Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2024-05-18 08:30:30

0001 /*
0002  * xxHash - Extremely Fast Hash algorithm
0003  * Header File
0004  * Copyright (C) 2012-2020 Yann Collet
0005  *
0006  * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
0007  *
0008  * Redistribution and use in source and binary forms, with or without
0009  * modification, are permitted provided that the following conditions are
0010  * met:
0011  *
0012  *    * Redistributions of source code must retain the above copyright
0013  *      notice, this list of conditions and the following disclaimer.
0014  *    * Redistributions in binary form must reproduce the above
0015  *      copyright notice, this list of conditions and the following disclaimer
0016  *      in the documentation and/or other materials provided with the
0017  *      distribution.
0018  *
0019  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
0020  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
0021  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
0022  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
0023  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
0024  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
0025  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
0026  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
0027  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
0028  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
0029  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
0030  *
0031  * You can contact the author at:
0032  *   - xxHash homepage: https://www.xxhash.com
0033  *   - xxHash source repository: https://github.com/Cyan4973/xxHash
0034  */
0035 /*!
0036  * @mainpage xxHash
0037  *
0038  * @file xxhash.h
0039  * xxHash prototypes and implementation
0040  */
0041 /* TODO: update */
0042 /* Notice extracted from xxHash homepage:
0043 
0044 xxHash is an extremely fast hash algorithm, running at RAM speed limits.
0045 It also successfully passes all tests from the SMHasher suite.
0046 
0047 Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
0048 
0049 Name            Speed       Q.Score   Author
0050 xxHash          5.4 GB/s     10
0051 CrapWow         3.2 GB/s      2       Andrew
0052 MurmurHash 3a   2.7 GB/s     10       Austin Appleby
0053 SpookyHash      2.0 GB/s     10       Bob Jenkins
0054 SBox            1.4 GB/s      9       Bret Mulvey
0055 Lookup3         1.2 GB/s      9       Bob Jenkins
0056 SuperFastHash   1.2 GB/s      1       Paul Hsieh
0057 CityHash64      1.05 GB/s    10       Pike & Alakuijala
0058 FNV             0.55 GB/s     5       Fowler, Noll, Vo
0059 CRC32           0.43 GB/s     9
0060 MD5-32          0.33 GB/s    10       Ronald L. Rivest
0061 SHA1-32         0.28 GB/s    10
0062 
0063 Q.Score is a measure of quality of the hash function.
0064 It depends on successfully passing SMHasher test set.
0065 10 is a perfect score.
0066 
0067 Note: SMHasher's CRC32 implementation is not the fastest one.
0068 Other speed-oriented implementations can be faster,
0069 especially in combination with PCLMUL instruction:
0070 https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
0071 
0072 A 64-bit version, named XXH64, is available since r35.
0073 It offers much better speed, but for 64-bit applications only.
0074 Name     Speed on 64 bits    Speed on 32 bits
0075 XXH64       13.8 GB/s            1.9 GB/s
0076 XXH32        6.8 GB/s            6.0 GB/s
0077 */
0078 
0079 #if defined (__cplusplus)
0080 extern "C" {
0081 #endif
0082 
0083 /* ****************************
0084  *  INLINE mode
0085  ******************************/
0086 /*!
0087  * XXH_INLINE_ALL (and XXH_PRIVATE_API)
0088  * Use these build macros to inline xxhash into the target unit.
0089  * Inlining improves performance on small inputs, especially when the length is
0090  * expressed as a compile-time constant:
0091  *
0092  *      https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
0093  *
0094  * It also keeps xxHash symbols private to the unit, so they are not exported.
0095  *
0096  * Usage:
0097  *     #define XXH_INLINE_ALL
0098  *     #include "xxhash.h"
0099  *
0100  * Do not compile and link xxhash.o as a separate object, as it is not useful.
0101  */
0102 #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
0103     && !defined(XXH_INLINE_ALL_31684351384)
0104    /* this section should be traversed only once */
0105 #  define XXH_INLINE_ALL_31684351384
0106    /* give access to the advanced API, required to compile implementations */
0107 #  undef XXH_STATIC_LINKING_ONLY   /* avoid macro redef */
0108 #  define XXH_STATIC_LINKING_ONLY
0109    /* make all functions private */
0110 #  undef XXH_PUBLIC_API
0111 #  if defined(__GNUC__)
0112 #    define XXH_PUBLIC_API static __inline __attribute__((unused))
0113 #  elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
0114 #    define XXH_PUBLIC_API static inline
0115 #  elif defined(_MSC_VER)
0116 #    define XXH_PUBLIC_API static __inline
0117 #  else
0118      /* note: this version may generate warnings for unused static functions */
0119 #    define XXH_PUBLIC_API static
0120 #  endif
0121 
0122    /*
0123     * This part deals with the special case where a unit wants to inline xxHash,
0124     * but "xxhash.h" has previously been included without XXH_INLINE_ALL,
0125     * such as part of some previously included *.h header file.
0126     * Without further action, the new include would just be ignored,
0127     * and functions would effectively _not_ be inlined (silent failure).
0128     * The following macros solve this situation by prefixing all inlined names,
0129     * avoiding naming collision with previous inclusions.
0130     */
0131    /* Before that, we unconditionally #undef all symbols,
0132     * in case they were already defined with XXH_NAMESPACE.
0133     * They will then be redefined for XXH_INLINE_ALL
0134     */
0135 #  undef XXH_versionNumber
0136     /* XXH32 */
0137 #  undef XXH32
0138 #  undef XXH32_createState
0139 #  undef XXH32_freeState
0140 #  undef XXH32_reset
0141 #  undef XXH32_update
0142 #  undef XXH32_digest
0143 #  undef XXH32_copyState
0144 #  undef XXH32_canonicalFromHash
0145 #  undef XXH32_hashFromCanonical
0146     /* XXH64 */
0147 #  undef XXH64
0148 #  undef XXH64_createState
0149 #  undef XXH64_freeState
0150 #  undef XXH64_reset
0151 #  undef XXH64_update
0152 #  undef XXH64_digest
0153 #  undef XXH64_copyState
0154 #  undef XXH64_canonicalFromHash
0155 #  undef XXH64_hashFromCanonical
0156     /* XXH3_64bits */
0157 #  undef XXH3_64bits
0158 #  undef XXH3_64bits_withSecret
0159 #  undef XXH3_64bits_withSeed
0160 #  undef XXH3_64bits_withSecretandSeed
0161 #  undef XXH3_createState
0162 #  undef XXH3_freeState
0163 #  undef XXH3_copyState
0164 #  undef XXH3_64bits_reset
0165 #  undef XXH3_64bits_reset_withSeed
0166 #  undef XXH3_64bits_reset_withSecret
0167 #  undef XXH3_64bits_update
0168 #  undef XXH3_64bits_digest
0169 #  undef XXH3_generateSecret
0170     /* XXH3_128bits */
0171 #  undef XXH128
0172 #  undef XXH3_128bits
0173 #  undef XXH3_128bits_withSeed
0174 #  undef XXH3_128bits_withSecret
0175 #  undef XXH3_128bits_reset
0176 #  undef XXH3_128bits_reset_withSeed
0177 #  undef XXH3_128bits_reset_withSecret
0178 #  undef XXH3_128bits_reset_withSecretandSeed
0179 #  undef XXH3_128bits_update
0180 #  undef XXH3_128bits_digest
0181 #  undef XXH128_isEqual
0182 #  undef XXH128_cmp
0183 #  undef XXH128_canonicalFromHash
0184 #  undef XXH128_hashFromCanonical
0185     /* Finally, free the namespace itself */
0186 #  undef XXH_NAMESPACE
0187 
0188     /* employ the namespace for XXH_INLINE_ALL */
0189 #  define XXH_NAMESPACE XXH_INLINE_
0190    /*
0191     * Some identifiers (enums, type names) are not symbols,
0192     * but they must nonetheless be renamed to avoid redeclaration.
0193     * Alternative solution: do not redeclare them.
0194     * However, this requires some #ifdefs, and has a more dispersed impact.
0195     * Meanwhile, renaming can be achieved in a single place.
0196     */
0197 #  define XXH_IPREF(Id)   XXH_NAMESPACE ## Id
0198 #  define XXH_OK XXH_IPREF(XXH_OK)
0199 #  define XXH_ERROR XXH_IPREF(XXH_ERROR)
0200 #  define XXH_errorcode XXH_IPREF(XXH_errorcode)
0201 #  define XXH32_canonical_t  XXH_IPREF(XXH32_canonical_t)
0202 #  define XXH64_canonical_t  XXH_IPREF(XXH64_canonical_t)
0203 #  define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
0204 #  define XXH32_state_s XXH_IPREF(XXH32_state_s)
0205 #  define XXH32_state_t XXH_IPREF(XXH32_state_t)
0206 #  define XXH64_state_s XXH_IPREF(XXH64_state_s)
0207 #  define XXH64_state_t XXH_IPREF(XXH64_state_t)
0208 #  define XXH3_state_s  XXH_IPREF(XXH3_state_s)
0209 #  define XXH3_state_t  XXH_IPREF(XXH3_state_t)
0210 #  define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
0211    /* Ensure the header is parsed again, even if it was previously included */
0212 #  undef XXHASH_H_5627135585666179
0213 #  undef XXHASH_H_STATIC_13879238742
0214 #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
0215 
0216 
0217 
0218 /* ****************************************************************
0219  *  Stable API
0220  *****************************************************************/
0221 #ifndef XXHASH_H_5627135585666179
0222 #define XXHASH_H_5627135585666179 1
0223 
0224 
0225 /*!
0226  * @defgroup public Public API
0227  * Contains details on the public xxHash functions.
0228  * @{
0229  */
0230 /* specific declaration modes for Windows */
0231 #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
0232 #  if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
0233 #    ifdef XXH_EXPORT
0234 #      define XXH_PUBLIC_API __declspec(dllexport)
0235 #    elif XXH_IMPORT
0236 #      define XXH_PUBLIC_API __declspec(dllimport)
0237 #    endif
0238 #  else
0239 #    define XXH_PUBLIC_API   /* do nothing */
0240 #  endif
0241 #endif
0242 
0243 #ifdef XXH_DOXYGEN
0244 /*!
0245  * @brief Emulate a namespace by transparently prefixing all symbols.
0246  *
0247  * If you want to include _and expose_ xxHash functions from within your own
0248  * library, but also want to avoid symbol collisions with other libraries which
0249  * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
0250  * any public symbol from xxhash library with the value of XXH_NAMESPACE
0251  * (therefore, avoid empty or numeric values).
0252  *
0253  * Note that no change is required within the calling program as long as it
0254  * includes `xxhash.h`: Regular symbol names will be automatically translated
0255  * by this header.
0256  */
0257 #  define XXH_NAMESPACE /* YOUR NAME HERE */
0258 #  undef XXH_NAMESPACE
0259 #endif
0260 
0261 #ifdef XXH_NAMESPACE
0262 #  define XXH_CAT(A,B) A##B
0263 #  define XXH_NAME2(A,B) XXH_CAT(A,B)
0264 #  define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
0265 /* XXH32 */
0266 #  define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
0267 #  define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
0268 #  define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
0269 #  define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
0270 #  define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
0271 #  define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
0272 #  define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
0273 #  define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
0274 #  define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
0275 /* XXH64 */
0276 #  define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
0277 #  define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
0278 #  define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
0279 #  define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
0280 #  define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
0281 #  define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
0282 #  define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
0283 #  define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
0284 #  define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
0285 /* XXH3_64bits */
0286 #  define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
0287 #  define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
0288 #  define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
0289 #  define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed)
0290 #  define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
0291 #  define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
0292 #  define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
0293 #  define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
0294 #  define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
0295 #  define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
0296 #  define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed)
0297 #  define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
0298 #  define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
0299 #  define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
0300 #  define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed)
0301 /* XXH3_128bits */
0302 #  define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
0303 #  define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
0304 #  define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
0305 #  define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
0306 #  define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed)
0307 #  define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
0308 #  define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
0309 #  define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
0310 #  define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed)
0311 #  define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
0312 #  define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
0313 #  define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
0314 #  define XXH128_cmp     XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
0315 #  define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
0316 #  define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
0317 #endif
0318 
0319 
0320 /* *************************************
0321 *  Version
0322 ***************************************/
0323 #define XXH_VERSION_MAJOR    0
0324 #define XXH_VERSION_MINOR    8
0325 #define XXH_VERSION_RELEASE  1
0326 #define XXH_VERSION_NUMBER  (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
0327 
0328 /*!
0329  * @brief Obtains the xxHash version.
0330  *
0331  * This is mostly useful when xxHash is compiled as a shared library,
0332  * since the returned value comes from the library, as opposed to header file.
0333  *
0334  * @return `XXH_VERSION_NUMBER` of the invoked library.
0335  */
0336 XXH_PUBLIC_API unsigned XXH_versionNumber (void);
0337 
0338 
0339 /* ****************************
0340 *  Common basic types
0341 ******************************/
0342 #include <stddef.h>   /* size_t */
0343 typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
0344 
0345 
0346 /*-**********************************************************************
0347 *  32-bit hash
0348 ************************************************************************/
0349 #if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
0350 /*!
0351  * @brief An unsigned 32-bit integer.
0352  *
0353  * Not necessarily defined to `uint32_t` but functionally equivalent.
0354  */
0355 typedef uint32_t XXH32_hash_t;
0356 
0357 #elif !defined (__VMS) \
0358   && (defined (__cplusplus) \
0359   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
0360 #   include <stdint.h>
0361     typedef uint32_t XXH32_hash_t;
0362 
0363 #else
0364 #   include <limits.h>
0365 #   if UINT_MAX == 0xFFFFFFFFUL
0366       typedef unsigned int XXH32_hash_t;
0367 #   else
0368 #     if ULONG_MAX == 0xFFFFFFFFUL
0369         typedef unsigned long XXH32_hash_t;
0370 #     else
0371 #       error "unsupported platform: need a 32-bit type"
0372 #     endif
0373 #   endif
0374 #endif
0375 
0376 /*!
0377  * @}
0378  *
0379  * @defgroup xxh32_family XXH32 family
0380  * @ingroup public
0381  * Contains functions used in the classic 32-bit xxHash algorithm.
0382  *
0383  * @note
0384  *   XXH32 is useful for older platforms, with no or poor 64-bit performance.
0385  *   Note that @ref xxh3_family provides competitive speed
0386  *   for both 32-bit and 64-bit systems, and offers true 64/128 bit hash results.
0387  *
0388  * @see @ref xxh64_family, @ref xxh3_family : Other xxHash families
0389  * @see @ref xxh32_impl for implementation details
0390  * @{
0391  */
0392 
0393 /*!
0394  * @brief Calculates the 32-bit hash of @p input using xxHash32.
0395  *
0396  * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
0397  *
0398  * @param input The block of data to be hashed, at least @p length bytes in size.
0399  * @param length The length of @p input, in bytes.
0400  * @param seed The 32-bit seed to alter the hash's output predictably.
0401  *
0402  * @pre
0403  *   The memory between @p input and @p input + @p length must be valid,
0404  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
0405  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
0406  *
0407  * @return The calculated 32-bit hash value.
0408  *
0409  * @see
0410  *    XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
0411  *    Direct equivalents for the other variants of xxHash.
0412  * @see
0413  *    XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version.
0414  */
0415 XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
0416 
0417 /*!
0418  * Streaming functions generate the xxHash value from an incremental input.
0419  * This method is slower than single-call functions, due to state management.
0420  * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
0421  *
0422  * An XXH state must first be allocated using `XXH*_createState()`.
0423  *
0424  * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
0425  *
0426  * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
0427  *
0428  * The function returns an error code, with 0 meaning OK, and any other value
0429  * meaning there is an error.
0430  *
0431  * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
0432  * This function returns the nn-bits hash as an int or long long.
0433  *
0434  * It's still possible to continue inserting input into the hash state after a
0435  * digest, and generate new hash values later on by invoking `XXH*_digest()`.
0436  *
0437  * When done, release the state using `XXH*_freeState()`.
0438  *
0439  * Example code for incrementally hashing a file:
0440  * @code{.c}
0441  *    #include <stdio.h>
0442  *    #include <xxhash.h>
0443  *    #define BUFFER_SIZE 256
0444  *
0445  *    // Note: XXH64 and XXH3 use the same interface.
0446  *    XXH32_hash_t
0447  *    hashFile(FILE* stream)
0448  *    {
0449  *        XXH32_state_t* state;
0450  *        unsigned char buf[BUFFER_SIZE];
0451  *        size_t amt;
0452  *        XXH32_hash_t hash;
0453  *
0454  *        state = XXH32_createState();       // Create a state
0455  *        assert(state != NULL);             // Error check here
0456  *        XXH32_reset(state, 0xbaad5eed);    // Reset state with our seed
0457  *        while ((amt = fread(buf, 1, sizeof(buf), stream)) != 0) {
0458  *            XXH32_update(state, buf, amt); // Hash the file in chunks
0459  *        }
0460  *        hash = XXH32_digest(state);        // Finalize the hash
0461  *        XXH32_freeState(state);            // Clean up
0462  *        return hash;
0463  *    }
0464  * @endcode
0465  */
0466 
0467 /*!
0468  * @typedef struct XXH32_state_s XXH32_state_t
0469  * @brief The opaque state struct for the XXH32 streaming API.
0470  *
0471  * @see XXH32_state_s for details.
0472  */
0473 typedef struct XXH32_state_s XXH32_state_t;
0474 
0475 /*!
0476  * @brief Allocates an @ref XXH32_state_t.
0477  *
0478  * Must be freed with XXH32_freeState().
0479  * @return An allocated XXH32_state_t on success, `NULL` on failure.
0480  */
0481 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
0482 /*!
0483  * @brief Frees an @ref XXH32_state_t.
0484  *
0485  * Must be allocated with XXH32_createState().
0486  * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
0487  * @return XXH_OK.
0488  */
0489 XXH_PUBLIC_API XXH_errorcode  XXH32_freeState(XXH32_state_t* statePtr);
0490 /*!
0491  * @brief Copies one @ref XXH32_state_t to another.
0492  *
0493  * @param dst_state The state to copy to.
0494  * @param src_state The state to copy from.
0495  * @pre
0496  *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
0497  */
0498 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
0499 
0500 /*!
0501  * @brief Resets an @ref XXH32_state_t to begin a new hash.
0502  *
0503  * This function resets and seeds a state. Call it before @ref XXH32_update().
0504  *
0505  * @param statePtr The state struct to reset.
0506  * @param seed The 32-bit seed to alter the hash result predictably.
0507  *
0508  * @pre
0509  *   @p statePtr must not be `NULL`.
0510  *
0511  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
0512  */
0513 XXH_PUBLIC_API XXH_errorcode XXH32_reset  (XXH32_state_t* statePtr, XXH32_hash_t seed);
0514 
0515 /*!
0516  * @brief Consumes a block of @p input to an @ref XXH32_state_t.
0517  *
0518  * Call this to incrementally consume blocks of data.
0519  *
0520  * @param statePtr The state struct to update.
0521  * @param input The block of data to be hashed, at least @p length bytes in size.
0522  * @param length The length of @p input, in bytes.
0523  *
0524  * @pre
0525  *   @p statePtr must not be `NULL`.
0526  * @pre
0527  *   The memory between @p input and @p input + @p length must be valid,
0528  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
0529  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
0530  *
0531  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
0532  */
0533 XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
0534 
0535 /*!
0536  * @brief Returns the calculated hash value from an @ref XXH32_state_t.
0537  *
0538  * @note
0539  *   Calling XXH32_digest() will not affect @p statePtr, so you can update,
0540  *   digest, and update again.
0541  *
0542  * @param statePtr The state struct to calculate the hash from.
0543  *
0544  * @pre
0545  *  @p statePtr must not be `NULL`.
0546  *
0547  * @return The calculated xxHash32 value from that state.
0548  */
0549 XXH_PUBLIC_API XXH32_hash_t  XXH32_digest (const XXH32_state_t* statePtr);
0550 
0551 /*******   Canonical representation   *******/
0552 
0553 /*
0554  * The default return values from XXH functions are unsigned 32 and 64 bit
0555  * integers.
0556  * This the simplest and fastest format for further post-processing.
0557  *
0558  * However, this leaves open the question of what is the order on the byte level,
0559  * since little and big endian conventions will store the same number differently.
0560  *
0561  * The canonical representation settles this issue by mandating big-endian
0562  * convention, the same convention as human-readable numbers (large digits first).
0563  *
0564  * When writing hash values to storage, sending them over a network, or printing
0565  * them, it's highly recommended to use the canonical representation to ensure
0566  * portability across a wider range of systems, present and future.
0567  *
0568  * The following functions allow transformation of hash values to and from
0569  * canonical format.
0570  */
0571 
0572 /*!
0573  * @brief Canonical (big endian) representation of @ref XXH32_hash_t.
0574  */
0575 typedef struct {
0576     unsigned char digest[4]; /*!< Hash bytes, big endian */
0577 } XXH32_canonical_t;
0578 
0579 /*!
0580  * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
0581  *
0582  * @param dst The @ref XXH32_canonical_t pointer to be stored to.
0583  * @param hash The @ref XXH32_hash_t to be converted.
0584  *
0585  * @pre
0586  *   @p dst must not be `NULL`.
0587  */
0588 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
0589 
0590 /*!
0591  * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
0592  *
0593  * @param src The @ref XXH32_canonical_t to convert.
0594  *
0595  * @pre
0596  *   @p src must not be `NULL`.
0597  *
0598  * @return The converted hash.
0599  */
0600 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
0601 
0602 
0603 #ifdef __has_attribute
0604 # define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
0605 #else
0606 # define XXH_HAS_ATTRIBUTE(x) 0
0607 #endif
0608 
0609 /* C-language Attributes are added in C23. */
0610 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute)
0611 # define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
0612 #else
0613 # define XXH_HAS_C_ATTRIBUTE(x) 0
0614 #endif
0615 
0616 #if defined(__cplusplus) && defined(__has_cpp_attribute)
0617 # define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
0618 #else
0619 # define XXH_HAS_CPP_ATTRIBUTE(x) 0
0620 #endif
0621 
0622 /*
0623 Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
0624 introduced in CPP17 and C23.
0625 CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
0626 C23   : https://en.cppreference.com/w/c/language/attributes/fallthrough
0627 */
0628 #if XXH_HAS_C_ATTRIBUTE(x)
0629 # define XXH_FALLTHROUGH [[fallthrough]]
0630 #elif XXH_HAS_CPP_ATTRIBUTE(x)
0631 # define XXH_FALLTHROUGH [[fallthrough]]
0632 #elif XXH_HAS_ATTRIBUTE(__fallthrough__)
0633 # define XXH_FALLTHROUGH __attribute__ ((fallthrough))
0634 #else
0635 # define XXH_FALLTHROUGH
0636 #endif
0637 
0638 /*!
0639  * @}
0640  * @ingroup public
0641  * @{
0642  */
0643 
0644 #ifndef XXH_NO_LONG_LONG
0645 /*-**********************************************************************
0646 *  64-bit hash
0647 ************************************************************************/
0648 #if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
0649 /*!
0650  * @brief An unsigned 64-bit integer.
0651  *
0652  * Not necessarily defined to `uint64_t` but functionally equivalent.
0653  */
0654 typedef uint64_t XXH64_hash_t;
0655 #elif !defined (__VMS) \
0656   && (defined (__cplusplus) \
0657   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
0658 #  include <stdint.h>
0659    typedef uint64_t XXH64_hash_t;
0660 #else
0661 #  include <limits.h>
0662 #  if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
0663      /* LP64 ABI says uint64_t is unsigned long */
0664      typedef unsigned long XXH64_hash_t;
0665 #  else
0666      /* the following type must have a width of 64-bit */
0667      typedef unsigned long long XXH64_hash_t;
0668 #  endif
0669 #endif
0670 
0671 /*!
0672  * @}
0673  *
0674  * @defgroup xxh64_family XXH64 family
0675  * @ingroup public
0676  * @{
0677  * Contains functions used in the classic 64-bit xxHash algorithm.
0678  *
0679  * @note
0680  *   XXH3 provides competitive speed for both 32-bit and 64-bit systems,
0681  *   and offers true 64/128 bit hash results.
0682  *   It provides better speed for systems with vector processing capabilities.
0683  */
0684 
0685 
0686 /*!
0687  * @brief Calculates the 64-bit hash of @p input using xxHash64.
0688  *
0689  * This function usually runs faster on 64-bit systems, but slower on 32-bit
0690  * systems (see benchmark).
0691  *
0692  * @param input The block of data to be hashed, at least @p length bytes in size.
0693  * @param length The length of @p input, in bytes.
0694  * @param seed The 64-bit seed to alter the hash's output predictably.
0695  *
0696  * @pre
0697  *   The memory between @p input and @p input + @p length must be valid,
0698  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
0699  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
0700  *
0701  * @return The calculated 64-bit hash.
0702  *
0703  * @see
0704  *    XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
0705  *    Direct equivalents for the other variants of xxHash.
0706  * @see
0707  *    XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version.
0708  */
0709 XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed);
0710 
0711 /*******   Streaming   *******/
0712 /*!
0713  * @brief The opaque state struct for the XXH64 streaming API.
0714  *
0715  * @see XXH64_state_s for details.
0716  */
0717 typedef struct XXH64_state_s XXH64_state_t;   /* incomplete type */
0718 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
0719 XXH_PUBLIC_API XXH_errorcode  XXH64_freeState(XXH64_state_t* statePtr);
0720 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
0721 
0722 XXH_PUBLIC_API XXH_errorcode XXH64_reset  (XXH64_state_t* statePtr, XXH64_hash_t seed);
0723 XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
0724 XXH_PUBLIC_API XXH64_hash_t  XXH64_digest (const XXH64_state_t* statePtr);
0725 
0726 /*******   Canonical representation   *******/
0727 typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
0728 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
0729 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
0730 
0731 /*!
0732  * @}
0733  * ************************************************************************
0734  * @defgroup xxh3_family XXH3 family
0735  * @ingroup public
0736  * @{
0737  *
0738  * XXH3 is a more recent hash algorithm featuring:
0739  *  - Improved speed for both small and large inputs
0740  *  - True 64-bit and 128-bit outputs
0741  *  - SIMD acceleration
0742  *  - Improved 32-bit viability
0743  *
0744  * Speed analysis methodology is explained here:
0745  *
0746  *    https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
0747  *
0748  * Compared to XXH64, expect XXH3 to run approximately
0749  * ~2x faster on large inputs and >3x faster on small ones,
0750  * exact differences vary depending on platform.
0751  *
0752  * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
0753  * but does not require it.
0754  * Any 32-bit and 64-bit targets that can run XXH32 smoothly
0755  * can run XXH3 at competitive speeds, even without vector support.
0756  * Further details are explained in the implementation.
0757  *
0758  * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
0759  * ZVector and scalar targets. This can be controlled via the XXH_VECTOR macro.
0760  *
0761  * XXH3 implementation is portable:
0762  * it has a generic C90 formulation that can be compiled on any platform,
0763  * all implementations generage exactly the same hash value on all platforms.
0764  * Starting from v0.8.0, it's also labelled "stable", meaning that
0765  * any future version will also generate the same hash value.
0766  *
0767  * XXH3 offers 2 variants, _64bits and _128bits.
0768  *
0769  * When only 64 bits are needed, prefer invoking the _64bits variant, as it
0770  * reduces the amount of mixing, resulting in faster speed on small inputs.
0771  * It's also generally simpler to manipulate a scalar return type than a struct.
0772  *
0773  * The API supports one-shot hashing, streaming mode, and custom secrets.
0774  */
0775 
0776 /*-**********************************************************************
0777 *  XXH3 64-bit variant
0778 ************************************************************************/
0779 
0780 /* XXH3_64bits():
0781  * default 64-bit variant, using default secret and default seed of 0.
0782  * It's the fastest variant. */
0783 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
0784 
0785 /*
0786  * XXH3_64bits_withSeed():
0787  * This variant generates a custom secret on the fly
0788  * based on default secret altered using the `seed` value.
0789  * While this operation is decently fast, note that it's not completely free.
0790  * Note: seed==0 produces the same results as XXH3_64bits().
0791  */
0792 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
0793 
0794 /*!
0795  * The bare minimum size for a custom secret.
0796  *
0797  * @see
0798  *  XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
0799  *  XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
0800  */
0801 #define XXH3_SECRET_SIZE_MIN 136
0802 
0803 /*
0804  * XXH3_64bits_withSecret():
0805  * It's possible to provide any blob of bytes as a "secret" to generate the hash.
0806  * This makes it more difficult for an external actor to prepare an intentional collision.
0807  * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
0808  * However, the quality of the secret impacts the dispersion of the hash algorithm.
0809  * Therefore, the secret _must_ look like a bunch of random bytes.
0810  * Avoid "trivial" or structured data such as repeated sequences or a text document.
0811  * Whenever in doubt about the "randomness" of the blob of bytes,
0812  * consider employing "XXH3_generateSecret()" instead (see below).
0813  * It will generate a proper high entropy secret derived from the blob of bytes.
0814  * Another advantage of using XXH3_generateSecret() is that
0815  * it guarantees that all bits within the initial blob of bytes
0816  * will impact every bit of the output.
0817  * This is not necessarily the case when using the blob of bytes directly
0818  * because, when hashing _small_ inputs, only a portion of the secret is employed.
0819  */
0820 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
0821 
0822 
0823 /*******   Streaming   *******/
0824 /*
0825  * Streaming requires state maintenance.
0826  * This operation costs memory and CPU.
0827  * As a consequence, streaming is slower than one-shot hashing.
0828  * For better performance, prefer one-shot functions whenever applicable.
0829  */
0830 
0831 /*!
0832  * @brief The state struct for the XXH3 streaming API.
0833  *
0834  * @see XXH3_state_s for details.
0835  */
0836 typedef struct XXH3_state_s XXH3_state_t;
0837 XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
0838 XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
0839 XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
0840 
0841 /*
0842  * XXH3_64bits_reset():
0843  * Initialize with default parameters.
0844  * digest will be equivalent to `XXH3_64bits()`.
0845  */
0846 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
0847 /*
0848  * XXH3_64bits_reset_withSeed():
0849  * Generate a custom secret from `seed`, and store it into `statePtr`.
0850  * digest will be equivalent to `XXH3_64bits_withSeed()`.
0851  */
0852 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
0853 /*
0854  * XXH3_64bits_reset_withSecret():
0855  * `secret` is referenced, it _must outlive_ the hash streaming session.
0856  * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
0857  * and the quality of produced hash values depends on secret's entropy
0858  * (secret's content should look like a bunch of random bytes).
0859  * When in doubt about the randomness of a candidate `secret`,
0860  * consider employing `XXH3_generateSecret()` instead (see below).
0861  */
0862 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
0863 
0864 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
0865 XXH_PUBLIC_API XXH64_hash_t  XXH3_64bits_digest (const XXH3_state_t* statePtr);
0866 
0867 /* note : canonical representation of XXH3 is the same as XXH64
0868  * since they both produce XXH64_hash_t values */
0869 
0870 
0871 /*-**********************************************************************
0872 *  XXH3 128-bit variant
0873 ************************************************************************/
0874 
0875 /*!
0876  * @brief The return value from 128-bit hashes.
0877  *
0878  * Stored in little endian order, although the fields themselves are in native
0879  * endianness.
0880  */
0881 typedef struct {
0882     XXH64_hash_t low64;   /*!< `value & 0xFFFFFFFFFFFFFFFF` */
0883     XXH64_hash_t high64;  /*!< `value >> 64` */
0884 } XXH128_hash_t;
0885 
0886 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
0887 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
0888 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
0889 
0890 /*******   Streaming   *******/
0891 /*
0892  * Streaming requires state maintenance.
0893  * This operation costs memory and CPU.
0894  * As a consequence, streaming is slower than one-shot hashing.
0895  * For better performance, prefer one-shot functions whenever applicable.
0896  *
0897  * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
0898  * Use already declared XXH3_createState() and XXH3_freeState().
0899  *
0900  * All reset and streaming functions have same meaning as their 64-bit counterpart.
0901  */
0902 
0903 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
0904 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
0905 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
0906 
0907 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
0908 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
0909 
0910 /* Following helper functions make it possible to compare XXH128_hast_t values.
0911  * Since XXH128_hash_t is a structure, this capability is not offered by the language.
0912  * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
0913 
0914 /*!
0915  * XXH128_isEqual():
0916  * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
0917  */
0918 XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
0919 
0920 /*!
0921  * XXH128_cmp():
0922  *
0923  * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
0924  *
0925  * return: >0 if *h128_1  > *h128_2
0926  *         =0 if *h128_1 == *h128_2
0927  *         <0 if *h128_1  < *h128_2
0928  */
0929 XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
0930 
0931 
0932 /*******   Canonical representation   *******/
0933 typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
0934 XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
0935 XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
0936 
0937 
0938 #endif  /* XXH_NO_LONG_LONG */
0939 
0940 /*!
0941  * @}
0942  */
0943 #endif /* XXHASH_H_5627135585666179 */
0944 
0945 
0946 
0947 #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
0948 #define XXHASH_H_STATIC_13879238742
0949 /* ****************************************************************************
0950  * This section contains declarations which are not guaranteed to remain stable.
0951  * They may change in future versions, becoming incompatible with a different
0952  * version of the library.
0953  * These declarations should only be used with static linking.
0954  * Never use them in association with dynamic linking!
0955  ***************************************************************************** */
0956 
0957 /*
0958  * These definitions are only present to allow static allocation
0959  * of XXH states, on stack or in a struct, for example.
0960  * Never **ever** access their members directly.
0961  */
0962 
0963 /*!
0964  * @internal
0965  * @brief Structure for XXH32 streaming API.
0966  *
0967  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
0968  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
0969  * an opaque type. This allows fields to safely be changed.
0970  *
0971  * Typedef'd to @ref XXH32_state_t.
0972  * Do not access the members of this struct directly.
0973  * @see XXH64_state_s, XXH3_state_s
0974  */
0975 struct XXH32_state_s {
0976    XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
0977    XXH32_hash_t large_len;    /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
0978    XXH32_hash_t v[4];         /*!< Accumulator lanes */
0979    XXH32_hash_t mem32[4];     /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */
0980    XXH32_hash_t memsize;      /*!< Amount of data in @ref mem32 */
0981    XXH32_hash_t reserved;     /*!< Reserved field. Do not read or write to it, it may be removed. */
0982 };   /* typedef'd to XXH32_state_t */
0983 
0984 
0985 #ifndef XXH_NO_LONG_LONG  /* defined when there is no 64-bit support */
0986 
0987 /*!
0988  * @internal
0989  * @brief Structure for XXH64 streaming API.
0990  *
0991  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
0992  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
0993  * an opaque type. This allows fields to safely be changed.
0994  *
0995  * Typedef'd to @ref XXH64_state_t.
0996  * Do not access the members of this struct directly.
0997  * @see XXH32_state_s, XXH3_state_s
0998  */
0999 struct XXH64_state_s {
1000    XXH64_hash_t total_len;    /*!< Total length hashed. This is always 64-bit. */
1001    XXH64_hash_t v[4];         /*!< Accumulator lanes */
1002    XXH64_hash_t mem64[4];     /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
1003    XXH32_hash_t memsize;      /*!< Amount of data in @ref mem64 */
1004    XXH32_hash_t reserved32;   /*!< Reserved field, needed for padding anyways*/
1005    XXH64_hash_t reserved64;   /*!< Reserved field. Do not read or write to it, it may be removed. */
1006 };   /* typedef'd to XXH64_state_t */
1007 
1008 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
1009 #  include <stdalign.h>
1010 #  define XXH_ALIGN(n)      alignas(n)
1011 #elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */
1012 /* In C++ alignas() is a keyword */
1013 #  define XXH_ALIGN(n)      alignas(n)
1014 #elif defined(__GNUC__)
1015 #  define XXH_ALIGN(n)      __attribute__ ((aligned(n)))
1016 #elif defined(_MSC_VER)
1017 #  define XXH_ALIGN(n)      __declspec(align(n))
1018 #else
1019 #  define XXH_ALIGN(n)   /* disabled */
1020 #endif
1021 
1022 /* Old GCC versions only accept the attribute after the type in structures. */
1023 #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L))   /* C11+ */ \
1024     && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \
1025     && defined(__GNUC__)
1026 #   define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
1027 #else
1028 #   define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
1029 #endif
1030 
1031 /*!
1032  * @brief The size of the internal XXH3 buffer.
1033  *
1034  * This is the optimal update size for incremental hashing.
1035  *
1036  * @see XXH3_64b_update(), XXH3_128b_update().
1037  */
1038 #define XXH3_INTERNALBUFFER_SIZE 256
1039 
1040 /*!
1041  * @brief Default size of the secret buffer (and @ref XXH3_kSecret).
1042  *
1043  * This is the size used in @ref XXH3_kSecret and the seeded functions.
1044  *
1045  * Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
1046  */
1047 #define XXH3_SECRET_DEFAULT_SIZE 192
1048 
1049 /*!
1050  * @internal
1051  * @brief Structure for XXH3 streaming API.
1052  *
1053  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
1054  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined.
1055  * Otherwise it is an opaque type.
1056  * Never use this definition in combination with dynamic library.
1057  * This allows fields to safely be changed in the future.
1058  *
1059  * @note ** This structure has a strict alignment requirement of 64 bytes!! **
1060  * Do not allocate this with `malloc()` or `new`,
1061  * it will not be sufficiently aligned.
1062  * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation.
1063  *
1064  * Typedef'd to @ref XXH3_state_t.
1065  * Do never access the members of this struct directly.
1066  *
1067  * @see XXH3_INITSTATE() for stack initialization.
1068  * @see XXH3_createState(), XXH3_freeState().
1069  * @see XXH32_state_s, XXH64_state_s
1070  */
1071 struct XXH3_state_s {
1072    XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
1073        /*!< The 8 accumulators. Similar to `vN` in @ref XXH32_state_s::v1 and @ref XXH64_state_s */
1074    XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
1075        /*!< Used to store a custom secret generated from a seed. */
1076    XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
1077        /*!< The internal buffer. @see XXH32_state_s::mem32 */
1078    XXH32_hash_t bufferedSize;
1079        /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
1080    XXH32_hash_t useSeed;
1081        /*!< Reserved field. Needed for padding on 64-bit. */
1082    size_t nbStripesSoFar;
1083        /*!< Number or stripes processed. */
1084    XXH64_hash_t totalLen;
1085        /*!< Total length hashed. 64-bit even on 32-bit targets. */
1086    size_t nbStripesPerBlock;
1087        /*!< Number of stripes per block. */
1088    size_t secretLimit;
1089        /*!< Size of @ref customSecret or @ref extSecret */
1090    XXH64_hash_t seed;
1091        /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
1092    XXH64_hash_t reserved64;
1093        /*!< Reserved field. */
1094    const unsigned char* extSecret;
1095        /*!< Reference to an external secret for the _withSecret variants, NULL
1096         *   for other variants. */
1097    /* note: there may be some padding at the end due to alignment on 64 bytes */
1098 }; /* typedef'd to XXH3_state_t */
1099 
1100 #undef XXH_ALIGN_MEMBER
1101 
1102 /*!
1103  * @brief Initializes a stack-allocated `XXH3_state_s`.
1104  *
1105  * When the @ref XXH3_state_t structure is merely emplaced on stack,
1106  * it should be initialized with XXH3_INITSTATE() or a memset()
1107  * in case its first reset uses XXH3_NNbits_reset_withSeed().
1108  * This init can be omitted if the first reset uses default or _withSecret mode.
1109  * This operation isn't necessary when the state is created with XXH3_createState().
1110  * Note that this doesn't prepare the state for a streaming operation,
1111  * it's still necessary to use XXH3_NNbits_reset*() afterwards.
1112  */
1113 #define XXH3_INITSTATE(XXH3_state_ptr)   { (XXH3_state_ptr)->seed = 0; }
1114 
1115 
1116 /* XXH128() :
1117  * simple alias to pre-selected XXH3_128bits variant
1118  */
1119 XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
1120 
1121 
1122 /* ===   Experimental API   === */
1123 /* Symbols defined below must be considered tied to a specific library version. */
1124 
1125 /*
1126  * XXH3_generateSecret():
1127  *
1128  * Derive a high-entropy secret from any user-defined content, named customSeed.
1129  * The generated secret can be used in combination with `*_withSecret()` functions.
1130  * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed,
1131  * as it becomes much more difficult for an external actor to guess how to impact the calculation logic.
1132  *
1133  * The function accepts as input a custom seed of any length and any content,
1134  * and derives from it a high-entropy secret of length @secretSize
1135  * into an already allocated buffer @secretBuffer.
1136  * @secretSize must be >= XXH3_SECRET_SIZE_MIN
1137  *
1138  * The generated secret can then be used with any `*_withSecret()` variant.
1139  * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
1140  * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()`
1141  * are part of this list. They all accept a `secret` parameter
1142  * which must be large enough for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
1143  * _and_ feature very high entropy (consist of random-looking bytes).
1144  * These conditions can be a high bar to meet, so
1145  * XXH3_generateSecret() can be employed to ensure proper quality.
1146  *
1147  * customSeed can be anything. It can have any size, even small ones,
1148  * and its content can be anything, even "poor entropy" sources such as a bunch of zeroes.
1149  * The resulting `secret` will nonetheless provide all required qualities.
1150  *
1151  * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
1152  */
1153 XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize);
1154 
1155 
1156 /*
1157  * XXH3_generateSecret_fromSeed():
1158  *
1159  * Generate the same secret as the _withSeed() variants.
1160  *
1161  * The resulting secret has a length of XXH3_SECRET_DEFAULT_SIZE (necessarily).
1162  * @secretBuffer must be already allocated, of size at least XXH3_SECRET_DEFAULT_SIZE bytes.
1163  *
1164  * The generated secret can be used in combination with
1165  *`*_withSecret()` and `_withSecretandSeed()` variants.
1166  * This generator is notably useful in combination with `_withSecretandSeed()`,
1167  * as a way to emulate a faster `_withSeed()` variant.
1168  */
1169 XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed);
1170 
1171 /*
1172  * *_withSecretandSeed() :
1173  * These variants generate hash values using either
1174  * @seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes)
1175  * or @secret for "large" keys (>= XXH3_MIDSIZE_MAX).
1176  *
1177  * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
1178  * `_withSeed()` has to generate the secret on the fly for "large" keys.
1179  * It's fast, but can be perceptible for "not so large" keys (< 1 KB).
1180  * `_withSecret()` has to generate the masks on the fly for "small" keys,
1181  * which requires more instructions than _withSeed() variants.
1182  * Therefore, _withSecretandSeed variant combines the best of both worlds.
1183  *
1184  * When @secret has been generated by XXH3_generateSecret_fromSeed(),
1185  * this variant produces *exactly* the same results as `_withSeed()` variant,
1186  * hence offering only a pure speed benefit on "large" input,
1187  * by skipping the need to regenerate the secret for every large input.
1188  *
1189  * Another usage scenario is to hash the secret to a 64-bit hash value,
1190  * for example with XXH3_64bits(), which then becomes the seed,
1191  * and then employ both the seed and the secret in _withSecretandSeed().
1192  * On top of speed, an added benefit is that each bit in the secret
1193  * has a 50% chance to swap each bit in the output,
1194  * via its impact to the seed.
1195  * This is not guaranteed when using the secret directly in "small data" scenarios,
1196  * because only portions of the secret are employed for small data.
1197  */
1198 XXH_PUBLIC_API XXH64_hash_t
1199 XXH3_64bits_withSecretandSeed(const void* data, size_t len,
1200                               const void* secret, size_t secretSize,
1201                               XXH64_hash_t seed);
1202 
1203 XXH_PUBLIC_API XXH128_hash_t
1204 XXH3_128bits_withSecretandSeed(const void* data, size_t len,
1205                                const void* secret, size_t secretSize,
1206                                XXH64_hash_t seed64);
1207 
1208 XXH_PUBLIC_API XXH_errorcode
1209 XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
1210                                     const void* secret, size_t secretSize,
1211                                     XXH64_hash_t seed64);
1212 
1213 XXH_PUBLIC_API XXH_errorcode
1214 XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
1215                                      const void* secret, size_t secretSize,
1216                                      XXH64_hash_t seed64);
1217 
1218 
1219 #endif  /* XXH_NO_LONG_LONG */
1220 #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
1221 #  define XXH_IMPLEMENTATION
1222 #endif
1223 
1224 #endif  /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
1225 
1226 
1227 /* ======================================================================== */
1228 /* ======================================================================== */
1229 /* ======================================================================== */
1230 
1231 
1232 /*-**********************************************************************
1233  * xxHash implementation
1234  *-**********************************************************************
1235  * xxHash's implementation used to be hosted inside xxhash.c.
1236  *
1237  * However, inlining requires implementation to be visible to the compiler,
1238  * hence be included alongside the header.
1239  * Previously, implementation was hosted inside xxhash.c,
1240  * which was then #included when inlining was activated.
1241  * This construction created issues with a few build and install systems,
1242  * as it required xxhash.c to be stored in /include directory.
1243  *
1244  * xxHash implementation is now directly integrated within xxhash.h.
1245  * As a consequence, xxhash.c is no longer needed in /include.
1246  *
1247  * xxhash.c is still available and is still useful.
1248  * In a "normal" setup, when xxhash is not inlined,
1249  * xxhash.h only exposes the prototypes and public symbols,
1250  * while xxhash.c can be built into an object file xxhash.o
1251  * which can then be linked into the final binary.
1252  ************************************************************************/
1253 
1254 #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
1255    || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
1256 #  define XXH_IMPLEM_13a8737387
1257 
1258 /* *************************************
1259 *  Tuning parameters
1260 ***************************************/
1261 
1262 /*!
1263  * @defgroup tuning Tuning parameters
1264  * @{
1265  *
1266  * Various macros to control xxHash's behavior.
1267  */
1268 #ifdef XXH_DOXYGEN
1269 /*!
1270  * @brief Define this to disable 64-bit code.
1271  *
1272  * Useful if only using the @ref xxh32_family and you have a strict C90 compiler.
1273  */
1274 #  define XXH_NO_LONG_LONG
1275 #  undef XXH_NO_LONG_LONG /* don't actually */
1276 /*!
1277  * @brief Controls how unaligned memory is accessed.
1278  *
1279  * By default, access to unaligned memory is controlled by `memcpy()`, which is
1280  * safe and portable.
1281  *
1282  * Unfortunately, on some target/compiler combinations, the generated assembly
1283  * is sub-optimal.
1284  *
1285  * The below switch allow selection of a different access method
1286  * in the search for improved performance.
1287  *
1288  * @par Possible options:
1289  *
1290  *  - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
1291  *   @par
1292  *     Use `memcpy()`. Safe and portable. Note that most modern compilers will
1293  *     eliminate the function call and treat it as an unaligned access.
1294  *
1295  *  - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((packed))`
1296  *   @par
1297  *     Depends on compiler extensions and is therefore not portable.
1298  *     This method is safe _if_ your compiler supports it,
1299  *     and *generally* as fast or faster than `memcpy`.
1300  *
1301  *  - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
1302  *  @par
1303  *     Casts directly and dereferences. This method doesn't depend on the
1304  *     compiler, but it violates the C standard as it directly dereferences an
1305  *     unaligned pointer. It can generate buggy code on targets which do not
1306  *     support unaligned memory accesses, but in some circumstances, it's the
1307  *     only known way to get the most performance.
1308  *
1309  *  - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
1310  *  @par
1311  *     Also portable. This can generate the best code on old compilers which don't
1312  *     inline small `memcpy()` calls, and it might also be faster on big-endian
1313  *     systems which lack a native byteswap instruction. However, some compilers
1314  *     will emit literal byteshifts even if the target supports unaligned access.
1315  *  .
1316  *
1317  * @warning
1318  *   Methods 1 and 2 rely on implementation-defined behavior. Use these with
1319  *   care, as what works on one compiler/platform/optimization level may cause
1320  *   another to read garbage data or even crash.
1321  *
1322  * See http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
1323  *
1324  * Prefer these methods in priority order (0 > 3 > 1 > 2)
1325  */
1326 #  define XXH_FORCE_MEMORY_ACCESS 0
1327 
1328 /*!
1329  * @def XXH_FORCE_ALIGN_CHECK
1330  * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
1331  * and XXH64() only).
1332  *
1333  * This is an important performance trick for architectures without decent
1334  * unaligned memory access performance.
1335  *
1336  * It checks for input alignment, and when conditions are met, uses a "fast
1337  * path" employing direct 32-bit/64-bit reads, resulting in _dramatically
1338  * faster_ read speed.
1339  *
1340  * The check costs one initial branch per hash, which is generally negligible,
1341  * but not zero.
1342  *
1343  * Moreover, it's not useful to generate an additional code path if memory
1344  * access uses the same instruction for both aligned and unaligned
1345  * addresses (e.g. x86 and aarch64).
1346  *
1347  * In these cases, the alignment check can be removed by setting this macro to 0.
1348  * Then the code will always use unaligned memory access.
1349  * Align check is automatically disabled on x86, x64 & arm64,
1350  * which are platforms known to offer good unaligned memory accesses performance.
1351  *
1352  * This option does not affect XXH3 (only XXH32 and XXH64).
1353  */
1354 #  define XXH_FORCE_ALIGN_CHECK 0
1355 
1356 /*!
1357  * @def XXH_NO_INLINE_HINTS
1358  * @brief When non-zero, sets all functions to `static`.
1359  *
1360  * By default, xxHash tries to force the compiler to inline almost all internal
1361  * functions.
1362  *
1363  * This can usually improve performance due to reduced jumping and improved
1364  * constant folding, but significantly increases the size of the binary which
1365  * might not be favorable.
1366  *
1367  * Additionally, sometimes the forced inlining can be detrimental to performance,
1368  * depending on the architecture.
1369  *
1370  * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
1371  * compiler full control on whether to inline or not.
1372  *
1373  * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
1374  * -fno-inline with GCC or Clang, this will automatically be defined.
1375  */
1376 #  define XXH_NO_INLINE_HINTS 0
1377 
1378 /*!
1379  * @def XXH32_ENDJMP
1380  * @brief Whether to use a jump for `XXH32_finalize`.
1381  *
1382  * For performance, `XXH32_finalize` uses multiple branches in the finalizer.
1383  * This is generally preferable for performance,
1384  * but depending on exact architecture, a jmp may be preferable.
1385  *
1386  * This setting is only possibly making a difference for very small inputs.
1387  */
1388 #  define XXH32_ENDJMP 0
1389 
1390 /*!
1391  * @internal
1392  * @brief Redefines old internal names.
1393  *
1394  * For compatibility with code that uses xxHash's internals before the names
1395  * were changed to improve namespacing. There is no other reason to use this.
1396  */
1397 #  define XXH_OLD_NAMES
1398 #  undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
1399 #endif /* XXH_DOXYGEN */
1400 /*!
1401  * @}
1402  */
1403 
1404 #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
1405    /* prefer __packed__ structures (method 1) for gcc on armv7+ and mips */
1406 #  if !defined(__clang__) && \
1407 ( \
1408     (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
1409     ( \
1410         defined(__GNUC__) && ( \
1411             (defined(__ARM_ARCH) && __ARM_ARCH >= 7) || \
1412             ( \
1413                 defined(__mips__) && \
1414                 (__mips <= 5 || __mips_isa_rev < 6) && \
1415                 (!defined(__mips16) || defined(__mips_mips16e2)) \
1416             ) \
1417         ) \
1418     ) \
1419 )
1420 #    define XXH_FORCE_MEMORY_ACCESS 1
1421 #  endif
1422 #endif
1423 
1424 #ifndef XXH_FORCE_ALIGN_CHECK  /* can be defined externally */
1425 #  if defined(__i386)  || defined(__x86_64__) || defined(__aarch64__) \
1426    || defined(_M_IX86) || defined(_M_X64)     || defined(_M_ARM64) /* visual */
1427 #    define XXH_FORCE_ALIGN_CHECK 0
1428 #  else
1429 #    define XXH_FORCE_ALIGN_CHECK 1
1430 #  endif
1431 #endif
1432 
1433 #ifndef XXH_NO_INLINE_HINTS
1434 #  if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
1435    || defined(__NO_INLINE__)     /* -O0, -fno-inline */
1436 #    define XXH_NO_INLINE_HINTS 1
1437 #  else
1438 #    define XXH_NO_INLINE_HINTS 0
1439 #  endif
1440 #endif
1441 
1442 #ifndef XXH32_ENDJMP
1443 /* generally preferable for performance */
1444 #  define XXH32_ENDJMP 0
1445 #endif
1446 
1447 /*!
1448  * @defgroup impl Implementation
1449  * @{
1450  */
1451 
1452 
1453 /* *************************************
1454 *  Includes & Memory related functions
1455 ***************************************/
1456 /*
1457  * Modify the local functions below should you wish to use
1458  * different memory routines for malloc() and free()
1459  */
1460 #include <stdlib.h>
1461 
1462 /*!
1463  * @internal
1464  * @brief Modify this function to use a different routine than malloc().
1465  */
1466 static void* XXH_malloc(size_t s) { return malloc(s); }
1467 
1468 /*!
1469  * @internal
1470  * @brief Modify this function to use a different routine than free().
1471  */
1472 static void XXH_free(void* p) { free(p); }
1473 
1474 #include <string.h>
1475 
1476 /*!
1477  * @internal
1478  * @brief Modify this function to use a different routine than memcpy().
1479  */
1480 static void* XXH_memcpy(void* dest, const void* src, size_t size)
1481 {
1482     return memcpy(dest,src,size);
1483 }
1484 
1485 #include <limits.h>   /* ULLONG_MAX */
1486 
1487 
1488 /* *************************************
1489 *  Compiler Specific Options
1490 ***************************************/
1491 #ifdef _MSC_VER /* Visual Studio warning fix */
1492 #  pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
1493 #endif
1494 
1495 #if XXH_NO_INLINE_HINTS  /* disable inlining hints */
1496 #  if defined(__GNUC__) || defined(__clang__)
1497 #    define XXH_FORCE_INLINE static __attribute__((unused))
1498 #  else
1499 #    define XXH_FORCE_INLINE static
1500 #  endif
1501 #  define XXH_NO_INLINE static
1502 /* enable inlining hints */
1503 #elif defined(__GNUC__) || defined(__clang__)
1504 #  define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
1505 #  define XXH_NO_INLINE static __attribute__((noinline))
1506 #elif defined(_MSC_VER)  /* Visual Studio */
1507 #  define XXH_FORCE_INLINE static __forceinline
1508 #  define XXH_NO_INLINE static __declspec(noinline)
1509 #elif defined (__cplusplus) \
1510   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L))   /* C99 */
1511 #  define XXH_FORCE_INLINE static inline
1512 #  define XXH_NO_INLINE static
1513 #else
1514 #  define XXH_FORCE_INLINE static
1515 #  define XXH_NO_INLINE static
1516 #endif
1517 
1518 
1519 
1520 /* *************************************
1521 *  Debug
1522 ***************************************/
1523 /*!
1524  * @ingroup tuning
1525  * @def XXH_DEBUGLEVEL
1526  * @brief Sets the debugging level.
1527  *
1528  * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
1529  * compiler's command line options. The value must be a number.
1530  */
1531 #ifndef XXH_DEBUGLEVEL
1532 #  ifdef DEBUGLEVEL /* backwards compat */
1533 #    define XXH_DEBUGLEVEL DEBUGLEVEL
1534 #  else
1535 #    define XXH_DEBUGLEVEL 0
1536 #  endif
1537 #endif
1538 
1539 #if (XXH_DEBUGLEVEL>=1)
1540 #  include <assert.h>   /* note: can still be disabled with NDEBUG */
1541 #  define XXH_ASSERT(c)   assert(c)
1542 #else
1543 #  define XXH_ASSERT(c)   ((void)0)
1544 #endif
1545 
1546 /* note: use after variable declarations */
1547 #ifndef XXH_STATIC_ASSERT
1548 #  if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)    /* C11 */
1549 #    include <assert.h>
1550 #    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
1551 #  elif defined(__cplusplus) && (__cplusplus >= 201103L)            /* C++11 */
1552 #    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
1553 #  else
1554 #    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0)
1555 #  endif
1556 #  define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c)
1557 #endif
1558 
1559 /*!
1560  * @internal
1561  * @def XXH_COMPILER_GUARD(var)
1562  * @brief Used to prevent unwanted optimizations for @p var.
1563  *
1564  * It uses an empty GCC inline assembly statement with a register constraint
1565  * which forces @p var into a general purpose register (eg eax, ebx, ecx
1566  * on x86) and marks it as modified.
1567  *
1568  * This is used in a few places to avoid unwanted autovectorization (e.g.
1569  * XXH32_round()). All vectorization we want is explicit via intrinsics,
1570  * and _usually_ isn't wanted elsewhere.
1571  *
1572  * We also use it to prevent unwanted constant folding for AArch64 in
1573  * XXH3_initCustomSecret_scalar().
1574  */
1575 #if defined(__GNUC__) || defined(__clang__)
1576 #  define XXH_COMPILER_GUARD(var) __asm__ __volatile__("" : "+r" (var))
1577 #else
1578 #  define XXH_COMPILER_GUARD(var) ((void)0)
1579 #endif
1580 
1581 /* *************************************
1582 *  Basic Types
1583 ***************************************/
1584 #if !defined (__VMS) \
1585  && (defined (__cplusplus) \
1586  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
1587 # include <stdint.h>
1588   typedef uint8_t xxh_u8;
1589 #else
1590   typedef unsigned char xxh_u8;
1591 #endif
1592 typedef XXH32_hash_t xxh_u32;
1593 
1594 #ifdef XXH_OLD_NAMES
1595 #  define BYTE xxh_u8
1596 #  define U8   xxh_u8
1597 #  define U32  xxh_u32
1598 #endif
1599 
1600 /* ***   Memory access   *** */
1601 
1602 /*!
1603  * @internal
1604  * @fn xxh_u32 XXH_read32(const void* ptr)
1605  * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
1606  *
1607  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1608  *
1609  * @param ptr The pointer to read from.
1610  * @return The 32-bit native endian integer from the bytes at @p ptr.
1611  */
1612 
1613 /*!
1614  * @internal
1615  * @fn xxh_u32 XXH_readLE32(const void* ptr)
1616  * @brief Reads an unaligned 32-bit little endian integer from @p ptr.
1617  *
1618  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1619  *
1620  * @param ptr The pointer to read from.
1621  * @return The 32-bit little endian integer from the bytes at @p ptr.
1622  */
1623 
1624 /*!
1625  * @internal
1626  * @fn xxh_u32 XXH_readBE32(const void* ptr)
1627  * @brief Reads an unaligned 32-bit big endian integer from @p ptr.
1628  *
1629  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1630  *
1631  * @param ptr The pointer to read from.
1632  * @return The 32-bit big endian integer from the bytes at @p ptr.
1633  */
1634 
1635 /*!
1636  * @internal
1637  * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
1638  * @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
1639  *
1640  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1641  * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
1642  * always @ref XXH_alignment::XXH_unaligned.
1643  *
1644  * @param ptr The pointer to read from.
1645  * @param align Whether @p ptr is aligned.
1646  * @pre
1647  *   If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
1648  *   aligned.
1649  * @return The 32-bit little endian integer from the bytes at @p ptr.
1650  */
1651 
1652 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1653 /*
1654  * Manual byteshift. Best for old compilers which don't inline memcpy.
1655  * We actually directly use XXH_readLE32 and XXH_readBE32.
1656  */
1657 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
1658 
1659 /*
1660  * Force direct memory access. Only works on CPU which support unaligned memory
1661  * access in hardware.
1662  */
1663 static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
1664 
1665 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
1666 
1667 /*
1668  * __pack instructions are safer but compiler specific, hence potentially
1669  * problematic for some compilers.
1670  *
1671  * Currently only defined for GCC and ICC.
1672  */
1673 #ifdef XXH_OLD_NAMES
1674 typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
1675 #endif
1676 static xxh_u32 XXH_read32(const void* ptr)
1677 {
1678     typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign;
1679     return ((const xxh_unalign*)ptr)->u32;
1680 }
1681 
1682 #else
1683 
1684 /*
1685  * Portable and safe solution. Generally efficient.
1686  * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
1687  */
1688 static xxh_u32 XXH_read32(const void* memPtr)
1689 {
1690     xxh_u32 val;
1691     XXH_memcpy(&val, memPtr, sizeof(val));
1692     return val;
1693 }
1694 
1695 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
1696 
1697 
1698 /* ***   Endianness   *** */
1699 
1700 /*!
1701  * @ingroup tuning
1702  * @def XXH_CPU_LITTLE_ENDIAN
1703  * @brief Whether the target is little endian.
1704  *
1705  * Defined to 1 if the target is little endian, or 0 if it is big endian.
1706  * It can be defined externally, for example on the compiler command line.
1707  *
1708  * If it is not defined,
1709  * a runtime check (which is usually constant folded) is used instead.
1710  *
1711  * @note
1712  *   This is not necessarily defined to an integer constant.
1713  *
1714  * @see XXH_isLittleEndian() for the runtime check.
1715  */
1716 #ifndef XXH_CPU_LITTLE_ENDIAN
1717 /*
1718  * Try to detect endianness automatically, to avoid the nonstandard behavior
1719  * in `XXH_isLittleEndian()`
1720  */
1721 #  if defined(_WIN32) /* Windows is always little endian */ \
1722      || defined(__LITTLE_ENDIAN__) \
1723      || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
1724 #    define XXH_CPU_LITTLE_ENDIAN 1
1725 #  elif defined(__BIG_ENDIAN__) \
1726      || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
1727 #    define XXH_CPU_LITTLE_ENDIAN 0
1728 #  else
1729 /*!
1730  * @internal
1731  * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
1732  *
1733  * Most compilers will constant fold this.
1734  */
1735 static int XXH_isLittleEndian(void)
1736 {
1737     /*
1738      * Portable and well-defined behavior.
1739      * Don't use static: it is detrimental to performance.
1740      */
1741     const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
1742     return one.c[0];
1743 }
1744 #   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian()
1745 #  endif
1746 #endif
1747 
1748 
1749 
1750 
1751 /* ****************************************
1752 *  Compiler-specific Functions and Macros
1753 ******************************************/
1754 #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
1755 
1756 #ifdef __has_builtin
1757 #  define XXH_HAS_BUILTIN(x) __has_builtin(x)
1758 #else
1759 #  define XXH_HAS_BUILTIN(x) 0
1760 #endif
1761 
1762 /*!
1763  * @internal
1764  * @def XXH_rotl32(x,r)
1765  * @brief 32-bit rotate left.
1766  *
1767  * @param x The 32-bit integer to be rotated.
1768  * @param r The number of bits to rotate.
1769  * @pre
1770  *   @p r > 0 && @p r < 32
1771  * @note
1772  *   @p x and @p r may be evaluated multiple times.
1773  * @return The rotated result.
1774  */
1775 #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
1776                                && XXH_HAS_BUILTIN(__builtin_rotateleft64)
1777 #  define XXH_rotl32 __builtin_rotateleft32
1778 #  define XXH_rotl64 __builtin_rotateleft64
1779 /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
1780 #elif defined(_MSC_VER)
1781 #  define XXH_rotl32(x,r) _rotl(x,r)
1782 #  define XXH_rotl64(x,r) _rotl64(x,r)
1783 #else
1784 #  define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
1785 #  define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
1786 #endif
1787 
1788 /*!
1789  * @internal
1790  * @fn xxh_u32 XXH_swap32(xxh_u32 x)
1791  * @brief A 32-bit byteswap.
1792  *
1793  * @param x The 32-bit integer to byteswap.
1794  * @return @p x, byteswapped.
1795  */
1796 #if defined(_MSC_VER)     /* Visual Studio */
1797 #  define XXH_swap32 _byteswap_ulong
1798 #elif XXH_GCC_VERSION >= 403
1799 #  define XXH_swap32 __builtin_bswap32
1800 #else
1801 static xxh_u32 XXH_swap32 (xxh_u32 x)
1802 {
1803     return  ((x << 24) & 0xff000000 ) |
1804             ((x <<  8) & 0x00ff0000 ) |
1805             ((x >>  8) & 0x0000ff00 ) |
1806             ((x >> 24) & 0x000000ff );
1807 }
1808 #endif
1809 
1810 
1811 /* ***************************
1812 *  Memory reads
1813 *****************************/
1814 
1815 /*!
1816  * @internal
1817  * @brief Enum to indicate whether a pointer is aligned.
1818  */
1819 typedef enum {
1820     XXH_aligned,  /*!< Aligned */
1821     XXH_unaligned /*!< Possibly unaligned */
1822 } XXH_alignment;
1823 
1824 /*
1825  * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
1826  *
1827  * This is ideal for older compilers which don't inline memcpy.
1828  */
1829 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1830 
1831 XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
1832 {
1833     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1834     return bytePtr[0]
1835          | ((xxh_u32)bytePtr[1] << 8)
1836          | ((xxh_u32)bytePtr[2] << 16)
1837          | ((xxh_u32)bytePtr[3] << 24);
1838 }
1839 
1840 XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
1841 {
1842     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1843     return bytePtr[3]
1844          | ((xxh_u32)bytePtr[2] << 8)
1845          | ((xxh_u32)bytePtr[1] << 16)
1846          | ((xxh_u32)bytePtr[0] << 24);
1847 }
1848 
1849 #else
1850 XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
1851 {
1852     return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
1853 }
1854 
1855 static xxh_u32 XXH_readBE32(const void* ptr)
1856 {
1857     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
1858 }
1859 #endif
1860 
1861 XXH_FORCE_INLINE xxh_u32
1862 XXH_readLE32_align(const void* ptr, XXH_alignment align)
1863 {
1864     if (align==XXH_unaligned) {
1865         return XXH_readLE32(ptr);
1866     } else {
1867         return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
1868     }
1869 }
1870 
1871 
1872 /* *************************************
1873 *  Misc
1874 ***************************************/
1875 /*! @ingroup public */
1876 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
1877 
1878 
1879 /* *******************************************************************
1880 *  32-bit hash functions
1881 *********************************************************************/
1882 /*!
1883  * @}
1884  * @defgroup xxh32_impl XXH32 implementation
1885  * @ingroup impl
1886  * @{
1887  */
1888  /* #define instead of static const, to be used as initializers */
1889 #define XXH_PRIME32_1  0x9E3779B1U  /*!< 0b10011110001101110111100110110001 */
1890 #define XXH_PRIME32_2  0x85EBCA77U  /*!< 0b10000101111010111100101001110111 */
1891 #define XXH_PRIME32_3  0xC2B2AE3DU  /*!< 0b11000010101100101010111000111101 */
1892 #define XXH_PRIME32_4  0x27D4EB2FU  /*!< 0b00100111110101001110101100101111 */
1893 #define XXH_PRIME32_5  0x165667B1U  /*!< 0b00010110010101100110011110110001 */
1894 
1895 #ifdef XXH_OLD_NAMES
1896 #  define PRIME32_1 XXH_PRIME32_1
1897 #  define PRIME32_2 XXH_PRIME32_2
1898 #  define PRIME32_3 XXH_PRIME32_3
1899 #  define PRIME32_4 XXH_PRIME32_4
1900 #  define PRIME32_5 XXH_PRIME32_5
1901 #endif
1902 
1903 /*!
1904  * @internal
1905  * @brief Normal stripe processing routine.
1906  *
1907  * This shuffles the bits so that any bit from @p input impacts several bits in
1908  * @p acc.
1909  *
1910  * @param acc The accumulator lane.
1911  * @param input The stripe of input to mix.
1912  * @return The mixed accumulator lane.
1913  */
1914 static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
1915 {
1916     acc += input * XXH_PRIME32_2;
1917     acc  = XXH_rotl32(acc, 13);
1918     acc *= XXH_PRIME32_1;
1919 #if (defined(__SSE4_1__) || defined(__aarch64__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
1920     /*
1921      * UGLY HACK:
1922      * A compiler fence is the only thing that prevents GCC and Clang from
1923      * autovectorizing the XXH32 loop (pragmas and attributes don't work for some
1924      * reason) without globally disabling SSE4.1.
1925      *
1926      * The reason we want to avoid vectorization is because despite working on
1927      * 4 integers at a time, there are multiple factors slowing XXH32 down on
1928      * SSE4:
1929      * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
1930      *   newer chips!) making it slightly slower to multiply four integers at
1931      *   once compared to four integers independently. Even when pmulld was
1932      *   fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
1933      *   just to multiply unless doing a long operation.
1934      *
1935      * - Four instructions are required to rotate,
1936      *      movqda tmp,  v // not required with VEX encoding
1937      *      pslld  tmp, 13 // tmp <<= 13
1938      *      psrld  v,   19 // x >>= 19
1939      *      por    v,  tmp // x |= tmp
1940      *   compared to one for scalar:
1941      *      roll   v, 13    // reliably fast across the board
1942      *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason
1943      *
1944      * - Instruction level parallelism is actually more beneficial here because
1945      *   the SIMD actually serializes this operation: While v1 is rotating, v2
1946      *   can load data, while v3 can multiply. SSE forces them to operate
1947      *   together.
1948      *
1949      * This is also enabled on AArch64, as Clang autovectorizes it incorrectly
1950      * and it is pointless writing a NEON implementation that is basically the
1951      * same speed as scalar for XXH32.
1952      */
1953     XXH_COMPILER_GUARD(acc);
1954 #endif
1955     return acc;
1956 }
1957 
1958 /*!
1959  * @internal
1960  * @brief Mixes all bits to finalize the hash.
1961  *
1962  * The final mix ensures that all input bits have a chance to impact any bit in
1963  * the output digest, resulting in an unbiased distribution.
1964  *
1965  * @param h32 The hash to avalanche.
1966  * @return The avalanched hash.
1967  */
1968 static xxh_u32 XXH32_avalanche(xxh_u32 h32)
1969 {
1970     h32 ^= h32 >> 15;
1971     h32 *= XXH_PRIME32_2;
1972     h32 ^= h32 >> 13;
1973     h32 *= XXH_PRIME32_3;
1974     h32 ^= h32 >> 16;
1975     return(h32);
1976 }
1977 
1978 #define XXH_get32bits(p) XXH_readLE32_align(p, align)
1979 
1980 /*!
1981  * @internal
1982  * @brief Processes the last 0-15 bytes of @p ptr.
1983  *
1984  * There may be up to 15 bytes remaining to consume from the input.
1985  * This final stage will digest them to ensure that all input bytes are present
1986  * in the final mix.
1987  *
1988  * @param h32 The hash to finalize.
1989  * @param ptr The pointer to the remaining input.
1990  * @param len The remaining length, modulo 16.
1991  * @param align Whether @p ptr is aligned.
1992  * @return The finalized hash.
1993  */
1994 static xxh_u32
1995 XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
1996 {
1997 #define XXH_PROCESS1 do {                           \
1998     h32 += (*ptr++) * XXH_PRIME32_5;                \
1999     h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1;      \
2000 } while (0)
2001 
2002 #define XXH_PROCESS4 do {                           \
2003     h32 += XXH_get32bits(ptr) * XXH_PRIME32_3;      \
2004     ptr += 4;                                   \
2005     h32  = XXH_rotl32(h32, 17) * XXH_PRIME32_4;     \
2006 } while (0)
2007 
2008     if (ptr==NULL) XXH_ASSERT(len == 0);
2009 
2010     /* Compact rerolled version; generally faster */
2011     if (!XXH32_ENDJMP) {
2012         len &= 15;
2013         while (len >= 4) {
2014             XXH_PROCESS4;
2015             len -= 4;
2016         }
2017         while (len > 0) {
2018             XXH_PROCESS1;
2019             --len;
2020         }
2021         return XXH32_avalanche(h32);
2022     } else {
2023          switch(len&15) /* or switch(bEnd - p) */ {
2024            case 12:      XXH_PROCESS4;
2025                          XXH_FALLTHROUGH;
2026            case 8:       XXH_PROCESS4;
2027                          XXH_FALLTHROUGH;
2028            case 4:       XXH_PROCESS4;
2029                          return XXH32_avalanche(h32);
2030 
2031            case 13:      XXH_PROCESS4;
2032                          XXH_FALLTHROUGH;
2033            case 9:       XXH_PROCESS4;
2034                          XXH_FALLTHROUGH;
2035            case 5:       XXH_PROCESS4;
2036                          XXH_PROCESS1;
2037                          return XXH32_avalanche(h32);
2038 
2039            case 14:      XXH_PROCESS4;
2040                          XXH_FALLTHROUGH;
2041            case 10:      XXH_PROCESS4;
2042                          XXH_FALLTHROUGH;
2043            case 6:       XXH_PROCESS4;
2044                          XXH_PROCESS1;
2045                          XXH_PROCESS1;
2046                          return XXH32_avalanche(h32);
2047 
2048            case 15:      XXH_PROCESS4;
2049                          XXH_FALLTHROUGH;
2050            case 11:      XXH_PROCESS4;
2051                          XXH_FALLTHROUGH;
2052            case 7:       XXH_PROCESS4;
2053                          XXH_FALLTHROUGH;
2054            case 3:       XXH_PROCESS1;
2055                          XXH_FALLTHROUGH;
2056            case 2:       XXH_PROCESS1;
2057                          XXH_FALLTHROUGH;
2058            case 1:       XXH_PROCESS1;
2059                          XXH_FALLTHROUGH;
2060            case 0:       return XXH32_avalanche(h32);
2061         }
2062         XXH_ASSERT(0);
2063         return h32;   /* reaching this point is deemed impossible */
2064     }
2065 }
2066 
2067 #ifdef XXH_OLD_NAMES
2068 #  define PROCESS1 XXH_PROCESS1
2069 #  define PROCESS4 XXH_PROCESS4
2070 #else
2071 #  undef XXH_PROCESS1
2072 #  undef XXH_PROCESS4
2073 #endif
2074 
2075 /*!
2076  * @internal
2077  * @brief The implementation for @ref XXH32().
2078  *
2079  * @param input , len , seed Directly passed from @ref XXH32().
2080  * @param align Whether @p input is aligned.
2081  * @return The calculated hash.
2082  */
2083 XXH_FORCE_INLINE xxh_u32
2084 XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
2085 {
2086     xxh_u32 h32;
2087 
2088     if (input==NULL) XXH_ASSERT(len == 0);
2089 
2090     if (len>=16) {
2091         const xxh_u8* const bEnd = input + len;
2092         const xxh_u8* const limit = bEnd - 15;
2093         xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
2094         xxh_u32 v2 = seed + XXH_PRIME32_2;
2095         xxh_u32 v3 = seed + 0;
2096         xxh_u32 v4 = seed - XXH_PRIME32_1;
2097 
2098         do {
2099             v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
2100             v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
2101             v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
2102             v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
2103         } while (input < limit);
2104 
2105         h32 = XXH_rotl32(v1, 1)  + XXH_rotl32(v2, 7)
2106             + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
2107     } else {
2108         h32  = seed + XXH_PRIME32_5;
2109     }
2110 
2111     h32 += (xxh_u32)len;
2112 
2113     return XXH32_finalize(h32, input, len&15, align);
2114 }
2115 
2116 /*! @ingroup xxh32_family */
2117 XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
2118 {
2119 #if 0
2120     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
2121     XXH32_state_t state;
2122     XXH32_reset(&state, seed);
2123     XXH32_update(&state, (const xxh_u8*)input, len);
2124     return XXH32_digest(&state);
2125 #else
2126     if (XXH_FORCE_ALIGN_CHECK) {
2127         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
2128             return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
2129     }   }
2130 
2131     return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
2132 #endif
2133 }
2134 
2135 
2136 
2137 /*******   Hash streaming   *******/
2138 /*!
2139  * @ingroup xxh32_family
2140  */
2141 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
2142 {
2143     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
2144 }
2145 /*! @ingroup xxh32_family */
2146 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
2147 {
2148     XXH_free(statePtr);
2149     return XXH_OK;
2150 }
2151 
2152 /*! @ingroup xxh32_family */
2153 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
2154 {
2155     XXH_memcpy(dstState, srcState, sizeof(*dstState));
2156 }
2157 
2158 /*! @ingroup xxh32_family */
2159 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
2160 {
2161     XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
2162     memset(&state, 0, sizeof(state));
2163     state.v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
2164     state.v[1] = seed + XXH_PRIME32_2;
2165     state.v[2] = seed + 0;
2166     state.v[3] = seed - XXH_PRIME32_1;
2167     /* do not write into reserved, planned to be removed in a future version */
2168     XXH_memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
2169     return XXH_OK;
2170 }
2171 
2172 
2173 /*! @ingroup xxh32_family */
2174 XXH_PUBLIC_API XXH_errorcode
2175 XXH32_update(XXH32_state_t* state, const void* input, size_t len)
2176 {
2177     if (input==NULL) {
2178         XXH_ASSERT(len == 0);
2179         return XXH_OK;
2180     }
2181 
2182     {   const xxh_u8* p = (const xxh_u8*)input;
2183         const xxh_u8* const bEnd = p + len;
2184 
2185         state->total_len_32 += (XXH32_hash_t)len;
2186         state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
2187 
2188         if (state->memsize + len < 16)  {   /* fill in tmp buffer */
2189             XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
2190             state->memsize += (XXH32_hash_t)len;
2191             return XXH_OK;
2192         }
2193 
2194         if (state->memsize) {   /* some data left from previous update */
2195             XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
2196             {   const xxh_u32* p32 = state->mem32;
2197                 state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++;
2198                 state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++;
2199                 state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++;
2200                 state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32));
2201             }
2202             p += 16-state->memsize;
2203             state->memsize = 0;
2204         }
2205 
2206         if (p <= bEnd-16) {
2207             const xxh_u8* const limit = bEnd - 16;
2208 
2209             do {
2210                 state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4;
2211                 state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4;
2212                 state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4;
2213                 state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4;
2214             } while (p<=limit);
2215 
2216         }
2217 
2218         if (p < bEnd) {
2219             XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
2220             state->memsize = (unsigned)(bEnd-p);
2221         }
2222     }
2223 
2224     return XXH_OK;
2225 }
2226 
2227 
2228 /*! @ingroup xxh32_family */
2229 XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
2230 {
2231     xxh_u32 h32;
2232 
2233     if (state->large_len) {
2234         h32 = XXH_rotl32(state->v[0], 1)
2235             + XXH_rotl32(state->v[1], 7)
2236             + XXH_rotl32(state->v[2], 12)
2237             + XXH_rotl32(state->v[3], 18);
2238     } else {
2239         h32 = state->v[2] /* == seed */ + XXH_PRIME32_5;
2240     }
2241 
2242     h32 += state->total_len_32;
2243 
2244     return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
2245 }
2246 
2247 
2248 /*******   Canonical representation   *******/
2249 
2250 /*!
2251  * @ingroup xxh32_family
2252  * The default return values from XXH functions are unsigned 32 and 64 bit
2253  * integers.
2254  *
2255  * The canonical representation uses big endian convention, the same convention
2256  * as human-readable numbers (large digits first).
2257  *
2258  * This way, hash values can be written into a file or buffer, remaining
2259  * comparable across different systems.
2260  *
2261  * The following functions allow transformation of hash values to and from their
2262  * canonical format.
2263  */
2264 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
2265 {
2266     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
2267     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
2268     XXH_memcpy(dst, &hash, sizeof(*dst));
2269 }
2270 /*! @ingroup xxh32_family */
2271 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
2272 {
2273     return XXH_readBE32(src);
2274 }
2275 
2276 
2277 #ifndef XXH_NO_LONG_LONG
2278 
2279 /* *******************************************************************
2280 *  64-bit hash functions
2281 *********************************************************************/
2282 /*!
2283  * @}
2284  * @ingroup impl
2285  * @{
2286  */
2287 /*******   Memory access   *******/
2288 
2289 typedef XXH64_hash_t xxh_u64;
2290 
2291 #ifdef XXH_OLD_NAMES
2292 #  define U64 xxh_u64
2293 #endif
2294 
2295 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2296 /*
2297  * Manual byteshift. Best for old compilers which don't inline memcpy.
2298  * We actually directly use XXH_readLE64 and XXH_readBE64.
2299  */
2300 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
2301 
2302 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
2303 static xxh_u64 XXH_read64(const void* memPtr)
2304 {
2305     return *(const xxh_u64*) memPtr;
2306 }
2307 
2308 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
2309 
2310 /*
2311  * __pack instructions are safer, but compiler specific, hence potentially
2312  * problematic for some compilers.
2313  *
2314  * Currently only defined for GCC and ICC.
2315  */
2316 #ifdef XXH_OLD_NAMES
2317 typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
2318 #endif
2319 static xxh_u64 XXH_read64(const void* ptr)
2320 {
2321     typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64;
2322     return ((const xxh_unalign64*)ptr)->u64;
2323 }
2324 
2325 #else
2326 
2327 /*
2328  * Portable and safe solution. Generally efficient.
2329  * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
2330  */
2331 static xxh_u64 XXH_read64(const void* memPtr)
2332 {
2333     xxh_u64 val;
2334     XXH_memcpy(&val, memPtr, sizeof(val));
2335     return val;
2336 }
2337 
2338 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
2339 
2340 #if defined(_MSC_VER)     /* Visual Studio */
2341 #  define XXH_swap64 _byteswap_uint64
2342 #elif XXH_GCC_VERSION >= 403
2343 #  define XXH_swap64 __builtin_bswap64
2344 #else
2345 static xxh_u64 XXH_swap64(xxh_u64 x)
2346 {
2347     return  ((x << 56) & 0xff00000000000000ULL) |
2348             ((x << 40) & 0x00ff000000000000ULL) |
2349             ((x << 24) & 0x0000ff0000000000ULL) |
2350             ((x << 8)  & 0x000000ff00000000ULL) |
2351             ((x >> 8)  & 0x00000000ff000000ULL) |
2352             ((x >> 24) & 0x0000000000ff0000ULL) |
2353             ((x >> 40) & 0x000000000000ff00ULL) |
2354             ((x >> 56) & 0x00000000000000ffULL);
2355 }
2356 #endif
2357 
2358 
2359 /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
2360 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2361 
2362 XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
2363 {
2364     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2365     return bytePtr[0]
2366          | ((xxh_u64)bytePtr[1] << 8)
2367          | ((xxh_u64)bytePtr[2] << 16)
2368          | ((xxh_u64)bytePtr[3] << 24)
2369          | ((xxh_u64)bytePtr[4] << 32)
2370          | ((xxh_u64)bytePtr[5] << 40)
2371          | ((xxh_u64)bytePtr[6] << 48)
2372          | ((xxh_u64)bytePtr[7] << 56);
2373 }
2374 
2375 XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
2376 {
2377     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2378     return bytePtr[7]
2379          | ((xxh_u64)bytePtr[6] << 8)
2380          | ((xxh_u64)bytePtr[5] << 16)
2381          | ((xxh_u64)bytePtr[4] << 24)
2382          | ((xxh_u64)bytePtr[3] << 32)
2383          | ((xxh_u64)bytePtr[2] << 40)
2384          | ((xxh_u64)bytePtr[1] << 48)
2385          | ((xxh_u64)bytePtr[0] << 56);
2386 }
2387 
2388 #else
2389 XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
2390 {
2391     return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
2392 }
2393 
2394 static xxh_u64 XXH_readBE64(const void* ptr)
2395 {
2396     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
2397 }
2398 #endif
2399 
2400 XXH_FORCE_INLINE xxh_u64
2401 XXH_readLE64_align(const void* ptr, XXH_alignment align)
2402 {
2403     if (align==XXH_unaligned)
2404         return XXH_readLE64(ptr);
2405     else
2406         return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
2407 }
2408 
2409 
2410 /*******   xxh64   *******/
2411 /*!
2412  * @}
2413  * @defgroup xxh64_impl XXH64 implementation
2414  * @ingroup impl
2415  * @{
2416  */
2417 /* #define rather that static const, to be used as initializers */
2418 #define XXH_PRIME64_1  0x9E3779B185EBCA87ULL  /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
2419 #define XXH_PRIME64_2  0xC2B2AE3D27D4EB4FULL  /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
2420 #define XXH_PRIME64_3  0x165667B19E3779F9ULL  /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
2421 #define XXH_PRIME64_4  0x85EBCA77C2B2AE63ULL  /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
2422 #define XXH_PRIME64_5  0x27D4EB2F165667C5ULL  /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
2423 
2424 #ifdef XXH_OLD_NAMES
2425 #  define PRIME64_1 XXH_PRIME64_1
2426 #  define PRIME64_2 XXH_PRIME64_2
2427 #  define PRIME64_3 XXH_PRIME64_3
2428 #  define PRIME64_4 XXH_PRIME64_4
2429 #  define PRIME64_5 XXH_PRIME64_5
2430 #endif
2431 
2432 static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
2433 {
2434     acc += input * XXH_PRIME64_2;
2435     acc  = XXH_rotl64(acc, 31);
2436     acc *= XXH_PRIME64_1;
2437     return acc;
2438 }
2439 
2440 static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
2441 {
2442     val  = XXH64_round(0, val);
2443     acc ^= val;
2444     acc  = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
2445     return acc;
2446 }
2447 
2448 static xxh_u64 XXH64_avalanche(xxh_u64 h64)
2449 {
2450     h64 ^= h64 >> 33;
2451     h64 *= XXH_PRIME64_2;
2452     h64 ^= h64 >> 29;
2453     h64 *= XXH_PRIME64_3;
2454     h64 ^= h64 >> 32;
2455     return h64;
2456 }
2457 
2458 
2459 #define XXH_get64bits(p) XXH_readLE64_align(p, align)
2460 
2461 static xxh_u64
2462 XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
2463 {
2464     if (ptr==NULL) XXH_ASSERT(len == 0);
2465     len &= 31;
2466     while (len >= 8) {
2467         xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
2468         ptr += 8;
2469         h64 ^= k1;
2470         h64  = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
2471         len -= 8;
2472     }
2473     if (len >= 4) {
2474         h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
2475         ptr += 4;
2476         h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
2477         len -= 4;
2478     }
2479     while (len > 0) {
2480         h64 ^= (*ptr++) * XXH_PRIME64_5;
2481         h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1;
2482         --len;
2483     }
2484     return  XXH64_avalanche(h64);
2485 }
2486 
2487 #ifdef XXH_OLD_NAMES
2488 #  define PROCESS1_64 XXH_PROCESS1_64
2489 #  define PROCESS4_64 XXH_PROCESS4_64
2490 #  define PROCESS8_64 XXH_PROCESS8_64
2491 #else
2492 #  undef XXH_PROCESS1_64
2493 #  undef XXH_PROCESS4_64
2494 #  undef XXH_PROCESS8_64
2495 #endif
2496 
2497 XXH_FORCE_INLINE xxh_u64
2498 XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
2499 {
2500     xxh_u64 h64;
2501     if (input==NULL) XXH_ASSERT(len == 0);
2502 
2503     if (len>=32) {
2504         const xxh_u8* const bEnd = input + len;
2505         const xxh_u8* const limit = bEnd - 31;
2506         xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
2507         xxh_u64 v2 = seed + XXH_PRIME64_2;
2508         xxh_u64 v3 = seed + 0;
2509         xxh_u64 v4 = seed - XXH_PRIME64_1;
2510 
2511         do {
2512             v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
2513             v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
2514             v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
2515             v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
2516         } while (input<limit);
2517 
2518         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
2519         h64 = XXH64_mergeRound(h64, v1);
2520         h64 = XXH64_mergeRound(h64, v2);
2521         h64 = XXH64_mergeRound(h64, v3);
2522         h64 = XXH64_mergeRound(h64, v4);
2523 
2524     } else {
2525         h64  = seed + XXH_PRIME64_5;
2526     }
2527 
2528     h64 += (xxh_u64) len;
2529 
2530     return XXH64_finalize(h64, input, len, align);
2531 }
2532 
2533 
2534 /*! @ingroup xxh64_family */
2535 XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
2536 {
2537 #if 0
2538     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
2539     XXH64_state_t state;
2540     XXH64_reset(&state, seed);
2541     XXH64_update(&state, (const xxh_u8*)input, len);
2542     return XXH64_digest(&state);
2543 #else
2544     if (XXH_FORCE_ALIGN_CHECK) {
2545         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
2546             return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
2547     }   }
2548 
2549     return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
2550 
2551 #endif
2552 }
2553 
2554 /*******   Hash Streaming   *******/
2555 
2556 /*! @ingroup xxh64_family*/
2557 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
2558 {
2559     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
2560 }
2561 /*! @ingroup xxh64_family */
2562 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
2563 {
2564     XXH_free(statePtr);
2565     return XXH_OK;
2566 }
2567 
2568 /*! @ingroup xxh64_family */
2569 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
2570 {
2571     XXH_memcpy(dstState, srcState, sizeof(*dstState));
2572 }
2573 
2574 /*! @ingroup xxh64_family */
2575 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
2576 {
2577     XXH64_state_t state;   /* use a local state to memcpy() in order to avoid strict-aliasing warnings */
2578     memset(&state, 0, sizeof(state));
2579     state.v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
2580     state.v[1] = seed + XXH_PRIME64_2;
2581     state.v[2] = seed + 0;
2582     state.v[3] = seed - XXH_PRIME64_1;
2583      /* do not write into reserved64, might be removed in a future version */
2584     XXH_memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
2585     return XXH_OK;
2586 }
2587 
2588 /*! @ingroup xxh64_family */
2589 XXH_PUBLIC_API XXH_errorcode
2590 XXH64_update (XXH64_state_t* state, const void* input, size_t len)
2591 {
2592     if (input==NULL) {
2593         XXH_ASSERT(len == 0);
2594         return XXH_OK;
2595     }
2596 
2597     {   const xxh_u8* p = (const xxh_u8*)input;
2598         const xxh_u8* const bEnd = p + len;
2599 
2600         state->total_len += len;
2601 
2602         if (state->memsize + len < 32) {  /* fill in tmp buffer */
2603             XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
2604             state->memsize += (xxh_u32)len;
2605             return XXH_OK;
2606         }
2607 
2608         if (state->memsize) {   /* tmp buffer is full */
2609             XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
2610             state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0));
2611             state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1));
2612             state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2));
2613             state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3));
2614             p += 32 - state->memsize;
2615             state->memsize = 0;
2616         }
2617 
2618         if (p+32 <= bEnd) {
2619             const xxh_u8* const limit = bEnd - 32;
2620 
2621             do {
2622                 state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8;
2623                 state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8;
2624                 state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8;
2625                 state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8;
2626             } while (p<=limit);
2627 
2628         }
2629 
2630         if (p < bEnd) {
2631             XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
2632             state->memsize = (unsigned)(bEnd-p);
2633         }
2634     }
2635 
2636     return XXH_OK;
2637 }
2638 
2639 
2640 /*! @ingroup xxh64_family */
2641 XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state)
2642 {
2643     xxh_u64 h64;
2644 
2645     if (state->total_len >= 32) {
2646         h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18);
2647         h64 = XXH64_mergeRound(h64, state->v[0]);
2648         h64 = XXH64_mergeRound(h64, state->v[1]);
2649         h64 = XXH64_mergeRound(h64, state->v[2]);
2650         h64 = XXH64_mergeRound(h64, state->v[3]);
2651     } else {
2652         h64  = state->v[2] /*seed*/ + XXH_PRIME64_5;
2653     }
2654 
2655     h64 += (xxh_u64) state->total_len;
2656 
2657     return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
2658 }
2659 
2660 
2661 /******* Canonical representation   *******/
2662 
2663 /*! @ingroup xxh64_family */
2664 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
2665 {
2666     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
2667     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
2668     XXH_memcpy(dst, &hash, sizeof(*dst));
2669 }
2670 
2671 /*! @ingroup xxh64_family */
2672 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
2673 {
2674     return XXH_readBE64(src);
2675 }
2676 
2677 #ifndef XXH_NO_XXH3
2678 
2679 /* *********************************************************************
2680 *  XXH3
2681 *  New generation hash designed for speed on small keys and vectorization
2682 ************************************************************************ */
2683 /*!
2684  * @}
2685  * @defgroup xxh3_impl XXH3 implementation
2686  * @ingroup impl
2687  * @{
2688  */
2689 
2690 /* ===   Compiler specifics   === */
2691 
2692 #if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
2693 #  define XXH_RESTRICT /* disable */
2694 #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* >= C99 */
2695 #  define XXH_RESTRICT   restrict
2696 #else
2697 /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
2698 #  define XXH_RESTRICT   /* disable */
2699 #endif
2700 
2701 #if (defined(__GNUC__) && (__GNUC__ >= 3))  \
2702   || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
2703   || defined(__clang__)
2704 #    define XXH_likely(x) __builtin_expect(x, 1)
2705 #    define XXH_unlikely(x) __builtin_expect(x, 0)
2706 #else
2707 #    define XXH_likely(x) (x)
2708 #    define XXH_unlikely(x) (x)
2709 #endif
2710 
2711 #if defined(__GNUC__)
2712 #  if defined(__AVX2__)
2713 #    include <immintrin.h>
2714 #  elif defined(__SSE2__)
2715 #    include <emmintrin.h>
2716 #  elif defined(__ARM_NEON__) || defined(__ARM_NEON)
2717 #    define inline __inline__  /* circumvent a clang bug */
2718 #    include <arm_neon.h>
2719 #    undef inline
2720 #  endif
2721 #elif defined(_MSC_VER)
2722 #  include <intrin.h>
2723 #endif
2724 
2725 /*
2726  * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
2727  * remaining a true 64-bit/128-bit hash function.
2728  *
2729  * This is done by prioritizing a subset of 64-bit operations that can be
2730  * emulated without too many steps on the average 32-bit machine.
2731  *
2732  * For example, these two lines seem similar, and run equally fast on 64-bit:
2733  *
2734  *   xxh_u64 x;
2735  *   x ^= (x >> 47); // good
2736  *   x ^= (x >> 13); // bad
2737  *
2738  * However, to a 32-bit machine, there is a major difference.
2739  *
2740  * x ^= (x >> 47) looks like this:
2741  *
2742  *   x.lo ^= (x.hi >> (47 - 32));
2743  *
2744  * while x ^= (x >> 13) looks like this:
2745  *
2746  *   // note: funnel shifts are not usually cheap.
2747  *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
2748  *   x.hi ^= (x.hi >> 13);
2749  *
2750  * The first one is significantly faster than the second, simply because the
2751  * shift is larger than 32. This means:
2752  *  - All the bits we need are in the upper 32 bits, so we can ignore the lower
2753  *    32 bits in the shift.
2754  *  - The shift result will always fit in the lower 32 bits, and therefore,
2755  *    we can ignore the upper 32 bits in the xor.
2756  *
2757  * Thanks to this optimization, XXH3 only requires these features to be efficient:
2758  *
2759  *  - Usable unaligned access
2760  *  - A 32-bit or 64-bit ALU
2761  *      - If 32-bit, a decent ADC instruction
2762  *  - A 32 or 64-bit multiply with a 64-bit result
2763  *  - For the 128-bit variant, a decent byteswap helps short inputs.
2764  *
2765  * The first two are already required by XXH32, and almost all 32-bit and 64-bit
2766  * platforms which can run XXH32 can run XXH3 efficiently.
2767  *
2768  * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
2769  * notable exception.
2770  *
2771  * First of all, Thumb-1 lacks support for the UMULL instruction which
2772  * performs the important long multiply. This means numerous __aeabi_lmul
2773  * calls.
2774  *
2775  * Second of all, the 8 functional registers are just not enough.
2776  * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
2777  * Lo registers, and this shuffling results in thousands more MOVs than A32.
2778  *
2779  * A32 and T32 don't have this limitation. They can access all 14 registers,
2780  * do a 32->64 multiply with UMULL, and the flexible operand allowing free
2781  * shifts is helpful, too.
2782  *
2783  * Therefore, we do a quick sanity check.
2784  *
2785  * If compiling Thumb-1 for a target which supports ARM instructions, we will
2786  * emit a warning, as it is not a "sane" platform to compile for.
2787  *
2788  * Usually, if this happens, it is because of an accident and you probably need
2789  * to specify -march, as you likely meant to compile for a newer architecture.
2790  *
2791  * Credit: large sections of the vectorial and asm source code paths
2792  *         have been contributed by @easyaspi314
2793  */
2794 #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
2795 #   warning "XXH3 is highly inefficient without ARM or Thumb-2."
2796 #endif
2797 
2798 /* ==========================================
2799  * Vectorization detection
2800  * ========================================== */
2801 
2802 #ifdef XXH_DOXYGEN
2803 /*!
2804  * @ingroup tuning
2805  * @brief Overrides the vectorization implementation chosen for XXH3.
2806  *
2807  * Can be defined to 0 to disable SIMD or any of the values mentioned in
2808  * @ref XXH_VECTOR_TYPE.
2809  *
2810  * If this is not defined, it uses predefined macros to determine the best
2811  * implementation.
2812  */
2813 #  define XXH_VECTOR XXH_SCALAR
2814 /*!
2815  * @ingroup tuning
2816  * @brief Possible values for @ref XXH_VECTOR.
2817  *
2818  * Note that these are actually implemented as macros.
2819  *
2820  * If this is not defined, it is detected automatically.
2821  * @ref XXH_X86DISPATCH overrides this.
2822  */
2823 enum XXH_VECTOR_TYPE /* fake enum */ {
2824     XXH_SCALAR = 0,  /*!< Portable scalar version */
2825     XXH_SSE2   = 1,  /*!<
2826                       * SSE2 for Pentium 4, Opteron, all x86_64.
2827                       *
2828                       * @note SSE2 is also guaranteed on Windows 10, macOS, and
2829                       * Android x86.
2830                       */
2831     XXH_AVX2   = 2,  /*!< AVX2 for Haswell and Bulldozer */
2832     XXH_AVX512 = 3,  /*!< AVX512 for Skylake and Icelake */
2833     XXH_NEON   = 4,  /*!< NEON for most ARMv7-A and all AArch64 */
2834     XXH_VSX    = 5,  /*!< VSX and ZVector for POWER8/z13 (64-bit) */
2835 };
2836 /*!
2837  * @ingroup tuning
2838  * @brief Selects the minimum alignment for XXH3's accumulators.
2839  *
2840  * When using SIMD, this should match the alignment reqired for said vector
2841  * type, so, for example, 32 for AVX2.
2842  *
2843  * Default: Auto detected.
2844  */
2845 #  define XXH_ACC_ALIGN 8
2846 #endif
2847 
2848 /* Actual definition */
2849 #ifndef XXH_DOXYGEN
2850 #  define XXH_SCALAR 0
2851 #  define XXH_SSE2   1
2852 #  define XXH_AVX2   2
2853 #  define XXH_AVX512 3
2854 #  define XXH_NEON   4
2855 #  define XXH_VSX    5
2856 #endif
2857 
2858 #ifndef XXH_VECTOR    /* can be defined on command line */
2859 #  if defined(__AVX512F__)
2860 #    define XXH_VECTOR XXH_AVX512
2861 #  elif defined(__AVX2__)
2862 #    define XXH_VECTOR XXH_AVX2
2863 #  elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
2864 #    define XXH_VECTOR XXH_SSE2
2865 #  elif ( \
2866         defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
2867      || defined(_M_ARM64) || defined(_M_ARM_ARMV7VE) /* msvc */ \
2868    ) && ( \
2869         defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
2870     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
2871    )
2872 #    define XXH_VECTOR XXH_NEON
2873 #  elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
2874      || (defined(__s390x__) && defined(__VEC__)) \
2875      && defined(__GNUC__) /* TODO: IBM XL */
2876 #    define XXH_VECTOR XXH_VSX
2877 #  else
2878 #    define XXH_VECTOR XXH_SCALAR
2879 #  endif
2880 #endif
2881 
2882 /*
2883  * Controls the alignment of the accumulator,
2884  * for compatibility with aligned vector loads, which are usually faster.
2885  */
2886 #ifndef XXH_ACC_ALIGN
2887 #  if defined(XXH_X86DISPATCH)
2888 #     define XXH_ACC_ALIGN 64  /* for compatibility with avx512 */
2889 #  elif XXH_VECTOR == XXH_SCALAR  /* scalar */
2890 #     define XXH_ACC_ALIGN 8
2891 #  elif XXH_VECTOR == XXH_SSE2  /* sse2 */
2892 #     define XXH_ACC_ALIGN 16
2893 #  elif XXH_VECTOR == XXH_AVX2  /* avx2 */
2894 #     define XXH_ACC_ALIGN 32
2895 #  elif XXH_VECTOR == XXH_NEON  /* neon */
2896 #     define XXH_ACC_ALIGN 16
2897 #  elif XXH_VECTOR == XXH_VSX   /* vsx */
2898 #     define XXH_ACC_ALIGN 16
2899 #  elif XXH_VECTOR == XXH_AVX512  /* avx512 */
2900 #     define XXH_ACC_ALIGN 64
2901 #  endif
2902 #endif
2903 
2904 #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
2905     || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
2906 #  define XXH_SEC_ALIGN XXH_ACC_ALIGN
2907 #else
2908 #  define XXH_SEC_ALIGN 8
2909 #endif
2910 
2911 /*
2912  * UGLY HACK:
2913  * GCC usually generates the best code with -O3 for xxHash.
2914  *
2915  * However, when targeting AVX2, it is overzealous in its unrolling resulting
2916  * in code roughly 3/4 the speed of Clang.
2917  *
2918  * There are other issues, such as GCC splitting _mm256_loadu_si256 into
2919  * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
2920  * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
2921  *
2922  * That is why when compiling the AVX2 version, it is recommended to use either
2923  *   -O2 -mavx2 -march=haswell
2924  * or
2925  *   -O2 -mavx2 -mno-avx256-split-unaligned-load
2926  * for decent performance, or to use Clang instead.
2927  *
2928  * Fortunately, we can control the first one with a pragma that forces GCC into
2929  * -O2, but the other one we can't control without "failed to inline always
2930  * inline function due to target mismatch" warnings.
2931  */
2932 #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
2933   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
2934   && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
2935 #  pragma GCC push_options
2936 #  pragma GCC optimize("-O2")
2937 #endif
2938 
2939 
2940 #if XXH_VECTOR == XXH_NEON
2941 /*
2942  * NEON's setup for vmlal_u32 is a little more complicated than it is on
2943  * SSE2, AVX2, and VSX.
2944  *
2945  * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
2946  *
2947  * To do the same operation, the 128-bit 'Q' register needs to be split into
2948  * two 64-bit 'D' registers, performing this operation::
2949  *
2950  *   [                a                 |                 b                ]
2951  *            |              '---------. .--------'                |
2952  *            |                         x                          |
2953  *            |              .---------' '--------.                |
2954  *   [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[    a >> 32     |     b >> 32    ]
2955  *
2956  * Due to significant changes in aarch64, the fastest method for aarch64 is
2957  * completely different than the fastest method for ARMv7-A.
2958  *
2959  * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
2960  * D11 will modify the high half of Q5. This is similar to how modifying AH
2961  * will only affect bits 8-15 of AX on x86.
2962  *
2963  * VZIP takes two registers, and puts even lanes in one register and odd lanes
2964  * in the other.
2965  *
2966  * On ARMv7-A, this strangely modifies both parameters in place instead of
2967  * taking the usual 3-operand form.
2968  *
2969  * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
2970  * lower and upper halves of the Q register to end up with the high and low
2971  * halves where we want - all in one instruction.
2972  *
2973  *   vzip.32   d10, d11       @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
2974  *
2975  * Unfortunately we need inline assembly for this: Instructions modifying two
2976  * registers at once is not possible in GCC or Clang's IR, and they have to
2977  * create a copy.
2978  *
2979  * aarch64 requires a different approach.
2980  *
2981  * In order to make it easier to write a decent compiler for aarch64, many
2982  * quirks were removed, such as conditional execution.
2983  *
2984  * NEON was also affected by this.
2985  *
2986  * aarch64 cannot access the high bits of a Q-form register, and writes to a
2987  * D-form register zero the high bits, similar to how writes to W-form scalar
2988  * registers (or DWORD registers on x86_64) work.
2989  *
2990  * The formerly free vget_high intrinsics now require a vext (with a few
2991  * exceptions)
2992  *
2993  * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
2994  * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
2995  * operand.
2996  *
2997  * The equivalent of the VZIP.32 on the lower and upper halves would be this
2998  * mess:
2999  *
3000  *   ext     v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
3001  *   zip1    v1.2s, v0.2s, v2.2s     // v1 = { v0[0], v2[0] }
3002  *   zip2    v0.2s, v0.2s, v1.2s     // v0 = { v0[1], v2[1] }
3003  *
3004  * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
3005  *
3006  *   shrn    v1.2s, v0.2d, #32  // v1 = (uint32x2_t)(v0 >> 32);
3007  *   xtn     v0.2s, v0.2d       // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
3008  *
3009  * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
3010  */
3011 
3012 /*!
3013  * Function-like macro:
3014  * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
3015  * {
3016  *     outLo = (uint32x2_t)(in & 0xFFFFFFFF);
3017  *     outHi = (uint32x2_t)(in >> 32);
3018  *     in = UNDEFINED;
3019  * }
3020  */
3021 # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
3022    && defined(__GNUC__) \
3023    && !defined(__aarch64__) && !defined(__arm64__) && !defined(_M_ARM64)
3024 #  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                              \
3025     do {                                                                                    \
3026       /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
3027       /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */     \
3028       /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
3029       __asm__("vzip.32  %e0, %f0" : "+w" (in));                                             \
3030       (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in));                                   \
3031       (outHi) = vget_high_u32(vreinterpretq_u32_u64(in));                                   \
3032    } while (0)
3033 # else
3034 #  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                            \
3035     do {                                                                                  \
3036       (outLo) = vmovn_u64    (in);                                                        \
3037       (outHi) = vshrn_n_u64  ((in), 32);                                                  \
3038     } while (0)
3039 # endif
3040 #endif  /* XXH_VECTOR == XXH_NEON */
3041 
3042 /*
3043  * VSX and Z Vector helpers.
3044  *
3045  * This is very messy, and any pull requests to clean this up are welcome.
3046  *
3047  * There are a lot of problems with supporting VSX and s390x, due to
3048  * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
3049  */
3050 #if XXH_VECTOR == XXH_VSX
3051 #  if defined(__s390x__)
3052 #    include <s390intrin.h>
3053 #  else
3054 /* gcc's altivec.h can have the unwanted consequence to unconditionally
3055  * #define bool, vector, and pixel keywords,
3056  * with bad consequences for programs already using these keywords for other purposes.
3057  * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined.
3058  * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler,
3059  * but it seems that, in some cases, it isn't.
3060  * Force the build macro to be defined, so that keywords are not altered.
3061  */
3062 #    if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__)
3063 #      define __APPLE_ALTIVEC__
3064 #    endif
3065 #    include <altivec.h>
3066 #  endif
3067 
3068 typedef __vector unsigned long long xxh_u64x2;
3069 typedef __vector unsigned char xxh_u8x16;
3070 typedef __vector unsigned xxh_u32x4;
3071 
3072 # ifndef XXH_VSX_BE
3073 #  if defined(__BIG_ENDIAN__) \
3074   || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
3075 #    define XXH_VSX_BE 1
3076 #  elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
3077 #    warning "-maltivec=be is not recommended. Please use native endianness."
3078 #    define XXH_VSX_BE 1
3079 #  else
3080 #    define XXH_VSX_BE 0
3081 #  endif
3082 # endif /* !defined(XXH_VSX_BE) */
3083 
3084 # if XXH_VSX_BE
3085 #  if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
3086 #    define XXH_vec_revb vec_revb
3087 #  else
3088 /*!
3089  * A polyfill for POWER9's vec_revb().
3090  */
3091 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
3092 {
3093     xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
3094                                   0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
3095     return vec_perm(val, val, vByteSwap);
3096 }
3097 #  endif
3098 # endif /* XXH_VSX_BE */
3099 
3100 /*!
3101  * Performs an unaligned vector load and byte swaps it on big endian.
3102  */
3103 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
3104 {
3105     xxh_u64x2 ret;
3106     XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2));
3107 # if XXH_VSX_BE
3108     ret = XXH_vec_revb(ret);
3109 # endif
3110     return ret;
3111 }
3112 
3113 /*
3114  * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
3115  *
3116  * These intrinsics weren't added until GCC 8, despite existing for a while,
3117  * and they are endian dependent. Also, their meaning swap depending on version.
3118  * */
3119 # if defined(__s390x__)
3120  /* s390x is always big endian, no issue on this platform */
3121 #  define XXH_vec_mulo vec_mulo
3122 #  define XXH_vec_mule vec_mule
3123 # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
3124 /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
3125 #  define XXH_vec_mulo __builtin_altivec_vmulouw
3126 #  define XXH_vec_mule __builtin_altivec_vmuleuw
3127 # else
3128 /* gcc needs inline assembly */
3129 /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
3130 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
3131 {
3132     xxh_u64x2 result;
3133     __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
3134     return result;
3135 }
3136 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
3137 {
3138     xxh_u64x2 result;
3139     __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
3140     return result;
3141 }
3142 # endif /* XXH_vec_mulo, XXH_vec_mule */
3143 #endif /* XXH_VECTOR == XXH_VSX */
3144 
3145 
3146 /* prefetch
3147  * can be disabled, by declaring XXH_NO_PREFETCH build macro */
3148 #if defined(XXH_NO_PREFETCH)
3149 #  define XXH_PREFETCH(ptr)  (void)(ptr)  /* disabled */
3150 #else
3151 #  if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))  /* _mm_prefetch() not defined outside of x86/x64 */
3152 #    include <mmintrin.h>   /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
3153 #    define XXH_PREFETCH(ptr)  _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
3154 #  elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
3155 #    define XXH_PREFETCH(ptr)  __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
3156 #  else
3157 #    define XXH_PREFETCH(ptr) (void)(ptr)  /* disabled */
3158 #  endif
3159 #endif  /* XXH_NO_PREFETCH */
3160 
3161 
3162 /* ==========================================
3163  * XXH3 default settings
3164  * ========================================== */
3165 
3166 #define XXH_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */
3167 
3168 #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
3169 #  error "default keyset is not large enough"
3170 #endif
3171 
3172 /*! Pseudorandom secret taken directly from FARSH. */
3173 XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
3174     0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
3175     0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
3176     0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
3177     0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
3178     0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
3179     0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
3180     0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
3181     0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
3182     0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
3183     0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
3184     0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
3185     0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
3186 };
3187 
3188 
3189 #ifdef XXH_OLD_NAMES
3190 #  define kSecret XXH3_kSecret
3191 #endif
3192 
3193 #ifdef XXH_DOXYGEN
3194 /*!
3195  * @brief Calculates a 32-bit to 64-bit long multiply.
3196  *
3197  * Implemented as a macro.
3198  *
3199  * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
3200  * need to (but it shouldn't need to anyways, it is about 7 instructions to do
3201  * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
3202  * use that instead of the normal method.
3203  *
3204  * If you are compiling for platforms like Thumb-1 and don't have a better option,
3205  * you may also want to write your own long multiply routine here.
3206  *
3207  * @param x, y Numbers to be multiplied
3208  * @return 64-bit product of the low 32 bits of @p x and @p y.
3209  */
3210 XXH_FORCE_INLINE xxh_u64
3211 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
3212 {
3213    return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
3214 }
3215 #elif defined(_MSC_VER) && defined(_M_IX86)
3216 #    include <intrin.h>
3217 #    define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
3218 #else
3219 /*
3220  * Downcast + upcast is usually better than masking on older compilers like
3221  * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
3222  *
3223  * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
3224  * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
3225  */
3226 #    define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
3227 #endif
3228 
3229 /*!
3230  * @brief Calculates a 64->128-bit long multiply.
3231  *
3232  * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
3233  * version.
3234  *
3235  * @param lhs , rhs The 64-bit integers to be multiplied
3236  * @return The 128-bit result represented in an @ref XXH128_hash_t.
3237  */
3238 static XXH128_hash_t
3239 XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
3240 {
3241     /*
3242      * GCC/Clang __uint128_t method.
3243      *
3244      * On most 64-bit targets, GCC and Clang define a __uint128_t type.
3245      * This is usually the best way as it usually uses a native long 64-bit
3246      * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
3247      *
3248      * Usually.
3249      *
3250      * Despite being a 32-bit platform, Clang (and emscripten) define this type
3251      * despite not having the arithmetic for it. This results in a laggy
3252      * compiler builtin call which calculates a full 128-bit multiply.
3253      * In that case it is best to use the portable one.
3254      * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
3255      */
3256 #if defined(__GNUC__) && !defined(__wasm__) \
3257     && defined(__SIZEOF_INT128__) \
3258     || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
3259 
3260     __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
3261     XXH128_hash_t r128;
3262     r128.low64  = (xxh_u64)(product);
3263     r128.high64 = (xxh_u64)(product >> 64);
3264     return r128;
3265 
3266     /*
3267      * MSVC for x64's _umul128 method.
3268      *
3269      * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
3270      *
3271      * This compiles to single operand MUL on x64.
3272      */
3273 #elif defined(_M_X64) || defined(_M_IA64)
3274 
3275 #ifndef _MSC_VER
3276 #   pragma intrinsic(_umul128)
3277 #endif
3278     xxh_u64 product_high;
3279     xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
3280     XXH128_hash_t r128;
3281     r128.low64  = product_low;
3282     r128.high64 = product_high;
3283     return r128;
3284 
3285     /*
3286      * MSVC for ARM64's __umulh method.
3287      *
3288      * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
3289      */
3290 #elif defined(_M_ARM64)
3291 
3292 #ifndef _MSC_VER
3293 #   pragma intrinsic(__umulh)
3294 #endif
3295     XXH128_hash_t r128;
3296     r128.low64  = lhs * rhs;
3297     r128.high64 = __umulh(lhs, rhs);
3298     return r128;
3299 
3300 #else
3301     /*
3302      * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
3303      *
3304      * This is a fast and simple grade school multiply, which is shown below
3305      * with base 10 arithmetic instead of base 0x100000000.
3306      *
3307      *           9 3 // D2 lhs = 93
3308      *         x 7 5 // D2 rhs = 75
3309      *     ----------
3310      *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
3311      *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
3312      *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
3313      *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
3314      *     ---------
3315      *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
3316      *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
3317      *     ---------
3318      *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
3319      *
3320      * The reasons for adding the products like this are:
3321      *  1. It avoids manual carry tracking. Just like how
3322      *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
3323      *     This avoids a lot of complexity.
3324      *
3325      *  2. It hints for, and on Clang, compiles to, the powerful UMAAL
3326      *     instruction available in ARM's Digital Signal Processing extension
3327      *     in 32-bit ARMv6 and later, which is shown below:
3328      *
3329      *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
3330      *         {
3331      *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
3332      *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
3333      *             *RdHi = (xxh_u32)(product >> 32);
3334      *         }
3335      *
3336      *     This instruction was designed for efficient long multiplication, and
3337      *     allows this to be calculated in only 4 instructions at speeds
3338      *     comparable to some 64-bit ALUs.
3339      *
3340      *  3. It isn't terrible on other platforms. Usually this will be a couple
3341      *     of 32-bit ADD/ADCs.
3342      */
3343 
3344     /* First calculate all of the cross products. */
3345     xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
3346     xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32,        rhs & 0xFFFFFFFF);
3347     xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
3348     xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32,        rhs >> 32);
3349 
3350     /* Now add the products together. These will never overflow. */
3351     xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
3352     xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32)        + hi_hi;
3353     xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
3354 
3355     XXH128_hash_t r128;
3356     r128.low64  = lower;
3357     r128.high64 = upper;
3358     return r128;
3359 #endif
3360 }
3361 
3362 /*!
3363  * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
3364  *
3365  * The reason for the separate function is to prevent passing too many structs
3366  * around by value. This will hopefully inline the multiply, but we don't force it.
3367  *
3368  * @param lhs , rhs The 64-bit integers to multiply
3369  * @return The low 64 bits of the product XOR'd by the high 64 bits.
3370  * @see XXH_mult64to128()
3371  */
3372 static xxh_u64
3373 XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
3374 {
3375     XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
3376     return product.low64 ^ product.high64;
3377 }
3378 
3379 /*! Seems to produce slightly better code on GCC for some reason. */
3380 XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
3381 {
3382     XXH_ASSERT(0 <= shift && shift < 64);
3383     return v64 ^ (v64 >> shift);
3384 }
3385 
3386 /*
3387  * This is a fast avalanche stage,
3388  * suitable when input bits are already partially mixed
3389  */
3390 static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
3391 {
3392     h64 = XXH_xorshift64(h64, 37);
3393     h64 *= 0x165667919E3779F9ULL;
3394     h64 = XXH_xorshift64(h64, 32);
3395     return h64;
3396 }
3397 
3398 /*
3399  * This is a stronger avalanche,
3400  * inspired by Pelle Evensen's rrmxmx
3401  * preferable when input has not been previously mixed
3402  */
3403 static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
3404 {
3405     /* this mix is inspired by Pelle Evensen's rrmxmx */
3406     h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
3407     h64 *= 0x9FB21C651E98DF25ULL;
3408     h64 ^= (h64 >> 35) + len ;
3409     h64 *= 0x9FB21C651E98DF25ULL;
3410     return XXH_xorshift64(h64, 28);
3411 }
3412 
3413 
3414 /* ==========================================
3415  * Short keys
3416  * ==========================================
3417  * One of the shortcomings of XXH32 and XXH64 was that their performance was
3418  * sub-optimal on short lengths. It used an iterative algorithm which strongly
3419  * favored lengths that were a multiple of 4 or 8.
3420  *
3421  * Instead of iterating over individual inputs, we use a set of single shot
3422  * functions which piece together a range of lengths and operate in constant time.
3423  *
3424  * Additionally, the number of multiplies has been significantly reduced. This
3425  * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
3426  *
3427  * Depending on the platform, this may or may not be faster than XXH32, but it
3428  * is almost guaranteed to be faster than XXH64.
3429  */
3430 
3431 /*
3432  * At very short lengths, there isn't enough input to fully hide secrets, or use
3433  * the entire secret.
3434  *
3435  * There is also only a limited amount of mixing we can do before significantly
3436  * impacting performance.
3437  *
3438  * Therefore, we use different sections of the secret and always mix two secret
3439  * samples with an XOR. This should have no effect on performance on the
3440  * seedless or withSeed variants because everything _should_ be constant folded
3441  * by modern compilers.
3442  *
3443  * The XOR mixing hides individual parts of the secret and increases entropy.
3444  *
3445  * This adds an extra layer of strength for custom secrets.
3446  */
3447 XXH_FORCE_INLINE XXH64_hash_t
3448 XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3449 {
3450     XXH_ASSERT(input != NULL);
3451     XXH_ASSERT(1 <= len && len <= 3);
3452     XXH_ASSERT(secret != NULL);
3453     /*
3454      * len = 1: combined = { input[0], 0x01, input[0], input[0] }
3455      * len = 2: combined = { input[1], 0x02, input[0], input[1] }
3456      * len = 3: combined = { input[2], 0x03, input[0], input[1] }
3457      */
3458     {   xxh_u8  const c1 = input[0];
3459         xxh_u8  const c2 = input[len >> 1];
3460         xxh_u8  const c3 = input[len - 1];
3461         xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2  << 24)
3462                                | ((xxh_u32)c3 <<  0) | ((xxh_u32)len << 8);
3463         xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
3464         xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
3465         return XXH64_avalanche(keyed);
3466     }
3467 }
3468 
3469 XXH_FORCE_INLINE XXH64_hash_t
3470 XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3471 {
3472     XXH_ASSERT(input != NULL);
3473     XXH_ASSERT(secret != NULL);
3474     XXH_ASSERT(4 <= len && len <= 8);
3475     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
3476     {   xxh_u32 const input1 = XXH_readLE32(input);
3477         xxh_u32 const input2 = XXH_readLE32(input + len - 4);
3478         xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
3479         xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
3480         xxh_u64 const keyed = input64 ^ bitflip;
3481         return XXH3_rrmxmx(keyed, len);
3482     }
3483 }
3484 
3485 XXH_FORCE_INLINE XXH64_hash_t
3486 XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3487 {
3488     XXH_ASSERT(input != NULL);
3489     XXH_ASSERT(secret != NULL);
3490     XXH_ASSERT(9 <= len && len <= 16);
3491     {   xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
3492         xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
3493         xxh_u64 const input_lo = XXH_readLE64(input)           ^ bitflip1;
3494         xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
3495         xxh_u64 const acc = len
3496                           + XXH_swap64(input_lo) + input_hi
3497                           + XXH3_mul128_fold64(input_lo, input_hi);
3498         return XXH3_avalanche(acc);
3499     }
3500 }
3501 
3502 XXH_FORCE_INLINE XXH64_hash_t
3503 XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3504 {
3505     XXH_ASSERT(len <= 16);
3506     {   if (XXH_likely(len >  8)) return XXH3_len_9to16_64b(input, len, secret, seed);
3507         if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
3508         if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
3509         return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
3510     }
3511 }
3512 
3513 /*
3514  * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
3515  * multiplication by zero, affecting hashes of lengths 17 to 240.
3516  *
3517  * However, they are very unlikely.
3518  *
3519  * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
3520  * unseeded non-cryptographic hashes, it does not attempt to defend itself
3521  * against specially crafted inputs, only random inputs.
3522  *
3523  * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
3524  * cancelling out the secret is taken an arbitrary number of times (addressed
3525  * in XXH3_accumulate_512), this collision is very unlikely with random inputs
3526  * and/or proper seeding:
3527  *
3528  * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
3529  * function that is only called up to 16 times per hash with up to 240 bytes of
3530  * input.
3531  *
3532  * This is not too bad for a non-cryptographic hash function, especially with
3533  * only 64 bit outputs.
3534  *
3535  * The 128-bit variant (which trades some speed for strength) is NOT affected
3536  * by this, although it is always a good idea to use a proper seed if you care
3537  * about strength.
3538  */
3539 XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
3540                                      const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
3541 {
3542 #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
3543   && defined(__i386__) && defined(__SSE2__)  /* x86 + SSE2 */ \
3544   && !defined(XXH_ENABLE_AUTOVECTORIZE)      /* Define to disable like XXH32 hack */
3545     /*
3546      * UGLY HACK:
3547      * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
3548      * slower code.
3549      *
3550      * By forcing seed64 into a register, we disrupt the cost model and
3551      * cause it to scalarize. See `XXH32_round()`
3552      *
3553      * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
3554      * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
3555      * GCC 9.2, despite both emitting scalar code.
3556      *
3557      * GCC generates much better scalar code than Clang for the rest of XXH3,
3558      * which is why finding a more optimal codepath is an interest.
3559      */
3560     XXH_COMPILER_GUARD(seed64);
3561 #endif
3562     {   xxh_u64 const input_lo = XXH_readLE64(input);
3563         xxh_u64 const input_hi = XXH_readLE64(input+8);
3564         return XXH3_mul128_fold64(
3565             input_lo ^ (XXH_readLE64(secret)   + seed64),
3566             input_hi ^ (XXH_readLE64(secret+8) - seed64)
3567         );
3568     }
3569 }
3570 
3571 /* For mid range keys, XXH3 uses a Mum-hash variant. */
3572 XXH_FORCE_INLINE XXH64_hash_t
3573 XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
3574                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
3575                      XXH64_hash_t seed)
3576 {
3577     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
3578     XXH_ASSERT(16 < len && len <= 128);
3579 
3580     {   xxh_u64 acc = len * XXH_PRIME64_1;
3581         if (len > 32) {
3582             if (len > 64) {
3583                 if (len > 96) {
3584                     acc += XXH3_mix16B(input+48, secret+96, seed);
3585                     acc += XXH3_mix16B(input+len-64, secret+112, seed);
3586                 }
3587                 acc += XXH3_mix16B(input+32, secret+64, seed);
3588                 acc += XXH3_mix16B(input+len-48, secret+80, seed);
3589             }
3590             acc += XXH3_mix16B(input+16, secret+32, seed);
3591             acc += XXH3_mix16B(input+len-32, secret+48, seed);
3592         }
3593         acc += XXH3_mix16B(input+0, secret+0, seed);
3594         acc += XXH3_mix16B(input+len-16, secret+16, seed);
3595 
3596         return XXH3_avalanche(acc);
3597     }
3598 }
3599 
3600 #define XXH3_MIDSIZE_MAX 240
3601 
3602 XXH_NO_INLINE XXH64_hash_t
3603 XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
3604                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
3605                       XXH64_hash_t seed)
3606 {
3607     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
3608     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
3609 
3610     #define XXH3_MIDSIZE_STARTOFFSET 3
3611     #define XXH3_MIDSIZE_LASTOFFSET  17
3612 
3613     {   xxh_u64 acc = len * XXH_PRIME64_1;
3614         int const nbRounds = (int)len / 16;
3615         int i;
3616         for (i=0; i<8; i++) {
3617             acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
3618         }
3619         acc = XXH3_avalanche(acc);
3620         XXH_ASSERT(nbRounds >= 8);
3621 #if defined(__clang__)                                /* Clang */ \
3622     && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
3623     && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
3624         /*
3625          * UGLY HACK:
3626          * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
3627          * In everywhere else, it uses scalar code.
3628          *
3629          * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
3630          * would still be slower than UMAAL (see XXH_mult64to128).
3631          *
3632          * Unfortunately, Clang doesn't handle the long multiplies properly and
3633          * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
3634          * scalarized into an ugly mess of VMOV.32 instructions.
3635          *
3636          * This mess is difficult to avoid without turning autovectorization
3637          * off completely, but they are usually relatively minor and/or not
3638          * worth it to fix.
3639          *
3640          * This loop is the easiest to fix, as unlike XXH32, this pragma
3641          * _actually works_ because it is a loop vectorization instead of an
3642          * SLP vectorization.
3643          */
3644         #pragma clang loop vectorize(disable)
3645 #endif
3646         for (i=8 ; i < nbRounds; i++) {
3647             acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
3648         }
3649         /* last bytes */
3650         acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
3651         return XXH3_avalanche(acc);
3652     }
3653 }
3654 
3655 
3656 /* =======     Long Keys     ======= */
3657 
3658 #define XXH_STRIPE_LEN 64
3659 #define XXH_SECRET_CONSUME_RATE 8   /* nb of secret bytes consumed at each accumulation */
3660 #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
3661 
3662 #ifdef XXH_OLD_NAMES
3663 #  define STRIPE_LEN XXH_STRIPE_LEN
3664 #  define ACC_NB XXH_ACC_NB
3665 #endif
3666 
3667 XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
3668 {
3669     if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
3670     XXH_memcpy(dst, &v64, sizeof(v64));
3671 }
3672 
3673 /* Several intrinsic functions below are supposed to accept __int64 as argument,
3674  * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
3675  * However, several environments do not define __int64 type,
3676  * requiring a workaround.
3677  */
3678 #if !defined (__VMS) \
3679   && (defined (__cplusplus) \
3680   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
3681     typedef int64_t xxh_i64;
3682 #else
3683     /* the following type must have a width of 64-bit */
3684     typedef long long xxh_i64;
3685 #endif
3686 
3687 /*
3688  * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
3689  *
3690  * It is a hardened version of UMAC, based off of FARSH's implementation.
3691  *
3692  * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
3693  * implementations, and it is ridiculously fast.
3694  *
3695  * We harden it by mixing the original input to the accumulators as well as the product.
3696  *
3697  * This means that in the (relatively likely) case of a multiply by zero, the
3698  * original input is preserved.
3699  *
3700  * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
3701  * cross-pollination, as otherwise the upper and lower halves would be
3702  * essentially independent.
3703  *
3704  * This doesn't matter on 64-bit hashes since they all get merged together in
3705  * the end, so we skip the extra step.
3706  *
3707  * Both XXH3_64bits and XXH3_128bits use this subroutine.
3708  */
3709 
3710 #if (XXH_VECTOR == XXH_AVX512) \
3711      || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
3712 
3713 #ifndef XXH_TARGET_AVX512
3714 # define XXH_TARGET_AVX512  /* disable attribute target */
3715 #endif
3716 
3717 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3718 XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
3719                      const void* XXH_RESTRICT input,
3720                      const void* XXH_RESTRICT secret)
3721 {
3722     __m512i* const xacc = (__m512i *) acc;
3723     XXH_ASSERT((((size_t)acc) & 63) == 0);
3724     XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3725 
3726     {
3727         /* data_vec    = input[0]; */
3728         __m512i const data_vec    = _mm512_loadu_si512   (input);
3729         /* key_vec     = secret[0]; */
3730         __m512i const key_vec     = _mm512_loadu_si512   (secret);
3731         /* data_key    = data_vec ^ key_vec; */
3732         __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec);
3733         /* data_key_lo = data_key >> 32; */
3734         __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3735         /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3736         __m512i const product     = _mm512_mul_epu32     (data_key, data_key_lo);
3737         /* xacc[0] += swap(data_vec); */
3738         __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
3739         __m512i const sum       = _mm512_add_epi64(*xacc, data_swap);
3740         /* xacc[0] += product; */
3741         *xacc = _mm512_add_epi64(product, sum);
3742     }
3743 }
3744 
3745 /*
3746  * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
3747  *
3748  * Multiplication isn't perfect, as explained by Google in HighwayHash:
3749  *
3750  *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
3751  *  // varying degrees. In descending order of goodness, bytes
3752  *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
3753  *  // As expected, the upper and lower bytes are much worse.
3754  *
3755  * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
3756  *
3757  * Since our algorithm uses a pseudorandom secret to add some variance into the
3758  * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
3759  *
3760  * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
3761  * extraction.
3762  *
3763  * Both XXH3_64bits and XXH3_128bits use this subroutine.
3764  */
3765 
3766 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3767 XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3768 {
3769     XXH_ASSERT((((size_t)acc) & 63) == 0);
3770     XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3771     {   __m512i* const xacc = (__m512i*) acc;
3772         const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
3773 
3774         /* xacc[0] ^= (xacc[0] >> 47) */
3775         __m512i const acc_vec     = *xacc;
3776         __m512i const shifted     = _mm512_srli_epi64    (acc_vec, 47);
3777         __m512i const data_vec    = _mm512_xor_si512     (acc_vec, shifted);
3778         /* xacc[0] ^= secret; */
3779         __m512i const key_vec     = _mm512_loadu_si512   (secret);
3780         __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec);
3781 
3782         /* xacc[0] *= XXH_PRIME32_1; */
3783         __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3784         __m512i const prod_lo     = _mm512_mul_epu32     (data_key, prime32);
3785         __m512i const prod_hi     = _mm512_mul_epu32     (data_key_hi, prime32);
3786         *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
3787     }
3788 }
3789 
3790 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3791 XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3792 {
3793     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
3794     XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
3795     XXH_ASSERT(((size_t)customSecret & 63) == 0);
3796     (void)(&XXH_writeLE64);
3797     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
3798         __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, (xxh_i64)(0U - seed64));
3799 
3800         const __m512i* const src  = (const __m512i*) ((const void*) XXH3_kSecret);
3801               __m512i* const dest = (      __m512i*) customSecret;
3802         int i;
3803         XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
3804         XXH_ASSERT(((size_t)dest & 63) == 0);
3805         for (i=0; i < nbRounds; ++i) {
3806             /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*',
3807              * this will warn "discards 'const' qualifier". */
3808             union {
3809                 const __m512i* cp;
3810                 void* p;
3811             } remote_const_void;
3812             remote_const_void.cp = src + i;
3813             dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
3814     }   }
3815 }
3816 
3817 #endif
3818 
3819 #if (XXH_VECTOR == XXH_AVX2) \
3820     || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
3821 
3822 #ifndef XXH_TARGET_AVX2
3823 # define XXH_TARGET_AVX2  /* disable attribute target */
3824 #endif
3825 
3826 XXH_FORCE_INLINE XXH_TARGET_AVX2 void
3827 XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
3828                     const void* XXH_RESTRICT input,
3829                     const void* XXH_RESTRICT secret)
3830 {
3831     XXH_ASSERT((((size_t)acc) & 31) == 0);
3832     {   __m256i* const xacc    =       (__m256i *) acc;
3833         /* Unaligned. This is mainly for pointer arithmetic, and because
3834          * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason. */
3835         const         __m256i* const xinput  = (const __m256i *) input;
3836         /* Unaligned. This is mainly for pointer arithmetic, and because
3837          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3838         const         __m256i* const xsecret = (const __m256i *) secret;
3839 
3840         size_t i;
3841         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
3842             /* data_vec    = xinput[i]; */
3843             __m256i const data_vec    = _mm256_loadu_si256    (xinput+i);
3844             /* key_vec     = xsecret[i]; */
3845             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
3846             /* data_key    = data_vec ^ key_vec; */
3847             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
3848             /* data_key_lo = data_key >> 32; */
3849             __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3850             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3851             __m256i const product     = _mm256_mul_epu32     (data_key, data_key_lo);
3852             /* xacc[i] += swap(data_vec); */
3853             __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
3854             __m256i const sum       = _mm256_add_epi64(xacc[i], data_swap);
3855             /* xacc[i] += product; */
3856             xacc[i] = _mm256_add_epi64(product, sum);
3857     }   }
3858 }
3859 
3860 XXH_FORCE_INLINE XXH_TARGET_AVX2 void
3861 XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3862 {
3863     XXH_ASSERT((((size_t)acc) & 31) == 0);
3864     {   __m256i* const xacc = (__m256i*) acc;
3865         /* Unaligned. This is mainly for pointer arithmetic, and because
3866          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3867         const         __m256i* const xsecret = (const __m256i *) secret;
3868         const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
3869 
3870         size_t i;
3871         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
3872             /* xacc[i] ^= (xacc[i] >> 47) */
3873             __m256i const acc_vec     = xacc[i];
3874             __m256i const shifted     = _mm256_srli_epi64    (acc_vec, 47);
3875             __m256i const data_vec    = _mm256_xor_si256     (acc_vec, shifted);
3876             /* xacc[i] ^= xsecret; */
3877             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
3878             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
3879 
3880             /* xacc[i] *= XXH_PRIME32_1; */
3881             __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3882             __m256i const prod_lo     = _mm256_mul_epu32     (data_key, prime32);
3883             __m256i const prod_hi     = _mm256_mul_epu32     (data_key_hi, prime32);
3884             xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
3885         }
3886     }
3887 }
3888 
3889 XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3890 {
3891     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
3892     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
3893     XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
3894     (void)(&XXH_writeLE64);
3895     XXH_PREFETCH(customSecret);
3896     {   __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64);
3897 
3898         const __m256i* const src  = (const __m256i*) ((const void*) XXH3_kSecret);
3899               __m256i*       dest = (      __m256i*) customSecret;
3900 
3901 #       if defined(__GNUC__) || defined(__clang__)
3902         /*
3903          * On GCC & Clang, marking 'dest' as modified will cause the compiler:
3904          *   - do not extract the secret from sse registers in the internal loop
3905          *   - use less common registers, and avoid pushing these reg into stack
3906          */
3907         XXH_COMPILER_GUARD(dest);
3908 #       endif
3909         XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */
3910         XXH_ASSERT(((size_t)dest & 31) == 0);
3911 
3912         /* GCC -O2 need unroll loop manually */
3913         dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed);
3914         dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed);
3915         dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed);
3916         dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed);
3917         dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed);
3918         dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed);
3919     }
3920 }
3921 
3922 #endif
3923 
3924 /* x86dispatch always generates SSE2 */
3925 #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
3926 
3927 #ifndef XXH_TARGET_SSE2
3928 # define XXH_TARGET_SSE2  /* disable attribute target */
3929 #endif
3930 
3931 XXH_FORCE_INLINE XXH_TARGET_SSE2 void
3932 XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
3933                     const void* XXH_RESTRICT input,
3934                     const void* XXH_RESTRICT secret)
3935 {
3936     /* SSE2 is just a half-scale version of the AVX2 version. */
3937     XXH_ASSERT((((size_t)acc) & 15) == 0);
3938     {   __m128i* const xacc    =       (__m128i *) acc;
3939         /* Unaligned. This is mainly for pointer arithmetic, and because
3940          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3941         const         __m128i* const xinput  = (const __m128i *) input;
3942         /* Unaligned. This is mainly for pointer arithmetic, and because
3943          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3944         const         __m128i* const xsecret = (const __m128i *) secret;
3945 
3946         size_t i;
3947         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
3948             /* data_vec    = xinput[i]; */
3949             __m128i const data_vec    = _mm_loadu_si128   (xinput+i);
3950             /* key_vec     = xsecret[i]; */
3951             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
3952             /* data_key    = data_vec ^ key_vec; */
3953             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
3954             /* data_key_lo = data_key >> 32; */
3955             __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3956             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3957             __m128i const product     = _mm_mul_epu32     (data_key, data_key_lo);
3958             /* xacc[i] += swap(data_vec); */
3959             __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
3960             __m128i const sum       = _mm_add_epi64(xacc[i], data_swap);
3961             /* xacc[i] += product; */
3962             xacc[i] = _mm_add_epi64(product, sum);
3963     }   }
3964 }
3965 
3966 XXH_FORCE_INLINE XXH_TARGET_SSE2 void
3967 XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3968 {
3969     XXH_ASSERT((((size_t)acc) & 15) == 0);
3970     {   __m128i* const xacc = (__m128i*) acc;
3971         /* Unaligned. This is mainly for pointer arithmetic, and because
3972          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3973         const         __m128i* const xsecret = (const __m128i *) secret;
3974         const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
3975 
3976         size_t i;
3977         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
3978             /* xacc[i] ^= (xacc[i] >> 47) */
3979             __m128i const acc_vec     = xacc[i];
3980             __m128i const shifted     = _mm_srli_epi64    (acc_vec, 47);
3981             __m128i const data_vec    = _mm_xor_si128     (acc_vec, shifted);
3982             /* xacc[i] ^= xsecret[i]; */
3983             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
3984             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
3985 
3986             /* xacc[i] *= XXH_PRIME32_1; */
3987             __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3988             __m128i const prod_lo     = _mm_mul_epu32     (data_key, prime32);
3989             __m128i const prod_hi     = _mm_mul_epu32     (data_key_hi, prime32);
3990             xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
3991         }
3992     }
3993 }
3994 
3995 XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3996 {
3997     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
3998     (void)(&XXH_writeLE64);
3999     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
4000 
4001 #       if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
4002         /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */
4003         XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) };
4004         __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
4005 #       else
4006         __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64);
4007 #       endif
4008         int i;
4009 
4010         const void* const src16 = XXH3_kSecret;
4011         __m128i* dst16 = (__m128i*) customSecret;
4012 #       if defined(__GNUC__) || defined(__clang__)
4013         /*
4014          * On GCC & Clang, marking 'dest' as modified will cause the compiler:
4015          *   - do not extract the secret from sse registers in the internal loop
4016          *   - use less common registers, and avoid pushing these reg into stack
4017          */
4018         XXH_COMPILER_GUARD(dst16);
4019 #       endif
4020         XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */
4021         XXH_ASSERT(((size_t)dst16 & 15) == 0);
4022 
4023         for (i=0; i < nbRounds; ++i) {
4024             dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed);
4025     }   }
4026 }
4027 
4028 #endif
4029 
4030 #if (XXH_VECTOR == XXH_NEON)
4031 
4032 XXH_FORCE_INLINE void
4033 XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
4034                     const void* XXH_RESTRICT input,
4035                     const void* XXH_RESTRICT secret)
4036 {
4037     XXH_ASSERT((((size_t)acc) & 15) == 0);
4038     {
4039         uint64x2_t* const xacc = (uint64x2_t *) acc;
4040         /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
4041         uint8_t const* const xinput = (const uint8_t *) input;
4042         uint8_t const* const xsecret  = (const uint8_t *) secret;
4043 
4044         size_t i;
4045         for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
4046             /* data_vec = xinput[i]; */
4047             uint8x16_t data_vec    = vld1q_u8(xinput  + (i * 16));
4048             /* key_vec  = xsecret[i];  */
4049             uint8x16_t key_vec     = vld1q_u8(xsecret + (i * 16));
4050             uint64x2_t data_key;
4051             uint32x2_t data_key_lo, data_key_hi;
4052             /* xacc[i] += swap(data_vec); */
4053             uint64x2_t const data64  = vreinterpretq_u64_u8(data_vec);
4054             uint64x2_t const swapped = vextq_u64(data64, data64, 1);
4055             xacc[i] = vaddq_u64 (xacc[i], swapped);
4056             /* data_key = data_vec ^ key_vec; */
4057             data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
4058             /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
4059              * data_key_hi = (uint32x2_t) (data_key >> 32);
4060              * data_key = UNDEFINED; */
4061             XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
4062             /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
4063             xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
4064 
4065         }
4066     }
4067 }
4068 
4069 XXH_FORCE_INLINE void
4070 XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4071 {
4072     XXH_ASSERT((((size_t)acc) & 15) == 0);
4073 
4074     {   uint64x2_t* xacc       = (uint64x2_t*) acc;
4075         uint8_t const* xsecret = (uint8_t const*) secret;
4076         uint32x2_t prime       = vdup_n_u32 (XXH_PRIME32_1);
4077 
4078         size_t i;
4079         for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) {
4080             /* xacc[i] ^= (xacc[i] >> 47); */
4081             uint64x2_t acc_vec  = xacc[i];
4082             uint64x2_t shifted  = vshrq_n_u64 (acc_vec, 47);
4083             uint64x2_t data_vec = veorq_u64   (acc_vec, shifted);
4084 
4085             /* xacc[i] ^= xsecret[i]; */
4086             uint8x16_t key_vec  = vld1q_u8    (xsecret + (i * 16));
4087             uint64x2_t data_key = veorq_u64   (data_vec, vreinterpretq_u64_u8(key_vec));
4088 
4089             /* xacc[i] *= XXH_PRIME32_1 */
4090             uint32x2_t data_key_lo, data_key_hi;
4091             /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
4092              * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
4093              * xacc[i] = UNDEFINED; */
4094             XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
4095             {   /*
4096                  * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
4097                  *
4098                  * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
4099                  * incorrectly "optimize" this:
4100                  *   tmp     = vmul_u32(vmovn_u64(a), vmovn_u64(b));
4101                  *   shifted = vshll_n_u32(tmp, 32);
4102                  * to this:
4103                  *   tmp     = "vmulq_u64"(a, b); // no such thing!
4104                  *   shifted = vshlq_n_u64(tmp, 32);
4105                  *
4106                  * However, unlike SSE, Clang lacks a 64-bit multiply routine
4107                  * for NEON, and it scalarizes two 64-bit multiplies instead.
4108                  *
4109                  * vmull_u32 has the same timing as vmul_u32, and it avoids
4110                  * this bug completely.
4111                  * See https://bugs.llvm.org/show_bug.cgi?id=39967
4112                  */
4113                 uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
4114                 /* xacc[i] = prod_hi << 32; */
4115                 xacc[i] = vshlq_n_u64(prod_hi, 32);
4116                 /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
4117                 xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
4118             }
4119     }   }
4120 }
4121 
4122 #endif
4123 
4124 #if (XXH_VECTOR == XXH_VSX)
4125 
4126 XXH_FORCE_INLINE void
4127 XXH3_accumulate_512_vsx(  void* XXH_RESTRICT acc,
4128                     const void* XXH_RESTRICT input,
4129                     const void* XXH_RESTRICT secret)
4130 {
4131     /* presumed aligned */
4132     unsigned long long* const xacc = (unsigned long long*) acc;
4133     xxh_u64x2 const* const xinput   = (xxh_u64x2 const*) input;   /* no alignment restriction */
4134     xxh_u64x2 const* const xsecret  = (xxh_u64x2 const*) secret;    /* no alignment restriction */
4135     xxh_u64x2 const v32 = { 32, 32 };
4136     size_t i;
4137     for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
4138         /* data_vec = xinput[i]; */
4139         xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
4140         /* key_vec = xsecret[i]; */
4141         xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i);
4142         xxh_u64x2 const data_key = data_vec ^ key_vec;
4143         /* shuffled = (data_key << 32) | (data_key >> 32); */
4144         xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
4145         /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
4146         xxh_u64x2 const product  = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
4147         /* acc_vec = xacc[i]; */
4148         xxh_u64x2 acc_vec        = vec_xl(0, xacc + 2 * i);
4149         acc_vec += product;
4150 
4151         /* swap high and low halves */
4152 #ifdef __s390x__
4153         acc_vec += vec_permi(data_vec, data_vec, 2);
4154 #else
4155         acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
4156 #endif
4157         /* xacc[i] = acc_vec; */
4158         vec_xst(acc_vec, 0, xacc + 2 * i);
4159     }
4160 }
4161 
4162 XXH_FORCE_INLINE void
4163 XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4164 {
4165     XXH_ASSERT((((size_t)acc) & 15) == 0);
4166 
4167     {         xxh_u64x2* const xacc    =       (xxh_u64x2*) acc;
4168         const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
4169         /* constants */
4170         xxh_u64x2 const v32  = { 32, 32 };
4171         xxh_u64x2 const v47 = { 47, 47 };
4172         xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
4173         size_t i;
4174         for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
4175             /* xacc[i] ^= (xacc[i] >> 47); */
4176             xxh_u64x2 const acc_vec  = xacc[i];
4177             xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
4178 
4179             /* xacc[i] ^= xsecret[i]; */
4180             xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i);
4181             xxh_u64x2 const data_key = data_vec ^ key_vec;
4182 
4183             /* xacc[i] *= XXH_PRIME32_1 */
4184             /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF);  */
4185             xxh_u64x2 const prod_even  = XXH_vec_mule((xxh_u32x4)data_key, prime);
4186             /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */
4187             xxh_u64x2 const prod_odd  = XXH_vec_mulo((xxh_u32x4)data_key, prime);
4188             xacc[i] = prod_odd + (prod_even << v32);
4189     }   }
4190 }
4191 
4192 #endif
4193 
4194 /* scalar variants - universal */
4195 
4196 XXH_FORCE_INLINE void
4197 XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
4198                      const void* XXH_RESTRICT input,
4199                      const void* XXH_RESTRICT secret)
4200 {
4201     xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
4202     const xxh_u8* const xinput  = (const xxh_u8*) input;  /* no alignment restriction */
4203     const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
4204     size_t i;
4205     XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
4206     for (i=0; i < XXH_ACC_NB; i++) {
4207         xxh_u64 const data_val = XXH_readLE64(xinput + 8*i);
4208         xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8);
4209         xacc[i ^ 1] += data_val; /* swap adjacent lanes */
4210         xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
4211     }
4212 }
4213 
4214 XXH_FORCE_INLINE void
4215 XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4216 {
4217     xxh_u64* const xacc = (xxh_u64*) acc;   /* presumed aligned */
4218     const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
4219     size_t i;
4220     XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
4221     for (i=0; i < XXH_ACC_NB; i++) {
4222         xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i);
4223         xxh_u64 acc64 = xacc[i];
4224         acc64 = XXH_xorshift64(acc64, 47);
4225         acc64 ^= key64;
4226         acc64 *= XXH_PRIME32_1;
4227         xacc[i] = acc64;
4228     }
4229 }
4230 
4231 XXH_FORCE_INLINE void
4232 XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
4233 {
4234     /*
4235      * We need a separate pointer for the hack below,
4236      * which requires a non-const pointer.
4237      * Any decent compiler will optimize this out otherwise.
4238      */
4239     const xxh_u8* kSecretPtr = XXH3_kSecret;
4240     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
4241 
4242 #if defined(__clang__) && defined(__aarch64__)
4243     /*
4244      * UGLY HACK:
4245      * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
4246      * placed sequentially, in order, at the top of the unrolled loop.
4247      *
4248      * While MOVK is great for generating constants (2 cycles for a 64-bit
4249      * constant compared to 4 cycles for LDR), long MOVK chains stall the
4250      * integer pipelines:
4251      *   I   L   S
4252      * MOVK
4253      * MOVK
4254      * MOVK
4255      * MOVK
4256      * ADD
4257      * SUB      STR
4258      *          STR
4259      * By forcing loads from memory (as the asm line causes Clang to assume
4260      * that XXH3_kSecretPtr has been changed), the pipelines are used more
4261      * efficiently:
4262      *   I   L   S
4263      *      LDR
4264      *  ADD LDR
4265      *  SUB     STR
4266      *          STR
4267      * XXH3_64bits_withSeed, len == 256, Snapdragon 835
4268      *   without hack: 2654.4 MB/s
4269      *   with hack:    3202.9 MB/s
4270      */
4271     XXH_COMPILER_GUARD(kSecretPtr);
4272 #endif
4273     /*
4274      * Note: in debug mode, this overrides the asm optimization
4275      * and Clang will emit MOVK chains again.
4276      */
4277     XXH_ASSERT(kSecretPtr == XXH3_kSecret);
4278 
4279     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
4280         int i;
4281         for (i=0; i < nbRounds; i++) {
4282             /*
4283              * The asm hack causes Clang to assume that kSecretPtr aliases with
4284              * customSecret, and on aarch64, this prevented LDP from merging two
4285              * loads together for free. Putting the loads together before the stores
4286              * properly generates LDP.
4287              */
4288             xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i)     + seed64;
4289             xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
4290             XXH_writeLE64((xxh_u8*)customSecret + 16*i,     lo);
4291             XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
4292     }   }
4293 }
4294 
4295 
4296 typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*);
4297 typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
4298 typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
4299 
4300 
4301 #if (XXH_VECTOR == XXH_AVX512)
4302 
4303 #define XXH3_accumulate_512 XXH3_accumulate_512_avx512
4304 #define XXH3_scrambleAcc    XXH3_scrambleAcc_avx512
4305 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
4306 
4307 #elif (XXH_VECTOR == XXH_AVX2)
4308 
4309 #define XXH3_accumulate_512 XXH3_accumulate_512_avx2
4310 #define XXH3_scrambleAcc    XXH3_scrambleAcc_avx2
4311 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
4312 
4313 #elif (XXH_VECTOR == XXH_SSE2)
4314 
4315 #define XXH3_accumulate_512 XXH3_accumulate_512_sse2
4316 #define XXH3_scrambleAcc    XXH3_scrambleAcc_sse2
4317 #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
4318 
4319 #elif (XXH_VECTOR == XXH_NEON)
4320 
4321 #define XXH3_accumulate_512 XXH3_accumulate_512_neon
4322 #define XXH3_scrambleAcc    XXH3_scrambleAcc_neon
4323 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4324 
4325 #elif (XXH_VECTOR == XXH_VSX)
4326 
4327 #define XXH3_accumulate_512 XXH3_accumulate_512_vsx
4328 #define XXH3_scrambleAcc    XXH3_scrambleAcc_vsx
4329 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4330 
4331 #else /* scalar */
4332 
4333 #define XXH3_accumulate_512 XXH3_accumulate_512_scalar
4334 #define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar
4335 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4336 
4337 #endif
4338 
4339 
4340 
4341 #ifndef XXH_PREFETCH_DIST
4342 #  ifdef __clang__
4343 #    define XXH_PREFETCH_DIST 320
4344 #  else
4345 #    if (XXH_VECTOR == XXH_AVX512)
4346 #      define XXH_PREFETCH_DIST 512
4347 #    else
4348 #      define XXH_PREFETCH_DIST 384
4349 #    endif
4350 #  endif  /* __clang__ */
4351 #endif  /* XXH_PREFETCH_DIST */
4352 
4353 /*
4354  * XXH3_accumulate()
4355  * Loops over XXH3_accumulate_512().
4356  * Assumption: nbStripes will not overflow the secret size
4357  */
4358 XXH_FORCE_INLINE void
4359 XXH3_accumulate(     xxh_u64* XXH_RESTRICT acc,
4360                 const xxh_u8* XXH_RESTRICT input,
4361                 const xxh_u8* XXH_RESTRICT secret,
4362                       size_t nbStripes,
4363                       XXH3_f_accumulate_512 f_acc512)
4364 {
4365     size_t n;
4366     for (n = 0; n < nbStripes; n++ ) {
4367         const xxh_u8* const in = input + n*XXH_STRIPE_LEN;
4368         XXH_PREFETCH(in + XXH_PREFETCH_DIST);
4369         f_acc512(acc,
4370                  in,
4371                  secret + n*XXH_SECRET_CONSUME_RATE);
4372     }
4373 }
4374 
4375 XXH_FORCE_INLINE void
4376 XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
4377                       const xxh_u8* XXH_RESTRICT input, size_t len,
4378                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4379                             XXH3_f_accumulate_512 f_acc512,
4380                             XXH3_f_scrambleAcc f_scramble)
4381 {
4382     size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
4383     size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
4384     size_t const nb_blocks = (len - 1) / block_len;
4385 
4386     size_t n;
4387 
4388     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
4389 
4390     for (n = 0; n < nb_blocks; n++) {
4391         XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512);
4392         f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
4393     }
4394 
4395     /* last partial block */
4396     XXH_ASSERT(len > XXH_STRIPE_LEN);
4397     {   size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
4398         XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
4399         XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512);
4400 
4401         /* last stripe */
4402         {   const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
4403 #define XXH_SECRET_LASTACC_START 7  /* not aligned on 8, last secret is different from acc & scrambler */
4404             f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
4405     }   }
4406 }
4407 
4408 XXH_FORCE_INLINE xxh_u64
4409 XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
4410 {
4411     return XXH3_mul128_fold64(
4412                acc[0] ^ XXH_readLE64(secret),
4413                acc[1] ^ XXH_readLE64(secret+8) );
4414 }
4415 
4416 static XXH64_hash_t
4417 XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
4418 {
4419     xxh_u64 result64 = start;
4420     size_t i = 0;
4421 
4422     for (i = 0; i < 4; i++) {
4423         result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
4424 #if defined(__clang__)                                /* Clang */ \
4425     && (defined(__arm__) || defined(__thumb__))       /* ARMv7 */ \
4426     && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \
4427     && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
4428         /*
4429          * UGLY HACK:
4430          * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
4431          * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
4432          * XXH3_64bits, len == 256, Snapdragon 835:
4433          *   without hack: 2063.7 MB/s
4434          *   with hack:    2560.7 MB/s
4435          */
4436         XXH_COMPILER_GUARD(result64);
4437 #endif
4438     }
4439 
4440     return XXH3_avalanche(result64);
4441 }
4442 
4443 #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
4444                         XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
4445 
4446 XXH_FORCE_INLINE XXH64_hash_t
4447 XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
4448                            const void* XXH_RESTRICT secret, size_t secretSize,
4449                            XXH3_f_accumulate_512 f_acc512,
4450                            XXH3_f_scrambleAcc f_scramble)
4451 {
4452     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
4453 
4454     XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble);
4455 
4456     /* converge into final hash */
4457     XXH_STATIC_ASSERT(sizeof(acc) == 64);
4458     /* do not align on 8, so that the secret is different from the accumulator */
4459 #define XXH_SECRET_MERGEACCS_START 11
4460     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
4461     return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
4462 }
4463 
4464 /*
4465  * It's important for performance to transmit secret's size (when it's static)
4466  * so that the compiler can properly optimize the vectorized loop.
4467  * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
4468  */
4469 XXH_FORCE_INLINE XXH64_hash_t
4470 XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
4471                              XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
4472 {
4473     (void)seed64;
4474     return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc);
4475 }
4476 
4477 /*
4478  * It's preferable for performance that XXH3_hashLong is not inlined,
4479  * as it results in a smaller function for small data, easier to the instruction cache.
4480  * Note that inside this no_inline function, we do inline the internal loop,
4481  * and provide a statically defined secret size to allow optimization of vector loop.
4482  */
4483 XXH_NO_INLINE XXH64_hash_t
4484 XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
4485                           XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
4486 {
4487     (void)seed64; (void)secret; (void)secretLen;
4488     return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc);
4489 }
4490 
4491 /*
4492  * XXH3_hashLong_64b_withSeed():
4493  * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
4494  * and then use this key for long mode hashing.
4495  *
4496  * This operation is decently fast but nonetheless costs a little bit of time.
4497  * Try to avoid it whenever possible (typically when seed==0).
4498  *
4499  * It's important for performance that XXH3_hashLong is not inlined. Not sure
4500  * why (uop cache maybe?), but the difference is large and easily measurable.
4501  */
4502 XXH_FORCE_INLINE XXH64_hash_t
4503 XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
4504                                     XXH64_hash_t seed,
4505                                     XXH3_f_accumulate_512 f_acc512,
4506                                     XXH3_f_scrambleAcc f_scramble,
4507                                     XXH3_f_initCustomSecret f_initSec)
4508 {
4509     if (seed == 0)
4510         return XXH3_hashLong_64b_internal(input, len,
4511                                           XXH3_kSecret, sizeof(XXH3_kSecret),
4512                                           f_acc512, f_scramble);
4513     {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
4514         f_initSec(secret, seed);
4515         return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
4516                                           f_acc512, f_scramble);
4517     }
4518 }
4519 
4520 /*
4521  * It's important for performance that XXH3_hashLong is not inlined.
4522  */
4523 XXH_NO_INLINE XXH64_hash_t
4524 XXH3_hashLong_64b_withSeed(const void* input, size_t len,
4525                            XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen)
4526 {
4527     (void)secret; (void)secretLen;
4528     return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
4529                 XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
4530 }
4531 
4532 
4533 typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
4534                                           XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
4535 
4536 XXH_FORCE_INLINE XXH64_hash_t
4537 XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
4538                      XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
4539                      XXH3_hashLong64_f f_hashLong)
4540 {
4541     XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
4542     /*
4543      * If an action is to be taken if `secretLen` condition is not respected,
4544      * it should be done here.
4545      * For now, it's a contract pre-condition.
4546      * Adding a check and a branch here would cost performance at every hash.
4547      * Also, note that function signature doesn't offer room to return an error.
4548      */
4549     if (len <= 16)
4550         return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
4551     if (len <= 128)
4552         return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4553     if (len <= XXH3_MIDSIZE_MAX)
4554         return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4555     return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
4556 }
4557 
4558 
4559 /* ===   Public entry point   === */
4560 
4561 /*! @ingroup xxh3_family */
4562 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
4563 {
4564     return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
4565 }
4566 
4567 /*! @ingroup xxh3_family */
4568 XXH_PUBLIC_API XXH64_hash_t
4569 XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
4570 {
4571     return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
4572 }
4573 
4574 /*! @ingroup xxh3_family */
4575 XXH_PUBLIC_API XXH64_hash_t
4576 XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
4577 {
4578     return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
4579 }
4580 
4581 XXH_PUBLIC_API XXH64_hash_t
4582 XXH3_64bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed)
4583 {
4584     if (len <= XXH3_MIDSIZE_MAX)
4585         return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
4586     return XXH3_hashLong_64b_withSecret(input, len, seed, (const xxh_u8*)secret, secretSize);
4587 }
4588 
4589 
4590 /* ===   XXH3 streaming   === */
4591 
4592 /*
4593  * Malloc's a pointer that is always aligned to align.
4594  *
4595  * This must be freed with `XXH_alignedFree()`.
4596  *
4597  * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
4598  * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
4599  * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
4600  *
4601  * This underalignment previously caused a rather obvious crash which went
4602  * completely unnoticed due to XXH3_createState() not actually being tested.
4603  * Credit to RedSpah for noticing this bug.
4604  *
4605  * The alignment is done manually: Functions like posix_memalign or _mm_malloc
4606  * are avoided: To maintain portability, we would have to write a fallback
4607  * like this anyways, and besides, testing for the existence of library
4608  * functions without relying on external build tools is impossible.
4609  *
4610  * The method is simple: Overallocate, manually align, and store the offset
4611  * to the original behind the returned pointer.
4612  *
4613  * Align must be a power of 2 and 8 <= align <= 128.
4614  */
4615 static void* XXH_alignedMalloc(size_t s, size_t align)
4616 {
4617     XXH_ASSERT(align <= 128 && align >= 8); /* range check */
4618     XXH_ASSERT((align & (align-1)) == 0);   /* power of 2 */
4619     XXH_ASSERT(s != 0 && s < (s + align));  /* empty/overflow */
4620     {   /* Overallocate to make room for manual realignment and an offset byte */
4621         xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
4622         if (base != NULL) {
4623             /*
4624              * Get the offset needed to align this pointer.
4625              *
4626              * Even if the returned pointer is aligned, there will always be
4627              * at least one byte to store the offset to the original pointer.
4628              */
4629             size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
4630             /* Add the offset for the now-aligned pointer */
4631             xxh_u8* ptr = base + offset;
4632 
4633             XXH_ASSERT((size_t)ptr % align == 0);
4634 
4635             /* Store the offset immediately before the returned pointer. */
4636             ptr[-1] = (xxh_u8)offset;
4637             return ptr;
4638         }
4639         return NULL;
4640     }
4641 }
4642 /*
4643  * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
4644  * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
4645  */
4646 static void XXH_alignedFree(void* p)
4647 {
4648     if (p != NULL) {
4649         xxh_u8* ptr = (xxh_u8*)p;
4650         /* Get the offset byte we added in XXH_malloc. */
4651         xxh_u8 offset = ptr[-1];
4652         /* Free the original malloc'd pointer */
4653         xxh_u8* base = ptr - offset;
4654         XXH_free(base);
4655     }
4656 }
4657 /*! @ingroup xxh3_family */
4658 XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
4659 {
4660     XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
4661     if (state==NULL) return NULL;
4662     XXH3_INITSTATE(state);
4663     return state;
4664 }
4665 
4666 /*! @ingroup xxh3_family */
4667 XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
4668 {
4669     XXH_alignedFree(statePtr);
4670     return XXH_OK;
4671 }
4672 
4673 /*! @ingroup xxh3_family */
4674 XXH_PUBLIC_API void
4675 XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
4676 {
4677     XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
4678 }
4679 
4680 static void
4681 XXH3_reset_internal(XXH3_state_t* statePtr,
4682                     XXH64_hash_t seed,
4683                     const void* secret, size_t secretSize)
4684 {
4685     size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
4686     size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
4687     XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
4688     XXH_ASSERT(statePtr != NULL);
4689     /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
4690     memset((char*)statePtr + initStart, 0, initLength);
4691     statePtr->acc[0] = XXH_PRIME32_3;
4692     statePtr->acc[1] = XXH_PRIME64_1;
4693     statePtr->acc[2] = XXH_PRIME64_2;
4694     statePtr->acc[3] = XXH_PRIME64_3;
4695     statePtr->acc[4] = XXH_PRIME64_4;
4696     statePtr->acc[5] = XXH_PRIME32_2;
4697     statePtr->acc[6] = XXH_PRIME64_5;
4698     statePtr->acc[7] = XXH_PRIME32_1;
4699     statePtr->seed = seed;
4700     statePtr->useSeed = (seed != 0);
4701     statePtr->extSecret = (const unsigned char*)secret;
4702     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
4703     statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
4704     statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
4705 }
4706 
4707 /*! @ingroup xxh3_family */
4708 XXH_PUBLIC_API XXH_errorcode
4709 XXH3_64bits_reset(XXH3_state_t* statePtr)
4710 {
4711     if (statePtr == NULL) return XXH_ERROR;
4712     XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4713     return XXH_OK;
4714 }
4715 
4716 /*! @ingroup xxh3_family */
4717 XXH_PUBLIC_API XXH_errorcode
4718 XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
4719 {
4720     if (statePtr == NULL) return XXH_ERROR;
4721     XXH3_reset_internal(statePtr, 0, secret, secretSize);
4722     if (secret == NULL) return XXH_ERROR;
4723     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
4724     return XXH_OK;
4725 }
4726 
4727 /*! @ingroup xxh3_family */
4728 XXH_PUBLIC_API XXH_errorcode
4729 XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
4730 {
4731     if (statePtr == NULL) return XXH_ERROR;
4732     if (seed==0) return XXH3_64bits_reset(statePtr);
4733     if ((seed != statePtr->seed) || (statePtr->extSecret != NULL))
4734         XXH3_initCustomSecret(statePtr->customSecret, seed);
4735     XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
4736     return XXH_OK;
4737 }
4738 
4739 /*! @ingroup xxh3_family */
4740 XXH_PUBLIC_API XXH_errorcode
4741 XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed64)
4742 {
4743     if (statePtr == NULL) return XXH_ERROR;
4744     if (secret == NULL) return XXH_ERROR;
4745     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
4746     XXH3_reset_internal(statePtr, seed64, secret, secretSize);
4747     statePtr->useSeed = 1; /* always, even if seed64==0 */
4748     return XXH_OK;
4749 }
4750 
4751 /* Note : when XXH3_consumeStripes() is invoked,
4752  * there must be a guarantee that at least one more byte must be consumed from input
4753  * so that the function can blindly consume all stripes using the "normal" secret segment */
4754 XXH_FORCE_INLINE void
4755 XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
4756                     size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
4757                     const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
4758                     const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
4759                     XXH3_f_accumulate_512 f_acc512,
4760                     XXH3_f_scrambleAcc f_scramble)
4761 {
4762     XXH_ASSERT(nbStripes <= nbStripesPerBlock);  /* can handle max 1 scramble per invocation */
4763     XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
4764     if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) {
4765         /* need a scrambling operation */
4766         size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr;
4767         size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock;
4768         XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512);
4769         f_scramble(acc, secret + secretLimit);
4770         XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512);
4771         *nbStripesSoFarPtr = nbStripesAfterBlock;
4772     } else {
4773         XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512);
4774         *nbStripesSoFarPtr += nbStripes;
4775     }
4776 }
4777 
4778 #ifndef XXH3_STREAM_USE_STACK
4779 # ifndef __clang__ /* clang doesn't need additional stack space */
4780 #   define XXH3_STREAM_USE_STACK 1
4781 # endif
4782 #endif
4783 /*
4784  * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
4785  */
4786 XXH_FORCE_INLINE XXH_errorcode
4787 XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
4788             const xxh_u8* XXH_RESTRICT input, size_t len,
4789             XXH3_f_accumulate_512 f_acc512,
4790             XXH3_f_scrambleAcc f_scramble)
4791 {
4792     if (input==NULL) {
4793         XXH_ASSERT(len == 0);
4794         return XXH_OK;
4795     }
4796 
4797     XXH_ASSERT(state != NULL);
4798     {   const xxh_u8* const bEnd = input + len;
4799         const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4800 #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
4801         /* For some reason, gcc and MSVC seem to suffer greatly
4802          * when operating accumulators directly into state.
4803          * Operating into stack space seems to enable proper optimization.
4804          * clang, on the other hand, doesn't seem to need this trick */
4805         XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; memcpy(acc, state->acc, sizeof(acc));
4806 #else
4807         xxh_u64* XXH_RESTRICT const acc = state->acc;
4808 #endif
4809         state->totalLen += len;
4810         XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
4811 
4812         /* small input : just fill in tmp buffer */
4813         if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) {
4814             XXH_memcpy(state->buffer + state->bufferedSize, input, len);
4815             state->bufferedSize += (XXH32_hash_t)len;
4816             return XXH_OK;
4817         }
4818 
4819         /* total input is now > XXH3_INTERNALBUFFER_SIZE */
4820         #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
4821         XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0);   /* clean multiple */
4822 
4823         /*
4824          * Internal buffer is partially filled (always, except at beginning)
4825          * Complete it, then consume it.
4826          */
4827         if (state->bufferedSize) {
4828             size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
4829             XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
4830             input += loadSize;
4831             XXH3_consumeStripes(acc,
4832                                &state->nbStripesSoFar, state->nbStripesPerBlock,
4833                                 state->buffer, XXH3_INTERNALBUFFER_STRIPES,
4834                                 secret, state->secretLimit,
4835                                 f_acc512, f_scramble);
4836             state->bufferedSize = 0;
4837         }
4838         XXH_ASSERT(input < bEnd);
4839 
4840         /* large input to consume : ingest per full block */
4841         if ((size_t)(bEnd - input) > state->nbStripesPerBlock * XXH_STRIPE_LEN) {
4842             size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
4843             XXH_ASSERT(state->nbStripesPerBlock >= state->nbStripesSoFar);
4844             /* join to current block's end */
4845             {   size_t const nbStripesToEnd = state->nbStripesPerBlock - state->nbStripesSoFar;
4846                 XXH_ASSERT(nbStripes <= nbStripes);
4847                 XXH3_accumulate(acc, input, secret + state->nbStripesSoFar * XXH_SECRET_CONSUME_RATE, nbStripesToEnd, f_acc512);
4848                 f_scramble(acc, secret + state->secretLimit);
4849                 state->nbStripesSoFar = 0;
4850                 input += nbStripesToEnd * XXH_STRIPE_LEN;
4851                 nbStripes -= nbStripesToEnd;
4852             }
4853             /* consume per entire blocks */
4854             while(nbStripes >= state->nbStripesPerBlock) {
4855                 XXH3_accumulate(acc, input, secret, state->nbStripesPerBlock, f_acc512);
4856                 f_scramble(acc, secret + state->secretLimit);
4857                 input += state->nbStripesPerBlock * XXH_STRIPE_LEN;
4858                 nbStripes -= state->nbStripesPerBlock;
4859             }
4860             /* consume last partial block */
4861             XXH3_accumulate(acc, input, secret, nbStripes, f_acc512);
4862             input += nbStripes * XXH_STRIPE_LEN;
4863             XXH_ASSERT(input < bEnd);  /* at least some bytes left */
4864             state->nbStripesSoFar = nbStripes;
4865             /* buffer predecessor of last partial stripe */
4866             XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
4867             XXH_ASSERT(bEnd - input <= XXH_STRIPE_LEN);
4868         } else {
4869             /* content to consume <= block size */
4870             /* Consume input by a multiple of internal buffer size */
4871             if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
4872                 const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
4873                 do {
4874                     XXH3_consumeStripes(acc,
4875                                        &state->nbStripesSoFar, state->nbStripesPerBlock,
4876                                         input, XXH3_INTERNALBUFFER_STRIPES,
4877                                         secret, state->secretLimit,
4878                                         f_acc512, f_scramble);
4879                     input += XXH3_INTERNALBUFFER_SIZE;
4880                 } while (input<limit);
4881                 /* buffer predecessor of last partial stripe */
4882                 XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
4883             }
4884         }
4885 
4886         /* Some remaining input (always) : buffer it */
4887         XXH_ASSERT(input < bEnd);
4888         XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
4889         XXH_ASSERT(state->bufferedSize == 0);
4890         XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
4891         state->bufferedSize = (XXH32_hash_t)(bEnd-input);
4892 #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
4893         /* save stack accumulators into state */
4894         memcpy(state->acc, acc, sizeof(acc));
4895 #endif
4896     }
4897 
4898     return XXH_OK;
4899 }
4900 
4901 /*! @ingroup xxh3_family */
4902 XXH_PUBLIC_API XXH_errorcode
4903 XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
4904 {
4905     return XXH3_update(state, (const xxh_u8*)input, len,
4906                        XXH3_accumulate_512, XXH3_scrambleAcc);
4907 }
4908 
4909 
4910 XXH_FORCE_INLINE void
4911 XXH3_digest_long (XXH64_hash_t* acc,
4912                   const XXH3_state_t* state,
4913                   const unsigned char* secret)
4914 {
4915     /*
4916      * Digest on a local copy. This way, the state remains unaltered, and it can
4917      * continue ingesting more input afterwards.
4918      */
4919     XXH_memcpy(acc, state->acc, sizeof(state->acc));
4920     if (state->bufferedSize >= XXH_STRIPE_LEN) {
4921         size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
4922         size_t nbStripesSoFar = state->nbStripesSoFar;
4923         XXH3_consumeStripes(acc,
4924                            &nbStripesSoFar, state->nbStripesPerBlock,
4925                             state->buffer, nbStripes,
4926                             secret, state->secretLimit,
4927                             XXH3_accumulate_512, XXH3_scrambleAcc);
4928         /* last stripe */
4929         XXH3_accumulate_512(acc,
4930                             state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
4931                             secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4932     } else {  /* bufferedSize < XXH_STRIPE_LEN */
4933         xxh_u8 lastStripe[XXH_STRIPE_LEN];
4934         size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
4935         XXH_ASSERT(state->bufferedSize > 0);  /* there is always some input buffered */
4936         XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
4937         XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
4938         XXH3_accumulate_512(acc,
4939                             lastStripe,
4940                             secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4941     }
4942 }
4943 
4944 /*! @ingroup xxh3_family */
4945 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
4946 {
4947     const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4948     if (state->totalLen > XXH3_MIDSIZE_MAX) {
4949         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
4950         XXH3_digest_long(acc, state, secret);
4951         return XXH3_mergeAccs(acc,
4952                               secret + XXH_SECRET_MERGEACCS_START,
4953                               (xxh_u64)state->totalLen * XXH_PRIME64_1);
4954     }
4955     /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
4956     if (state->useSeed)
4957         return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
4958     return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
4959                                   secret, state->secretLimit + XXH_STRIPE_LEN);
4960 }
4961 
4962 
4963 
4964 /* ==========================================
4965  * XXH3 128 bits (a.k.a XXH128)
4966  * ==========================================
4967  * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
4968  * even without counting the significantly larger output size.
4969  *
4970  * For example, extra steps are taken to avoid the seed-dependent collisions
4971  * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
4972  *
4973  * This strength naturally comes at the cost of some speed, especially on short
4974  * lengths. Note that longer hashes are about as fast as the 64-bit version
4975  * due to it using only a slight modification of the 64-bit loop.
4976  *
4977  * XXH128 is also more oriented towards 64-bit machines. It is still extremely
4978  * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
4979  */
4980 
4981 XXH_FORCE_INLINE XXH128_hash_t
4982 XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4983 {
4984     /* A doubled version of 1to3_64b with different constants. */
4985     XXH_ASSERT(input != NULL);
4986     XXH_ASSERT(1 <= len && len <= 3);
4987     XXH_ASSERT(secret != NULL);
4988     /*
4989      * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
4990      * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
4991      * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
4992      */
4993     {   xxh_u8 const c1 = input[0];
4994         xxh_u8 const c2 = input[len >> 1];
4995         xxh_u8 const c3 = input[len - 1];
4996         xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
4997                                 | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
4998         xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
4999         xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
5000         xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
5001         xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
5002         xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
5003         XXH128_hash_t h128;
5004         h128.low64  = XXH64_avalanche(keyed_lo);
5005         h128.high64 = XXH64_avalanche(keyed_hi);
5006         return h128;
5007     }
5008 }
5009 
5010 XXH_FORCE_INLINE XXH128_hash_t
5011 XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
5012 {
5013     XXH_ASSERT(input != NULL);
5014     XXH_ASSERT(secret != NULL);
5015     XXH_ASSERT(4 <= len && len <= 8);
5016     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
5017     {   xxh_u32 const input_lo = XXH_readLE32(input);
5018         xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
5019         xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
5020         xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
5021         xxh_u64 const keyed = input_64 ^ bitflip;
5022 
5023         /* Shift len to the left to ensure it is even, this avoids even multiplies. */
5024         XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
5025 
5026         m128.high64 += (m128.low64 << 1);
5027         m128.low64  ^= (m128.high64 >> 3);
5028 
5029         m128.low64   = XXH_xorshift64(m128.low64, 35);
5030         m128.low64  *= 0x9FB21C651E98DF25ULL;
5031         m128.low64   = XXH_xorshift64(m128.low64, 28);
5032         m128.high64  = XXH3_avalanche(m128.high64);
5033         return m128;
5034     }
5035 }
5036 
5037 XXH_FORCE_INLINE XXH128_hash_t
5038 XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
5039 {
5040     XXH_ASSERT(input != NULL);
5041     XXH_ASSERT(secret != NULL);
5042     XXH_ASSERT(9 <= len && len <= 16);
5043     {   xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
5044         xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
5045         xxh_u64 const input_lo = XXH_readLE64(input);
5046         xxh_u64       input_hi = XXH_readLE64(input + len - 8);
5047         XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
5048         /*
5049          * Put len in the middle of m128 to ensure that the length gets mixed to
5050          * both the low and high bits in the 128x64 multiply below.
5051          */
5052         m128.low64 += (xxh_u64)(len - 1) << 54;
5053         input_hi   ^= bitfliph;
5054         /*
5055          * Add the high 32 bits of input_hi to the high 32 bits of m128, then
5056          * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
5057          * the high 64 bits of m128.
5058          *
5059          * The best approach to this operation is different on 32-bit and 64-bit.
5060          */
5061         if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
5062             /*
5063              * 32-bit optimized version, which is more readable.
5064              *
5065              * On 32-bit, it removes an ADC and delays a dependency between the two
5066              * halves of m128.high64, but it generates an extra mask on 64-bit.
5067              */
5068             m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
5069         } else {
5070             /*
5071              * 64-bit optimized (albeit more confusing) version.
5072              *
5073              * Uses some properties of addition and multiplication to remove the mask:
5074              *
5075              * Let:
5076              *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
5077              *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
5078              *    c = XXH_PRIME32_2
5079              *
5080              *    a + (b * c)
5081              * Inverse Property: x + y - x == y
5082              *    a + (b * (1 + c - 1))
5083              * Distributive Property: x * (y + z) == (x * y) + (x * z)
5084              *    a + (b * 1) + (b * (c - 1))
5085              * Identity Property: x * 1 == x
5086              *    a + b + (b * (c - 1))
5087              *
5088              * Substitute a, b, and c:
5089              *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
5090              *
5091              * Since input_hi.hi + input_hi.lo == input_hi, we get this:
5092              *    input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
5093              */
5094             m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
5095         }
5096         /* m128 ^= XXH_swap64(m128 >> 64); */
5097         m128.low64  ^= XXH_swap64(m128.high64);
5098 
5099         {   /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
5100             XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
5101             h128.high64 += m128.high64 * XXH_PRIME64_2;
5102 
5103             h128.low64   = XXH3_avalanche(h128.low64);
5104             h128.high64  = XXH3_avalanche(h128.high64);
5105             return h128;
5106     }   }
5107 }
5108 
5109 /*
5110  * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
5111  */
5112 XXH_FORCE_INLINE XXH128_hash_t
5113 XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
5114 {
5115     XXH_ASSERT(len <= 16);
5116     {   if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
5117         if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
5118         if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
5119         {   XXH128_hash_t h128;
5120             xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
5121             xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
5122             h128.low64 = XXH64_avalanche(seed ^ bitflipl);
5123             h128.high64 = XXH64_avalanche( seed ^ bitfliph);
5124             return h128;
5125     }   }
5126 }
5127 
5128 /*
5129  * A bit slower than XXH3_mix16B, but handles multiply by zero better.
5130  */
5131 XXH_FORCE_INLINE XXH128_hash_t
5132 XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
5133               const xxh_u8* secret, XXH64_hash_t seed)
5134 {
5135     acc.low64  += XXH3_mix16B (input_1, secret+0, seed);
5136     acc.low64  ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
5137     acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
5138     acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
5139     return acc;
5140 }
5141 
5142 
5143 XXH_FORCE_INLINE XXH128_hash_t
5144 XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
5145                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5146                       XXH64_hash_t seed)
5147 {
5148     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
5149     XXH_ASSERT(16 < len && len <= 128);
5150 
5151     {   XXH128_hash_t acc;
5152         acc.low64 = len * XXH_PRIME64_1;
5153         acc.high64 = 0;
5154         if (len > 32) {
5155             if (len > 64) {
5156                 if (len > 96) {
5157                     acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
5158                 }
5159                 acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
5160             }
5161             acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
5162         }
5163         acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
5164         {   XXH128_hash_t h128;
5165             h128.low64  = acc.low64 + acc.high64;
5166             h128.high64 = (acc.low64    * XXH_PRIME64_1)
5167                         + (acc.high64   * XXH_PRIME64_4)
5168                         + ((len - seed) * XXH_PRIME64_2);
5169             h128.low64  = XXH3_avalanche(h128.low64);
5170             h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
5171             return h128;
5172         }
5173     }
5174 }
5175 
5176 XXH_NO_INLINE XXH128_hash_t
5177 XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
5178                        const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5179                        XXH64_hash_t seed)
5180 {
5181     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
5182     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
5183 
5184     {   XXH128_hash_t acc;
5185         int const nbRounds = (int)len / 32;
5186         int i;
5187         acc.low64 = len * XXH_PRIME64_1;
5188         acc.high64 = 0;
5189         for (i=0; i<4; i++) {
5190             acc = XXH128_mix32B(acc,
5191                                 input  + (32 * i),
5192                                 input  + (32 * i) + 16,
5193                                 secret + (32 * i),
5194                                 seed);
5195         }
5196         acc.low64 = XXH3_avalanche(acc.low64);
5197         acc.high64 = XXH3_avalanche(acc.high64);
5198         XXH_ASSERT(nbRounds >= 4);
5199         for (i=4 ; i < nbRounds; i++) {
5200             acc = XXH128_mix32B(acc,
5201                                 input + (32 * i),
5202                                 input + (32 * i) + 16,
5203                                 secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
5204                                 seed);
5205         }
5206         /* last bytes */
5207         acc = XXH128_mix32B(acc,
5208                             input + len - 16,
5209                             input + len - 32,
5210                             secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
5211                             0ULL - seed);
5212 
5213         {   XXH128_hash_t h128;
5214             h128.low64  = acc.low64 + acc.high64;
5215             h128.high64 = (acc.low64    * XXH_PRIME64_1)
5216                         + (acc.high64   * XXH_PRIME64_4)
5217                         + ((len - seed) * XXH_PRIME64_2);
5218             h128.low64  = XXH3_avalanche(h128.low64);
5219             h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
5220             return h128;
5221         }
5222     }
5223 }
5224 
5225 XXH_FORCE_INLINE XXH128_hash_t
5226 XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
5227                             const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5228                             XXH3_f_accumulate_512 f_acc512,
5229                             XXH3_f_scrambleAcc f_scramble)
5230 {
5231     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
5232 
5233     XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble);
5234 
5235     /* converge into final hash */
5236     XXH_STATIC_ASSERT(sizeof(acc) == 64);
5237     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
5238     {   XXH128_hash_t h128;
5239         h128.low64  = XXH3_mergeAccs(acc,
5240                                      secret + XXH_SECRET_MERGEACCS_START,
5241                                      (xxh_u64)len * XXH_PRIME64_1);
5242         h128.high64 = XXH3_mergeAccs(acc,
5243                                      secret + secretSize
5244                                             - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
5245                                      ~((xxh_u64)len * XXH_PRIME64_2));
5246         return h128;
5247     }
5248 }
5249 
5250 /*
5251  * It's important for performance that XXH3_hashLong is not inlined.
5252  */
5253 XXH_NO_INLINE XXH128_hash_t
5254 XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
5255                            XXH64_hash_t seed64,
5256                            const void* XXH_RESTRICT secret, size_t secretLen)
5257 {
5258     (void)seed64; (void)secret; (void)secretLen;
5259     return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
5260                                        XXH3_accumulate_512, XXH3_scrambleAcc);
5261 }
5262 
5263 /*
5264  * It's important for performance to pass @secretLen (when it's static)
5265  * to the compiler, so that it can properly optimize the vectorized loop.
5266  */
5267 XXH_FORCE_INLINE XXH128_hash_t
5268 XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
5269                               XXH64_hash_t seed64,
5270                               const void* XXH_RESTRICT secret, size_t secretLen)
5271 {
5272     (void)seed64;
5273     return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
5274                                        XXH3_accumulate_512, XXH3_scrambleAcc);
5275 }
5276 
5277 XXH_FORCE_INLINE XXH128_hash_t
5278 XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
5279                                 XXH64_hash_t seed64,
5280                                 XXH3_f_accumulate_512 f_acc512,
5281                                 XXH3_f_scrambleAcc f_scramble,
5282                                 XXH3_f_initCustomSecret f_initSec)
5283 {
5284     if (seed64 == 0)
5285         return XXH3_hashLong_128b_internal(input, len,
5286                                            XXH3_kSecret, sizeof(XXH3_kSecret),
5287                                            f_acc512, f_scramble);
5288     {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
5289         f_initSec(secret, seed64);
5290         return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
5291                                            f_acc512, f_scramble);
5292     }
5293 }
5294 
5295 /*
5296  * It's important for performance that XXH3_hashLong is not inlined.
5297  */
5298 XXH_NO_INLINE XXH128_hash_t
5299 XXH3_hashLong_128b_withSeed(const void* input, size_t len,
5300                             XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
5301 {
5302     (void)secret; (void)secretLen;
5303     return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
5304                 XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
5305 }
5306 
5307 typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
5308                                             XXH64_hash_t, const void* XXH_RESTRICT, size_t);
5309 
5310 XXH_FORCE_INLINE XXH128_hash_t
5311 XXH3_128bits_internal(const void* input, size_t len,
5312                       XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
5313                       XXH3_hashLong128_f f_hl128)
5314 {
5315     XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
5316     /*
5317      * If an action is to be taken if `secret` conditions are not respected,
5318      * it should be done here.
5319      * For now, it's a contract pre-condition.
5320      * Adding a check and a branch here would cost performance at every hash.
5321      */
5322     if (len <= 16)
5323         return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
5324     if (len <= 128)
5325         return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
5326     if (len <= XXH3_MIDSIZE_MAX)
5327         return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
5328     return f_hl128(input, len, seed64, secret, secretLen);
5329 }
5330 
5331 
5332 /* ===   Public XXH128 API   === */
5333 
5334 /*! @ingroup xxh3_family */
5335 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
5336 {
5337     return XXH3_128bits_internal(input, len, 0,
5338                                  XXH3_kSecret, sizeof(XXH3_kSecret),
5339                                  XXH3_hashLong_128b_default);
5340 }
5341 
5342 /*! @ingroup xxh3_family */
5343 XXH_PUBLIC_API XXH128_hash_t
5344 XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
5345 {
5346     return XXH3_128bits_internal(input, len, 0,
5347                                  (const xxh_u8*)secret, secretSize,
5348                                  XXH3_hashLong_128b_withSecret);
5349 }
5350 
5351 /*! @ingroup xxh3_family */
5352 XXH_PUBLIC_API XXH128_hash_t
5353 XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
5354 {
5355     return XXH3_128bits_internal(input, len, seed,
5356                                  XXH3_kSecret, sizeof(XXH3_kSecret),
5357                                  XXH3_hashLong_128b_withSeed);
5358 }
5359 
5360 /*! @ingroup xxh3_family */
5361 XXH_PUBLIC_API XXH128_hash_t
5362 XXH3_128bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed)
5363 {
5364     if (len <= XXH3_MIDSIZE_MAX)
5365         return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
5366     return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
5367 }
5368 
5369 /*! @ingroup xxh3_family */
5370 XXH_PUBLIC_API XXH128_hash_t
5371 XXH128(const void* input, size_t len, XXH64_hash_t seed)
5372 {
5373     return XXH3_128bits_withSeed(input, len, seed);
5374 }
5375 
5376 
5377 /* ===   XXH3 128-bit streaming   === */
5378 
5379 /*
5380  * All initialization and update functions are identical to 64-bit streaming variant.
5381  * The only difference is the finalization routine.
5382  */
5383 
5384 /*! @ingroup xxh3_family */
5385 XXH_PUBLIC_API XXH_errorcode
5386 XXH3_128bits_reset(XXH3_state_t* statePtr)
5387 {
5388     return XXH3_64bits_reset(statePtr);
5389 }
5390 
5391 /*! @ingroup xxh3_family */
5392 XXH_PUBLIC_API XXH_errorcode
5393 XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
5394 {
5395     return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
5396 }
5397 
5398 /*! @ingroup xxh3_family */
5399 XXH_PUBLIC_API XXH_errorcode
5400 XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
5401 {
5402     return XXH3_64bits_reset_withSeed(statePtr, seed);
5403 }
5404 
5405 /*! @ingroup xxh3_family */
5406 XXH_PUBLIC_API XXH_errorcode
5407 XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed)
5408 {
5409     return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
5410 }
5411 
5412 /*! @ingroup xxh3_family */
5413 XXH_PUBLIC_API XXH_errorcode
5414 XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
5415 {
5416     return XXH3_update(state, (const xxh_u8*)input, len,
5417                        XXH3_accumulate_512, XXH3_scrambleAcc);
5418 }
5419 
5420 /*! @ingroup xxh3_family */
5421 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
5422 {
5423     const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
5424     if (state->totalLen > XXH3_MIDSIZE_MAX) {
5425         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
5426         XXH3_digest_long(acc, state, secret);
5427         XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
5428         {   XXH128_hash_t h128;
5429             h128.low64  = XXH3_mergeAccs(acc,
5430                                          secret + XXH_SECRET_MERGEACCS_START,
5431                                          (xxh_u64)state->totalLen * XXH_PRIME64_1);
5432             h128.high64 = XXH3_mergeAccs(acc,
5433                                          secret + state->secretLimit + XXH_STRIPE_LEN
5434                                                 - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
5435                                          ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
5436             return h128;
5437         }
5438     }
5439     /* len <= XXH3_MIDSIZE_MAX : short code */
5440     if (state->seed)
5441         return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
5442     return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
5443                                    secret, state->secretLimit + XXH_STRIPE_LEN);
5444 }
5445 
5446 /* 128-bit utility functions */
5447 
5448 #include <string.h>   /* memcmp, memcpy */
5449 
5450 /* return : 1 is equal, 0 if different */
5451 /*! @ingroup xxh3_family */
5452 XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
5453 {
5454     /* note : XXH128_hash_t is compact, it has no padding byte */
5455     return !(memcmp(&h1, &h2, sizeof(h1)));
5456 }
5457 
5458 /* This prototype is compatible with stdlib's qsort().
5459  * return : >0 if *h128_1  > *h128_2
5460  *          <0 if *h128_1  < *h128_2
5461  *          =0 if *h128_1 == *h128_2  */
5462 /*! @ingroup xxh3_family */
5463 XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
5464 {
5465     XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
5466     XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
5467     int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
5468     /* note : bets that, in most cases, hash values are different */
5469     if (hcmp) return hcmp;
5470     return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
5471 }
5472 
5473 
5474 /*======   Canonical representation   ======*/
5475 /*! @ingroup xxh3_family */
5476 XXH_PUBLIC_API void
5477 XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
5478 {
5479     XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
5480     if (XXH_CPU_LITTLE_ENDIAN) {
5481         hash.high64 = XXH_swap64(hash.high64);
5482         hash.low64  = XXH_swap64(hash.low64);
5483     }
5484     XXH_memcpy(dst, &hash.high64, sizeof(hash.high64));
5485     XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
5486 }
5487 
5488 /*! @ingroup xxh3_family */
5489 XXH_PUBLIC_API XXH128_hash_t
5490 XXH128_hashFromCanonical(const XXH128_canonical_t* src)
5491 {
5492     XXH128_hash_t h;
5493     h.high64 = XXH_readBE64(src);
5494     h.low64  = XXH_readBE64(src->digest + 8);
5495     return h;
5496 }
5497 
5498 
5499 
5500 /* ==========================================
5501  * Secret generators
5502  * ==========================================
5503  */
5504 #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
5505 
5506 static void XXH3_combine16(void* dst, XXH128_hash_t h128)
5507 {
5508     XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 );
5509     XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
5510 }
5511 
5512 /*! @ingroup xxh3_family */
5513 XXH_PUBLIC_API XXH_errorcode
5514 XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize)
5515 {
5516     XXH_ASSERT(secretBuffer != NULL);
5517     if (secretBuffer == NULL) return XXH_ERROR;
5518     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
5519     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
5520     if (customSeedSize == 0) {
5521         customSeed = XXH3_kSecret;
5522         customSeedSize = XXH_SECRET_DEFAULT_SIZE;
5523     }
5524     XXH_ASSERT(customSeed != NULL);
5525     if (customSeed == NULL) return XXH_ERROR;
5526 
5527     /* Fill secretBuffer with a copy of customSeed - repeat as needed */
5528     {   size_t pos = 0;
5529         while (pos < secretSize) {
5530             size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize);
5531             memcpy((char*)secretBuffer + pos, customSeed, toCopy);
5532             pos += toCopy;
5533     }   }
5534 
5535     {   size_t const nbSeg16 = secretSize / 16;
5536         size_t n;
5537         XXH128_canonical_t scrambler;
5538         XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
5539         for (n=0; n<nbSeg16; n++) {
5540             XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n);
5541             XXH3_combine16((char*)secretBuffer + n*16, h128);
5542         }
5543         /* last segment */
5544         XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler));
5545     }
5546     return XXH_OK;
5547 }
5548 
5549 /*! @ingroup xxh3_family */
5550 XXH_PUBLIC_API void
5551 XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed)
5552 {
5553     XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
5554     XXH3_initCustomSecret(secret, seed);
5555     XXH_ASSERT(secretBuffer != NULL);
5556     memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE);
5557 }
5558 
5559 
5560 
5561 /* Pop our optimization override from above */
5562 #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
5563   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
5564   && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
5565 #  pragma GCC pop_options
5566 #endif
5567 
5568 #endif  /* XXH_NO_LONG_LONG */
5569 
5570 #endif  /* XXH_NO_XXH3 */
5571 
5572 /*!
5573  * @}
5574  */
5575 #endif  /* XXH_IMPLEMENTATION */
5576 
5577 
5578 #if defined (__cplusplus)
5579 }
5580 #endif