"};
0358 TTreeReaderArray<float> rcPosx = {treereader, "ReconstructedChargedParticles.referencePoint.x"};
0359 TTreeReaderArray<float> rcPosy = {treereader, "ReconstructedChargedParticles.referencePoint.y"};
0360 TTreeReaderArray<float> rcPosz = {treereader, "ReconstructedChargedParticles.referencePoint.z"};
0361 TTreeReaderArray<float> rcCharge = {treereader, "ReconstructedChargedParticles.charge"};
0362 TTreeReaderArray<int> rcPdg = {treereader, "ReconstructedChargedParticles.PDG"};
0363
0364 TTreeReaderArray<float> rcTrkLoca = {treereader, "CentralCKFTrackParameters.loc.a"};
0365 TTreeReaderArray<float> rcTrkLocb = {treereader, "CentralCKFTrackParameters.loc.b"};
0366 TTreeReaderArray<float> rcTrkqOverP = {treereader, "CentralCKFTrackParameters.qOverP"};
0367 TTreeReaderArray<float> rcTrkTheta = {treereader, "CentralCKFTrackParameters.theta"};
0368 TTreeReaderArray<float> rcTrkPhi = {treereader, "CentralCKFTrackParameters.phi"};
0369
0370 rcMomPx2 = new TTreeReaderArray<float>{treereader, "ReconstructedChargedParticles.momentum.x"};
0371 rcMomPy2 = new TTreeReaderArray<float>{treereader, "ReconstructedChargedParticles.momentum.y"};
0372 rcMomPz2 = new TTreeReaderArray<float>{treereader, "ReconstructedChargedParticles.momentum.z"};
0373 rcCharge2 = new TTreeReaderArray<float>{treereader, "ReconstructedChargedParticles.charge"};
0374
0375 rcTrkLoca2 = new TTreeReaderArray<float>{treereader, "CentralCKFTrackParameters.loc.a"};
0376 rcTrkLocb2 = new TTreeReaderArray<float>{treereader, "CentralCKFTrackParameters.loc.b"};
0377 rcTrkTheta2 = new TTreeReaderArray<float>{treereader, "CentralCKFTrackParameters.theta"};
0378 rcTrkPhi2 = new TTreeReaderArray<float>{treereader, "CentralCKFTrackParameters.phi"};
0379 rcTrkCov = new TTreeReaderArray<std::array<float, 21>>{treereader, "CentralCKFTrackParameters.covariance.covariance[21]"};
0380
0381 TTreeReaderArray<float> CTVx = {treereader, "CentralTrackVertices.position.x"};
0382 TTreeReaderArray<float> CTVy = {treereader, "CentralTrackVertices.position.y"};
0383 TTreeReaderArray<float> CTVz = {treereader, "CentralTrackVertices.position.z"};
0384 TTreeReaderArray<int> CTVndf = {treereader, "CentralTrackVertices.ndf"};
0385 TTreeReaderArray<float> CTVchi2 = {treereader, "CentralTrackVertices.chi2"};
0386 TTreeReaderArray<float> CTVerr_xx = {treereader, "CentralTrackVertices.positionError.xx"};
0387 TTreeReaderArray<float> CTVerr_yy = {treereader, "CentralTrackVertices.positionError.yy"};
0388 TTreeReaderArray<float> CTVerr_zz = {treereader, "CentralTrackVertices.positionError.zz"};
0389
0390 TTreeReaderArray<int> prim_vtx_index = {treereader, "PrimaryVertices_objIdx.index"};
0391
0392 TTreeReaderArray<unsigned int> vtxAssocPart_begin = {treereader, "CentralTrackVertices.associatedParticles_begin"};
0393 TTreeReaderArray<unsigned int> vtxAssocPart_end = {treereader, "CentralTrackVertices.associatedParticles_end"};
0394 TTreeReaderArray<int> vtxAssocPart_index = {treereader, "_CentralTrackVertices_associatedParticles.index"};
0395
0396
0397 TFile *file_gen = new TFile("SignalLcpGen.root", "RECREATE");
0398 TTree *tree_gen = new TTree("treeMLSigGen", "treeMLSigGen");
0399
0400
0401 float pt_Lcp_gen, y_Lcp_gen;
0402 tree_gen->Branch("pt_Lcp_gen", &pt_Lcp_gen, "pt_Lcp_gen/F");
0403 tree_gen->Branch("y_Lcp_gen", &y_Lcp_gen, "y_Lcp_gen/F");
0404
0405
0406
0407 TFile *file_signal = new TFile("SignalLcp.root", "RECREATE");
0408 TTree *tree_sig = new TTree("treeMLSig", "treeMLSig");
0409
0410
0411 float d0_p_sig, d0_k_sig, d0_pi_sig, d0xy_p_sig, d0xy_k_sig, d0xy_pi_sig, sum_d0xy_sig, dca_12_sig, dca_Lcp_sig, decay_length_sig;
0412 float costheta_sig, costhetaxy_sig, pt_Lcp_sig, y_Lcp_sig, mass_Lcp_sig, sigma_vtx_sig, mult_sig, chi2_sig;
0413
0414
0415 tree_sig->Branch("d0_p", &d0_p_sig, "d0_p/F");
0416 tree_sig->Branch("d0_k", &d0_k_sig, "d0_k/F");
0417 tree_sig->Branch("d0_pi", &d0_pi_sig, "d0_pi/F");
0418 tree_sig->Branch("d0xy_p", &d0xy_p_sig, "d0xy_p/F");
0419 tree_sig->Branch("d0xy_k", &d0xy_k_sig, "d0xy_k/F");
0420 tree_sig->Branch("d0xy_pi", &d0xy_pi_sig, "d0xy_pi/F");
0421 tree_sig->Branch("sum_d0xy", &sum_d0xy_sig, "sum_d0xy/F");
0422 tree_sig->Branch("dca_12", &dca_12_sig, "dca_12/F");
0423 tree_sig->Branch("dca_Lcp", &dca_Lcp_sig, "dca_Lcp/F");
0424 tree_sig->Branch("pt_Lcp", &pt_Lcp_sig, "pt_Lcp/F");
0425 tree_sig->Branch("y_Lcp", &y_Lcp_sig, "y_Lcp/F");
0426 tree_sig->Branch("mass_Lcp", &mass_Lcp_sig, "mass_Lcp/F");
0427 tree_sig->Branch("decay_length", &decay_length_sig, "decay_length/F");
0428 tree_sig->Branch("costheta", &costheta_sig, "costheta/F");
0429 tree_sig->Branch("costheta_xy", &costhetaxy_sig, "costheta_xy/F");
0430 tree_sig->Branch("sigma_vtx", &sigma_vtx_sig, "sigma_vtx/F");
0431 tree_sig->Branch("mult", &mult_sig, "mult/F");
0432 tree_sig->Branch("chi2", &chi2_sig, "chi2/F");
0433
0434 TFile *file_bkg = new TFile("BkgLcp.root", "RECREATE");
0435 TTree *tree_bkg = new TTree("treeMLBkg", "treeMLBkg");
0436
0437
0438 float d0_p_bkg, d0_k_bkg, d0_pi_bkg, d0xy_p_bkg, d0xy_k_bkg, d0xy_pi_bkg, sum_d0xy_bkg, dca_12_bkg, dca_Lcp_bkg, decay_length_bkg;
0439 float costheta_bkg, costhetaxy_bkg, pt_Lcp_bkg, y_Lcp_bkg, mass_Lcp_bkg, sigma_vtx_bkg, mult_bkg, chi2_bkg;
0440
0441 tree_bkg->Branch("d0_p", &d0_p_bkg, "d0_p/F");
0442 tree_bkg->Branch("d0_k", &d0_k_bkg, "d0_k/F");
0443 tree_bkg->Branch("d0_pi", &d0_pi_bkg, "d0_pi/F");
0444 tree_bkg->Branch("d0xy_p", &d0xy_p_bkg, "d0xy_p/F");
0445 tree_bkg->Branch("d0xy_k", &d0xy_k_bkg, "d0xy_k/F");
0446 tree_bkg->Branch("d0xy_pi", &d0xy_pi_bkg, "d0xy_pi/F");
0447 tree_bkg->Branch("sum_d0xy", &sum_d0xy_bkg, "sum_d0xy/F");
0448 tree_bkg->Branch("dca_12", &dca_12_bkg, "dca_12/F");
0449 tree_bkg->Branch("dca_Lcp", &dca_Lcp_bkg, "dca_Lcp/F");
0450 tree_bkg->Branch("pt_Lcp", &pt_Lcp_bkg, "pt_Lcp/F");
0451 tree_bkg->Branch("y_Lcp", &y_Lcp_bkg, "y_Lcp/F");
0452 tree_bkg->Branch("mass_Lcp", &mass_Lcp_bkg, "mass_Lcp/F");
0453 tree_bkg->Branch("decay_length", &decay_length_bkg, "decay_length/F");
0454 tree_bkg->Branch("costheta", &costheta_bkg, "costheta/F");
0455 tree_bkg->Branch("costheta_xy", &costhetaxy_bkg, "costheta_xy/F");
0456 tree_bkg->Branch("sigma_vtx", &sigma_vtx_bkg, "sigma_vtx/F");
0457 tree_bkg->Branch("mult", &mult_bkg, "mult/F");
0458 tree_bkg->Branch("chi2", &chi2_bkg, "chi2/F");
0459
0460
0461 int nevents = 0;
0462 int count = 0;
0463
0464 while(treereader.Next())
0465 {
0466 if(nevents%1000==0) printf("\nEvent No.-----> %d\n",nevents);
0467
0468 int nMCPart = mcPartMass.GetSize();
0469
0470 TVector3 vertex_mc(-999., -999., -999.);
0471 for(int imc=0; imc<nMCPart; imc++)
0472 {
0473
0474 if(mcPartGenStatus[imc] == 4 && mcPartPdg[imc] == 11)
0475 {
0476 vertex_mc.SetXYZ(mcEndPointX[imc], mcEndPointY[imc], mcEndPointZ[imc]);
0477 break;
0478 }
0479 }
0480 hEventStat->Fill(0.5);
0481 hMcVtxX->Fill(vertex_mc.x());
0482 hMcVtxY->Fill(vertex_mc.y());
0483 hMcVtxZ->Fill(vertex_mc.z());
0484
0485
0486
0487 TVector3 vertex_rc(-999., -999., -999.);
0488 TVector3 err_vertex_rc(-999., -999., -999.);
0489
0490 if(prim_vtx_index.GetSize()>0)
0491 {
0492 int rc_vtx_index = prim_vtx_index[0];
0493 vertex_rc.SetXYZ(CTVx[rc_vtx_index], CTVy[rc_vtx_index], CTVz[rc_vtx_index]);
0494 err_vertex_rc.SetXYZ(sqrt(CTVerr_xx[rc_vtx_index]), sqrt(CTVerr_yy[rc_vtx_index]), sqrt(CTVerr_zz[rc_vtx_index]));
0495
0496 }
0497 hRecVtxX->Fill(vertex_rc.x());
0498 hRecVtxY->Fill(vertex_rc.y());
0499 hRecVtxZ->Fill(vertex_rc.z());
0500
0501 hPullVtxX->Fill((vertex_rc.x()-vertex_mc.x())/err_vertex_rc.x());
0502 hPullVtxY->Fill((vertex_rc.y()-vertex_mc.y())/err_vertex_rc.y());
0503 hPullVtxZ->Fill((vertex_rc.z()-vertex_mc.z())/err_vertex_rc.z());
0504
0505
0506
0507 int nAssoc = assocChRecID.GetSize();
0508 map<int, int> assoc_map_mc_to_rc;
0509 map<int, int> assoc_map_rc_to_mc;
0510
0511 for(unsigned int rc_index=0; rc_index<rcMomPx.GetSize(); rc_index++)
0512 {
0513
0514 double max_weight = 0;
0515 int matched_mc_index = -1;
0516 for(int j=0; j<nAssoc; j++)
0517 {
0518 if(assocChRecID[j] != rc_index) continue;
0519 if(assocWeight[j] > max_weight)
0520 {
0521 max_weight = assocWeight[j];
0522 matched_mc_index = assocChSimID[j];
0523 }
0524 }
0525
0526
0527 assoc_map_mc_to_rc[matched_mc_index] = rc_index;
0528 assoc_map_rc_to_mc[rc_index] = matched_mc_index;
0529 }
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544 int nMcPart = 0;
0545 for(int imc=0; imc<nMCPart; imc++)
0546 {
0547 if(mcPartGenStatus[imc] == 1 && mcPartCharge[imc] != 0)
0548 {
0549 double dist = sqrt( pow(mcPartVx[imc]-vertex_mc.x(),2) + pow(mcPartVy[imc]-vertex_mc.y(),2) + pow(mcPartVz[imc]-vertex_mc.z(),2));
0550 if(dist < 1e-4)
0551 {
0552
0553 TVector3 mc_mom(mcMomPx[imc], mcMomPy[imc], mcMomPz[imc]);
0554 double mcEta = mc_mom.PseudoRapidity();
0555 if(fabs(mcEta) < 3.5) nMcPart++;
0556 }
0557 }
0558 }
0559
0560 hMcMult->Fill(nMcPart);
0561
0562
0563 for(int imc=0; imc<nMCPart; imc++)
0564 {
0565 if(mcPartGenStatus[imc] == 1 && mcPartCharge[imc] != 0)
0566 {
0567 double dist = sqrt( pow(mcPartVx[imc]-vertex_mc.x(),2) + pow(mcPartVy[imc]-vertex_mc.y(),2) + pow(mcPartVz[imc]-vertex_mc.z(),2));
0568 if(dist < 1e-4)
0569 {
0570
0571 int rc_index = -1;
0572 if(assoc_map_mc_to_rc.find(imc) != assoc_map_mc_to_rc.end()) rc_index = assoc_map_mc_to_rc[imc];
0573
0574 if(rc_index>=0)
0575 {
0576 TVector3 dcaToVtx = GetDCAToPrimaryVertex(rc_index, vertex_rc);
0577
0578 int ip = -1;
0579 if(fabs(mcPartPdg[imc]) == pdg_p) ip = 0;
0580 if(fabs(mcPartPdg[imc]) == pdg_k) ip = 1;
0581 if(fabs(mcPartPdg[imc]) == pdg_pi) ip = 2;
0582 if(ip>=0)
0583 {
0584 TVector3 mom(rcMomPx[rc_index], rcMomPy[rc_index], rcMomPz[rc_index]);
0585 if(ip<3)
0586 {
0587 hRcPrimPartLocaToRCVtx[ip]->Fill(mom.Pt(), mom.Eta(), dcaToVtx.Perp());
0588 hRcPrimPartLocbToRCVtx[ip]->Fill(mom.Pt(), mom.Eta(), dcaToVtx.z());
0589 }
0590
0591 double fill1[] = {mom.Pt(), mom.Eta(), dcaToVtx.x(), nMcPart*1.};
0592 double fill2[] = {mom.Pt(), mom.Eta(), dcaToVtx.y(), nMcPart*1.};
0593 double fill3[] = {mom.Pt(), mom.Eta(), dcaToVtx.z(), nMcPart*1.};
0594 hPrimTrkDcaToRCVtx[ip][0]->Fill(fill1);
0595 hPrimTrkDcaToRCVtx[ip][1]->Fill(fill2);
0596 hPrimTrkDcaToRCVtx[ip][2]->Fill(fill3);
0597 }
0598 }
0599 }
0600 }
0601 }
0602
0603
0604 bool hasLc = false;
0605 vector<int> mc_index_Lcp_p;
0606 vector<int> mc_index_Lcp_k;
0607 vector<int> mc_index_Lcp_pi;
0608 mc_index_Lcp_p.clear();
0609 mc_index_Lcp_k.clear();
0610 mc_index_Lcp_pi.clear();
0611
0612 for(int imc=0; imc<nMCPart; imc++)
0613 {
0614 if(fabs(mcPartPdg[imc]) != pdg_Lcp) continue;
0615 hEventStat->Fill(1.5);
0616
0617
0618 int nDaughters = mcPartDaughter_end[imc]-mcPartDaughter_begin[imc];
0619 if(nDaughters!=3) continue;
0620
0621
0622 bool is_pkpi_decay = false;
0623 int daug_index_1 = mcPartDaughter_index[mcPartDaughter_begin[imc]];
0624 int daug_index_2 = mcPartDaughter_index[mcPartDaughter_begin[imc]+1];
0625 int daug_index_3 = mcPartDaughter_index[mcPartDaughter_begin[imc]+2];
0626 int daug_pdg_1 = mcPartPdg[daug_index_1];
0627 int daug_pdg_2 = mcPartPdg[daug_index_2];
0628 int daug_pdg_3 = mcPartPdg[daug_index_3];
0629
0630 if( (fabs(daug_pdg_1)==pdg_p && fabs(daug_pdg_2)==pdg_k && fabs(daug_pdg_3)==pdg_pi) || (fabs(daug_pdg_1)==pdg_p && fabs(daug_pdg_2)==pdg_pi && fabs(daug_pdg_3)==pdg_k) ||
0631 (fabs(daug_pdg_1)==pdg_k && fabs(daug_pdg_2)==pdg_p && fabs(daug_pdg_3)==pdg_pi) || (fabs(daug_pdg_1)==pdg_k && fabs(daug_pdg_2)==pdg_pi && fabs(daug_pdg_3)==pdg_p) ||
0632 (fabs(daug_pdg_1)==pdg_pi && fabs(daug_pdg_2)==pdg_k && fabs(daug_pdg_3)==pdg_p) || (fabs(daug_pdg_1)==pdg_pi && fabs(daug_pdg_2)==pdg_p && fabs(daug_pdg_3)==pdg_k) )
0633 {
0634 is_pkpi_decay = true;
0635 }
0636 if(!is_pkpi_decay) continue;
0637
0638 TLorentzVector mc_part_gen;
0639 mc_part_gen.SetXYZM(mcMomPx[imc], mcMomPy[imc], mcMomPz[imc], mcPartMass[imc]);
0640
0641 float mcRap_gen = mc_part_gen.Rapidity();
0642 float mcPt_gen = mc_part_gen.Pt();
0643 pt_Lcp_gen = mcPt_gen;
0644 y_Lcp_gen = mcRap_gen;
0645 tree_gen->Fill();
0646
0647 hEventStat->Fill(2.5);
0648
0649 if((fabs(daug_pdg_1)==pdg_p && fabs(daug_pdg_2)==pdg_k && fabs(daug_pdg_3)==pdg_pi))
0650 {
0651 mc_index_Lcp_p.push_back(daug_index_1);
0652 mc_index_Lcp_k.push_back(daug_index_2);
0653 mc_index_Lcp_pi.push_back(daug_index_3);
0654 }
0655 else if((fabs(daug_pdg_1)==pdg_p && fabs(daug_pdg_2)==pdg_pi && fabs(daug_pdg_3)==pdg_k))
0656 {
0657 mc_index_Lcp_p.push_back(daug_index_1);
0658 mc_index_Lcp_k.push_back(daug_index_3);
0659 mc_index_Lcp_pi.push_back(daug_index_2);
0660 }
0661 else if((fabs(daug_pdg_1)==pdg_k && fabs(daug_pdg_2)==pdg_p && fabs(daug_pdg_3)==pdg_pi))
0662 {
0663 mc_index_Lcp_p.push_back(daug_index_2);
0664 mc_index_Lcp_k.push_back(daug_index_1);
0665 mc_index_Lcp_pi.push_back(daug_index_3);
0666 }
0667 else if((fabs(daug_pdg_1)==pdg_k && fabs(daug_pdg_2)==pdg_pi && fabs(daug_pdg_3)==pdg_p))
0668 {
0669 mc_index_Lcp_p.push_back(daug_index_3);
0670 mc_index_Lcp_k.push_back(daug_index_1);
0671 mc_index_Lcp_pi.push_back(daug_index_2);
0672 }
0673 else if((fabs(daug_pdg_1)==pdg_pi && fabs(daug_pdg_2)==pdg_k && fabs(daug_pdg_3)==pdg_p))
0674 {
0675 mc_index_Lcp_p.push_back(daug_index_3);
0676 mc_index_Lcp_k.push_back(daug_index_2);
0677 mc_index_Lcp_pi.push_back(daug_index_1);
0678 }
0679 else
0680 {
0681 mc_index_Lcp_p.push_back(daug_index_2);
0682 mc_index_Lcp_k.push_back(daug_index_3);
0683 mc_index_Lcp_pi.push_back(daug_index_1);
0684 }
0685 hasLc = true;
0686
0687
0688 TLorentzVector mc_mom_vec;
0689 mc_mom_vec.SetXYZM(mcMomPx[imc], mcMomPy[imc], mcMomPz[imc], mcPartMass[imc]);
0690
0691
0692 double mcRap = mc_mom_vec.Rapidity();
0693 double mcPt = mc_mom_vec.Pt();
0694 hMCLcpPtRap->Fill(mcRap, mcPt);
0695
0696
0697 for(int ip = 0; ip<3; ip++)
0698 {
0699 int mc_part_index;
0700 if(ip==0) mc_part_index = mc_index_Lcp_p[mc_index_Lcp_p.size()-1];
0701 if(ip==1) mc_part_index = mc_index_Lcp_k[mc_index_Lcp_k.size()-1];
0702 if(ip==2) mc_part_index = mc_index_Lcp_pi[mc_index_Lcp_pi.size()-1];
0703
0704 TLorentzVector mc_part_vec;
0705 mc_part_vec.SetXYZM(mcMomPx[mc_part_index], mcMomPy[mc_part_index], mcMomPz[mc_part_index], mcPartMass[mc_part_index]);
0706 if(ip==0) hMcPPtEta->Fill(mc_part_vec.Eta(), mc_part_vec.Pt());
0707 if(ip==1) hMcKPtEta->Fill(mc_part_vec.Eta(), mc_part_vec.Pt());
0708 if(ip==2) hMcPiPtEta->Fill(mc_part_vec.Eta(), mc_part_vec.Pt());
0709
0710 int rc_part_index = -1;
0711 if(assoc_map_mc_to_rc.find(mc_part_index) != assoc_map_mc_to_rc.end()) rc_part_index = assoc_map_mc_to_rc[mc_part_index];
0712 if (debug) printf("Rec: ProngNo., MC Index, Reco Index = (%d, %d, %d) \n",ip,mc_part_index,rc_part_index);
0713 if(rc_part_index>=0)
0714 {
0715 TVector3 dcaToVtx = GetDCAToPrimaryVertex(rc_part_index, vertex_rc);
0716 TVector3 mom(rcMomPx[rc_part_index], rcMomPy[rc_part_index], rcMomPz[rc_part_index]);
0717 hRcSecPartLocaToRCVtx[ip]->Fill(mom.Pt(), mom.Eta(), dcaToVtx.Pt());
0718 hRcSecPartLocbToRCVtx[ip]->Fill(mom.Pt(), mom.Eta(), dcaToVtx.z());
0719
0720
0721 }
0722 }
0723 }
0724
0725
0726 hNRecoVtx->Fill(CTVx.GetSize());
0727 const int pid_mode = 0;
0728 vector<unsigned int> p_index;
0729 vector<unsigned int> k_index;
0730 vector<unsigned int> pi_index;
0731 p_index.clear();
0732 k_index.clear();
0733 pi_index.clear();
0734
0735 for(unsigned int rc_index=0; rc_index<rcMomPx.GetSize(); rc_index++)
0736 {
0737 if(pid_mode==0)
0738 {
0739 int iSimPartID = -1;
0740 if(assoc_map_rc_to_mc.find(rc_index) != assoc_map_rc_to_mc.end()) iSimPartID = assoc_map_rc_to_mc[rc_index];
0741 if(iSimPartID>=0)
0742 {
0743 if(fabs(mcPartPdg[iSimPartID]) == pdg_p) p_index.push_back(rc_index);
0744 if(fabs(mcPartPdg[iSimPartID]) == pdg_k) k_index.push_back(rc_index);
0745 if(fabs(mcPartPdg[iSimPartID]) == pdg_pi) pi_index.push_back(rc_index);
0746 }
0747 }
0748 else if(pid_mode==1)
0749 {
0750 if(fabs(rcPdg[rc_index]) == pdg_p) p_index.push_back(rc_index);
0751 if(fabs(rcPdg[rc_index]) == pdg_k) k_index.push_back(rc_index);
0752 if(fabs(rcPdg[rc_index]) == pdg_pi) pi_index.push_back(rc_index);
0753 }
0754 }
0755
0756
0757
0758 for(unsigned int i=0; i<p_index.size(); i++)
0759 {
0760 TVector3 dcaToVtx_p = GetDCAToPrimaryVertex(p_index[i], vertex_rc);
0761 int q_proton = rcCharge[p_index[i]];
0762
0763 for(unsigned int j=0; j<k_index.size(); j++)
0764 {
0765 TVector3 dcaToVtx_k = GetDCAToPrimaryVertex(k_index[j], vertex_rc);
0766 int q_kaon = rcCharge[k_index[j]];
0767
0768 for(unsigned int k=0; k<pi_index.size(); k++)
0769 {
0770 TVector3 dcaToVtx_pi = GetDCAToPrimaryVertex(pi_index[k], vertex_rc);
0771 int q_pion = rcCharge[pi_index[k]];
0772
0773 if ((q_proton == +1 && q_kaon == -1 && q_pion == +1) || (q_proton == -1 && q_kaon == +1 && q_pion == -1))
0774 {
0775 bool is_Lcp_pkpi = false;
0776
0777 int mc_index_p = -1, mc_index_k = -1, mc_index_pi = -1;
0778 if(assoc_map_rc_to_mc.find(p_index[i]) != assoc_map_rc_to_mc.end()) mc_index_p = assoc_map_rc_to_mc[p_index[i]];
0779 if(assoc_map_rc_to_mc.find(k_index[j]) != assoc_map_rc_to_mc.end()) mc_index_k = assoc_map_rc_to_mc[k_index[j]];
0780 if(assoc_map_rc_to_mc.find(pi_index[k]) != assoc_map_rc_to_mc.end()) mc_index_pi = assoc_map_rc_to_mc[pi_index[k]];
0781
0782 for(unsigned int idaugh=0; idaugh<mc_index_Lcp_pi.size(); idaugh++)
0783 {
0784 if(mc_index_p==mc_index_Lcp_p[idaugh] && mc_index_k==mc_index_Lcp_k[idaugh] && mc_index_pi==mc_index_Lcp_pi[idaugh])
0785 {
0786 is_Lcp_pkpi = true;
0787 break;
0788 }
0789 }
0790
0791 float dcaDaughters[3], cosTheta, decayLength, V0DcaToVtx, cosTheta_xy, sigma_vtx;
0792 float chi2_ndf = 0.;
0793 TVector3 decayVertex;
0794 double err_Par[6];
0795 TLorentzVector parent = GetDCADaughters(p_index[i], k_index[j], pi_index[k], vertex_rc, dcaDaughters, cosTheta, cosTheta_xy, decayLength, V0DcaToVtx, sigma_vtx, chi2_ndf, decayVertex,err_Par);
0796 hchi2_vtx->Fill(chi2_ndf);
0797
0798 if(is_Lcp_pkpi)
0799 {
0800 hEventStat->Fill(3.5);
0801 hchi2_vtx_sig->Fill(chi2_ndf);
0802 TVector3 MCVertex_Kaon(mcPartVx[mc_index_k], mcPartVy[mc_index_k], mcPartVz[mc_index_k]);
0803 TVector3 MCVertex_Pion(mcPartVx[mc_index_pi], mcPartVy[mc_index_pi], mcPartVz[mc_index_pi]);
0804
0805
0806
0807
0808
0809
0810
0811 hRes_SVx_Helixfit->Fill((decayVertex.X()-MCVertex_Kaon.X()*0.1)*10);
0812 hRes_SVy_Helixfit->Fill((decayVertex.Y()-MCVertex_Kaon.Y()*0.1)*10);
0813 hRes_SVz_Helixfit->Fill((decayVertex.Z()-MCVertex_Kaon.Z()*0.1)*10);
0814
0815 hRes_SVx_Helixfit_pull->Fill(((decayVertex.X()-MCVertex_Kaon.X()*0.1))/err_Par[0]);
0816 hRes_SVy_Helixfit_pull->Fill(((decayVertex.Y()-MCVertex_Kaon.Y()*0.1))/err_Par[1]);
0817 hRes_SVz_Helixfit_pull->Fill(((decayVertex.Z()-MCVertex_Kaon.Z()*0.1))/err_Par[2]);
0818
0819 if (q_proton == 1 && q_kaon == -1 && q_pion == 1)
0820 hEventStat->Fill(4.5);
0821 else if (q_proton == -1 && q_kaon == 1 && q_pion == -1)
0822 hEventStat->Fill(5.5);
0823
0824 h3PairDca12[0]->Fill(parent.Pt(), parent.Rapidity(), dcaDaughters[0]);
0825 h3PairDca23[0]->Fill(parent.Pt(), parent.Rapidity(), dcaDaughters[1]);
0826 h3PairDca13[0]->Fill(parent.Pt(), parent.Rapidity(), dcaDaughters[2]);
0827 h3PairCosTheta[0]->Fill(parent.Pt(), parent.Rapidity(), cosTheta);
0828 h3PairDca[0]->Fill(parent.Pt(), parent.Rapidity(), V0DcaToVtx);
0829 h3PairDecayLength[0]->Fill(parent.Pt(), parent.Rapidity(), decayLength);
0830
0831 h3InvMass[0][0]->Fill(parent.Pt(), parent.Rapidity(), parent.M());
0832
0833
0834 d0_p_sig = dcaToVtx_p.Mag();
0835 d0_k_sig = dcaToVtx_k.Mag();
0836 d0_pi_sig = dcaToVtx_pi.Mag();
0837 d0xy_p_sig = dcaToVtx_p.Perp();
0838 d0xy_k_sig = dcaToVtx_k.Perp();
0839 d0xy_pi_sig = dcaToVtx_pi.Perp();
0840 sum_d0xy_sig = sqrt(d0xy_p_sig*d0xy_p_sig+d0xy_k_sig*d0xy_k_sig+d0xy_pi_sig*d0xy_pi_sig);
0841 dca_12_sig = *min_element(dcaDaughters, dcaDaughters + 3);
0842 dca_Lcp_sig = V0DcaToVtx;
0843 decay_length_sig = decayLength;
0844 costheta_sig = cosTheta;
0845 costhetaxy_sig = cosTheta_xy;
0846 pt_Lcp_sig = parent.Pt();
0847 y_Lcp_sig = parent.Rapidity();
0848 mass_Lcp_sig = parent.M();
0849 sigma_vtx_sig = sigma_vtx;
0850 mult_sig = nMcPart;
0851 chi2_sig = chi2_ndf;
0852 tree_sig->Fill();
0853
0854 }
0855 else
0856 {
0857 hEventStat->Fill(6.5);
0858 hchi2_vtx_bkg->Fill(chi2_ndf);
0859 h3PairDca12[1]->Fill(parent.Pt(), parent.Rapidity(), dcaDaughters[0]);
0860 h3PairDca23[1]->Fill(parent.Pt(), parent.Rapidity(), dcaDaughters[1]);
0861 h3PairDca13[1]->Fill(parent.Pt(), parent.Rapidity(), dcaDaughters[2]);
0862 h3PairCosTheta[1]->Fill(parent.Pt(), parent.Rapidity(), cosTheta);
0863 h3PairDca[1]->Fill(parent.Pt(), parent.Rapidity(), V0DcaToVtx);
0864 h3PairDecayLength[1]->Fill(parent.Pt(), parent.Rapidity(), decayLength);
0865
0866
0867 h3InvMass[1][0]->Fill(parent.Pt(), parent.Rapidity(), parent.M());
0868
0869
0870 d0_p_bkg = dcaToVtx_p.Mag();
0871 d0_k_bkg = dcaToVtx_k.Mag();
0872 d0_pi_bkg = dcaToVtx_pi.Mag();
0873 d0xy_p_bkg = dcaToVtx_p.Perp();
0874 d0xy_k_bkg = dcaToVtx_k.Perp();
0875 d0xy_pi_bkg = dcaToVtx_pi.Perp();
0876 sum_d0xy_bkg = sqrt(d0xy_p_bkg*d0xy_p_bkg+d0xy_k_bkg*d0xy_k_bkg+d0xy_pi_bkg*d0xy_pi_bkg);
0877 dca_12_bkg = *min_element(dcaDaughters, dcaDaughters + 3);
0878 dca_Lcp_bkg = V0DcaToVtx;
0879 decay_length_bkg = decayLength;
0880 costheta_bkg = cosTheta;
0881 costhetaxy_bkg = cosTheta_xy;
0882 pt_Lcp_bkg = parent.Pt();
0883 y_Lcp_bkg = parent.Rapidity();
0884 mass_Lcp_bkg = parent.M();
0885 sigma_vtx_bkg = sigma_vtx;
0886 mult_bkg = nMcPart;
0887 chi2_bkg = chi2_ndf;
0888 tree_bkg->Fill();
0889 }
0890
0891 }
0892 }
0893 }
0894 }
0895
0896 nevents++;
0897 }
0898
0899
0900 file_gen->cd();
0901 tree_gen->Write();
0902 file_gen->Close();
0903
0904 file_signal->cd();
0905 tree_sig->Write();
0906 file_signal->Close();
0907
0908 file_bkg->cd();
0909 tree_bkg->Write();
0910 file_bkg->Close();
0911
0912 TFile *outfile = new TFile(outname.Data(), "recreate");
0913 hEventStat->SetMarkerSize(2);
0914 hEventStat->Write("");
0915 hMcMult->Write();
0916 hMcVtxX->Write();
0917 hMcVtxY->Write();
0918 hMcVtxZ->Write();
0919 hRecVtxX->Write();
0920 hRecVtxY->Write();
0921 hRecVtxZ->Write();
0922 hPullVtxX->Write();
0923 hPullVtxY->Write();
0924 hPullVtxZ->Write();
0925 hchi2_vtx->Write();
0926 hchi2_vtx_sig->Write();
0927 hchi2_vtx_bkg->Write();
0928 hLcpDecayVxVy->Write();
0929 hLcpDecayVrVz->Write();
0930 hRes_SVx_Helixfit->Write();
0931 hRes_SVy_Helixfit->Write();
0932 hRes_SVz_Helixfit->Write();
0933 hRes_SVx_Helixfit_pull->Write();
0934 hRes_SVy_Helixfit_pull->Write();
0935 hRes_SVz_Helixfit_pull->Write();
0936 hMCLcpPtRap->Write();
0937 hMcPPtEta->Write();
0938 hMcPPtEtaReco->Write();
0939 hMcPiPtEta->Write();
0940 hMcPiPtEtaReco->Write();
0941 hMcKPtEta->Write();
0942 hMcKPtEtaReco->Write();
0943
0944 hNRecoVtx->Write();
0945
0946 for(int ip=0; ip<3; ip++)
0947 {
0948 hRcSecPartLocaToRCVtx[ip]->Write();
0949 hRcSecPartLocbToRCVtx[ip]->Write();
0950 hRcPrimPartLocaToRCVtx[ip]->Write();
0951 hRcPrimPartLocbToRCVtx[ip]->Write();
0952 }
0953
0954 for(int i=0; i<3; i++)
0955 {
0956 for(int j=0; j<3; j++)
0957 {
0958 hPrimTrkDcaToRCVtx[i][j]->Write();
0959 }
0960 }
0961
0962 for(int i=0; i<2; i++)
0963 {
0964 h3PairDca12[i]->Write();
0965 h3PairDca23[i]->Write();
0966 h3PairDca13[i]->Write();
0967 h3PairCosTheta[i]->Write();
0968 h3PairDca[i]->Write();
0969 h3PairDecayLength[i]->Write();
0970 }
0971
0972 for(int i=0; i<2; i++)
0973 {
0974 for(int j=0; j<2; j++)
0975 {
0976 h3InvMass[i][j]->Write();
0977 }
0978 }
0979
0980
0981 outfile->Close();
0982
0983 }
0984
0985
0986 TVector3 GetDCAToPrimaryVertex(const int index, TVector3 vtx)
0987 {
0988
0989
0990 TVector3 pos(rcTrkLoca2->At(index) * sin(rcTrkPhi2->At(index)) * -1 * millimeter, rcTrkLoca2->At(index) * cos(rcTrkPhi2->At(index)) * millimeter, rcTrkLocb2->At(index) * millimeter);
0991 TVector3 mom(rcMomPx2->At(index), rcMomPy2->At(index), rcMomPz2->At(index));
0992
0993 StPhysicalHelix pHelix(mom, pos, bField * tesla, rcCharge2->At(index));
0994
0995 TVector3 vtx_tmp;
0996 vtx_tmp.SetXYZ(vtx.x()*millimeter, vtx.y()*millimeter, vtx.z()*millimeter);
0997
0998 pHelix.moveOrigin(pHelix.pathLength(vtx_tmp));
0999 TVector3 dcaToVtx = pHelix.origin() - vtx_tmp;
1000
1001 dcaToVtx.SetXYZ(dcaToVtx.x()/millimeter, dcaToVtx.y()/millimeter, dcaToVtx.z()/millimeter);
1002
1003 return dcaToVtx;
1004 }
1005
1006
1007
1008
1009 TLorentzVector GetDCADaughters(const int index1, const int index2, const int index3, TVector3 vtx,
1010 float *dcaDaughters, float &cosTheta, float &cosTheta_xy, float &decayLength, float &V0DcaToVtx, float &sigma_vtx, float & chi2_ndf, TVector3 &decayVertex, double *parFitErr)
1011 {
1012
1013 TVector3 pos1(rcTrkLoca2->At(index1) * sin(rcTrkPhi2->At(index1)) * -1 * millimeter, rcTrkLoca2->At(index1) * cos(rcTrkPhi2->At(index1)) * millimeter, rcTrkLocb2->At(index1) * millimeter);
1014 TVector3 pos2(rcTrkLoca2->At(index2) * sin(rcTrkPhi2->At(index2)) * -1 * millimeter, rcTrkLoca2->At(index2) * cos(rcTrkPhi2->At(index2)) * millimeter, rcTrkLocb2->At(index2) * millimeter);
1015 TVector3 pos3(rcTrkLoca2->At(index3) * sin(rcTrkPhi2->At(index3)) * -1 * millimeter, rcTrkLoca2->At(index3) * cos(rcTrkPhi2->At(index3)) * millimeter, rcTrkLocb2->At(index3) * millimeter);
1016
1017 TVector3 mom1(rcMomPx2->At(index1), rcMomPy2->At(index1), rcMomPz2->At(index1));
1018 TVector3 mom2(rcMomPx2->At(index2), rcMomPy2->At(index2), rcMomPz2->At(index2));
1019 TVector3 mom3(rcMomPx2->At(index3), rcMomPy2->At(index3), rcMomPz2->At(index3));
1020
1021 float charge1 = rcCharge2->At(index1);
1022 float charge2 = rcCharge2->At(index2);
1023 float charge3 = rcCharge2->At(index3);
1024
1025 StPhysicalHelix p1Helix(mom1, pos1, bField * tesla, charge1);
1026 StPhysicalHelix p2Helix(mom2, pos2, bField * tesla, charge2);
1027 StPhysicalHelix p3Helix(mom3, pos3, bField * tesla, charge3);
1028
1029 TVector3 vtx_tmp;
1030 vtx_tmp.SetXYZ(vtx.x()*millimeter, vtx.y()*millimeter, vtx.z()*millimeter);
1031
1032
1033 double s1, s2, s3;
1034
1035 getDecayVertex_chi2fit(index1,index2,index3,s1,s2,s3,decayVertex,chi2_ndf, parFitErr);
1036
1037
1038 TVector3 const p1 = p1Helix.at(s1);
1039 TVector3 const p2 = p2Helix.at(s2);
1040 TVector3 const p3 = p3Helix.at(s3);
1041
1042 printf("Chi2/ndf = %f \n",chi2_ndf);
1043
1044 dcaDaughters[0] = (p1 - p2).Mag()/millimeter;
1045 dcaDaughters[1] = (p2 - p3).Mag()/millimeter;
1046 dcaDaughters[2] = (p3 - p1).Mag()/millimeter;
1047
1048
1049 TVector3 const p1MomAtDca = p1Helix.momentumAt(s1, bField * tesla);
1050 TVector3 const p2MomAtDca = p2Helix.momentumAt(s2, bField * tesla);
1051 TVector3 const p3MomAtDca = p3Helix.momentumAt(s3, bField * tesla);
1052
1053 TLorentzVector p1FourMom(p1MomAtDca, sqrt(p1MomAtDca.Mag2()+gProtonMass*gProtonMass));
1054 TLorentzVector p2FourMom(p2MomAtDca, sqrt(p2MomAtDca.Mag2()+gKaonMass*gKaonMass));
1055 TLorentzVector p3FourMom(p3MomAtDca, sqrt(p3MomAtDca.Mag2()+gPionMass*gPionMass));
1056
1057 TLorentzVector parent = p1FourMom + p2FourMom + p3FourMom;
1058
1059
1060
1061 sigma_vtx = sqrt((p1-decayVertex).Mag2()+(p2-decayVertex).Mag2()+(p3-decayVertex).Mag2())/millimeter;
1062
1063
1064
1065
1066 TVector3 vtxToV0 = decayVertex - vtx_tmp;
1067 TVector3 vtxToV0_xy(vtxToV0.x(), vtxToV0.y(), 0.);
1068 TVector3 parent_xy(parent.Vect().x(),parent.Vect().y(),0.);
1069 float pointingAngle = vtxToV0.Angle(parent.Vect());
1070 float pointingAngle_xy = vtxToV0_xy.Angle(parent_xy);
1071 cosTheta = std::cos(pointingAngle);
1072 cosTheta_xy = std::cos(pointingAngle_xy);
1073 decayLength = vtxToV0.Mag()/millimeter;
1074
1075
1076 V0DcaToVtx = decayLength * std::sin(pointingAngle);
1077
1078
1079
1080
1081 return parent;
1082 }
1083
1084 void getDecayVertex_chi2fit(const int index1, const int index2, const int index3, double &s1, double &s2, double &s3, TVector3 &vertex, float &chi2, double *parFitErr)
1085 {
1086 TVector3 pos1(rcTrkLoca2->At(index1) * sin(rcTrkPhi2->At(index1)) * -1 * millimeter,
1087 rcTrkLoca2->At(index1) * cos(rcTrkPhi2->At(index1)) * millimeter,
1088 rcTrkLocb2->At(index1) * millimeter);
1089
1090 TVector3 mom1(rcMomPx2->At(index1), rcMomPy2->At(index1), rcMomPz2->At(index1));
1091
1092 TVector3 pos2(rcTrkLoca2->At(index2) * sin(rcTrkPhi2->At(index2)) * -1 * millimeter,
1093 rcTrkLoca2->At(index2) * cos(rcTrkPhi2->At(index2)) * millimeter,
1094 rcTrkLocb2->At(index2) * millimeter);
1095
1096 TVector3 mom2(rcMomPx2->At(index2), rcMomPy2->At(index2), rcMomPz2->At(index2));
1097
1098 TVector3 pos3(rcTrkLoca2->At(index3) * sin(rcTrkPhi2->At(index3)) * -1 * millimeter,
1099 rcTrkLoca2->At(index3) * cos(rcTrkPhi2->At(index3)) * millimeter,
1100 rcTrkLocb2->At(index3) * millimeter);
1101
1102 TVector3 mom3(rcMomPx2->At(index3), rcMomPy2->At(index3), rcMomPz2->At(index3));
1103
1104
1105 float charge1 = rcCharge2->At(index1);
1106 float charge2 = rcCharge2->At(index2);
1107 float charge3 = rcCharge2->At(index3);
1108
1109
1110 StPhysicalHelix helix1(mom1, pos1, bField * tesla, charge1);
1111 StPhysicalHelix helix2(mom2, pos2, bField * tesla, charge2);
1112 StPhysicalHelix helix3(mom3, pos3, bField * tesla, charge3);
1113
1114 pair<double, double> const ss12 = helix1.pathLengths(helix2);
1115 pair<double, double> const ss13 = helix1.pathLengths(helix3);
1116 TVector3 const p1_init = helix1.at(ss12.first);
1117 TVector3 const p2_init = helix2.at(ss12.second);
1118 TVector3 const p3_init = helix3.at(ss13.second);
1119 TVector3 const centroid = 1./3*(p1_init+p2_init+p3_init);
1120
1121 std::array<float, 21>& fcov1 = rcTrkCov->At(index1);
1122 std::array<float, 21>& fcov2 = rcTrkCov->At(index2);
1123 std::array<float, 21>& fcov3 = rcTrkCov->At(index3);
1124
1125
1126 const Int_t nPar = 6;
1127 Chi2Minimization d2Function(helix1,helix2,helix3,fcov1,fcov2,fcov3);
1128 ROOT::Math::Functor fcn(d2Function,nPar);
1129 ROOT::Fit::Fitter fitter;
1130
1131 double pStart[nPar] = {centroid.X(),centroid.Y(),centroid.Z(),ss12.first,ss12.second,ss13.second};
1132 fitter.SetFCN(fcn, pStart,nPar,1);
1133 fitter.Config().ParSettings(0).SetName("x0");
1134 fitter.Config().ParSettings(0).SetStepSize(0.01);
1135
1136
1137
1138 fitter.Config().ParSettings(1).SetName("y0");
1139 fitter.Config().ParSettings(1).SetStepSize(0.01);
1140
1141
1142 fitter.Config().ParSettings(2).SetName("z0");
1143 fitter.Config().ParSettings(2).SetStepSize(0.01);
1144
1145
1146 fitter.Config().ParSettings(3).SetName("s1");
1147 fitter.Config().ParSettings(3).SetValue(0.0);
1148 fitter.Config().ParSettings(3).SetStepSize(0.01);
1149
1150
1151 fitter.Config().ParSettings(4).SetName("s2");
1152 fitter.Config().ParSettings(4).SetValue(0.0);
1153 fitter.Config().ParSettings(4).SetStepSize(0.01);
1154
1155
1156 fitter.Config().ParSettings(5).SetName("s3");
1157 fitter.Config().ParSettings(5).SetValue(0.0);
1158 fitter.Config().ParSettings(5).SetStepSize(0.01);
1159
1160
1161 fitter.Config().MinimizerOptions().SetMaxIterations(10000);
1162
1163
1164 Bool_t ok = fitter.FitFCN();
1165 if (!ok) Error("Fitting","Fitting failed");
1166 const ROOT::Fit::FitResult & result = fitter.Result();
1167
1168 chi2 = fitter.Result().MinFcnValue()/3.0;
1169 int status = fitter.Result().Status();
1170 if (status>0 ) {printf("Fit Failed!!!!\n");}
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180 const double * parFit = result.GetParams();
1181 const double *FitErr = result.GetErrors();
1182 for (int i = 0; i < nPar; ++i) parFitErr[i] = FitErr[i];
1183
1184 vertex.SetXYZ(parFit[0], parFit[1], parFit[2]);
1185 s1 = parFit[3]; s2 = parFit[4]; s3 = parFit[5];
1186
1187
1188 }
1189