Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-09-18 09:40:33

0001 /*
0002  * xxHash - Extremely Fast Hash algorithm
0003  * Header File
0004  * Copyright (C) 2012-2023 Yann Collet
0005  *
0006  * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
0007  *
0008  * Redistribution and use in source and binary forms, with or without
0009  * modification, are permitted provided that the following conditions are
0010  * met:
0011  *
0012  *    * Redistributions of source code must retain the above copyright
0013  *      notice, this list of conditions and the following disclaimer.
0014  *    * Redistributions in binary form must reproduce the above
0015  *      copyright notice, this list of conditions and the following disclaimer
0016  *      in the documentation and/or other materials provided with the
0017  *      distribution.
0018  *
0019  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
0020  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
0021  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
0022  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
0023  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
0024  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
0025  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
0026  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
0027  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
0028  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
0029  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
0030  *
0031  * You can contact the author at:
0032  *   - xxHash homepage: https://www.xxhash.com
0033  *   - xxHash source repository: https://github.com/Cyan4973/xxHash
0034  */
0035 
0036 /*!
0037  * @mainpage xxHash
0038  *
0039  * xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed
0040  * limits.
0041  *
0042  * It is proposed in four flavors, in three families:
0043  * 1. @ref XXH32_family
0044  *   - Classic 32-bit hash function. Simple, compact, and runs on almost all
0045  *     32-bit and 64-bit systems.
0046  * 2. @ref XXH64_family
0047  *   - Classic 64-bit adaptation of XXH32. Just as simple, and runs well on most
0048  *     64-bit systems (but _not_ 32-bit systems).
0049  * 3. @ref XXH3_family
0050  *   - Modern 64-bit and 128-bit hash function family which features improved
0051  *     strength and performance across the board, especially on smaller data.
0052  *     It benefits greatly from SIMD and 64-bit without requiring it.
0053  *
0054  * Benchmarks
0055  * ---
0056  * The reference system uses an Intel i7-9700K CPU, and runs Ubuntu x64 20.04.
0057  * The open source benchmark program is compiled with clang v10.0 using -O3 flag.
0058  *
0059  * | Hash Name            | ISA ext | Width | Large Data Speed | Small Data Velocity |
0060  * | -------------------- | ------- | ----: | ---------------: | ------------------: |
0061  * | XXH3_64bits()        | @b AVX2 |    64 |        59.4 GB/s |               133.1 |
0062  * | MeowHash             | AES-NI  |   128 |        58.2 GB/s |                52.5 |
0063  * | XXH3_128bits()       | @b AVX2 |   128 |        57.9 GB/s |               118.1 |
0064  * | CLHash               | PCLMUL  |    64 |        37.1 GB/s |                58.1 |
0065  * | XXH3_64bits()        | @b SSE2 |    64 |        31.5 GB/s |               133.1 |
0066  * | XXH3_128bits()       | @b SSE2 |   128 |        29.6 GB/s |               118.1 |
0067  * | RAM sequential read  |         |   N/A |        28.0 GB/s |                 N/A |
0068  * | ahash                | AES-NI  |    64 |        22.5 GB/s |               107.2 |
0069  * | City64               |         |    64 |        22.0 GB/s |                76.6 |
0070  * | T1ha2                |         |    64 |        22.0 GB/s |                99.0 |
0071  * | City128              |         |   128 |        21.7 GB/s |                57.7 |
0072  * | FarmHash             | AES-NI  |    64 |        21.3 GB/s |                71.9 |
0073  * | XXH64()              |         |    64 |        19.4 GB/s |                71.0 |
0074  * | SpookyHash           |         |    64 |        19.3 GB/s |                53.2 |
0075  * | Mum                  |         |    64 |        18.0 GB/s |                67.0 |
0076  * | CRC32C               | SSE4.2  |    32 |        13.0 GB/s |                57.9 |
0077  * | XXH32()              |         |    32 |         9.7 GB/s |                71.9 |
0078  * | City32               |         |    32 |         9.1 GB/s |                66.0 |
0079  * | Blake3*              | @b AVX2 |   256 |         4.4 GB/s |                 8.1 |
0080  * | Murmur3              |         |    32 |         3.9 GB/s |                56.1 |
0081  * | SipHash*             |         |    64 |         3.0 GB/s |                43.2 |
0082  * | Blake3*              | @b SSE2 |   256 |         2.4 GB/s |                 8.1 |
0083  * | HighwayHash          |         |    64 |         1.4 GB/s |                 6.0 |
0084  * | FNV64                |         |    64 |         1.2 GB/s |                62.7 |
0085  * | Blake2*              |         |   256 |         1.1 GB/s |                 5.1 |
0086  * | SHA1*                |         |   160 |         0.8 GB/s |                 5.6 |
0087  * | MD5*                 |         |   128 |         0.6 GB/s |                 7.8 |
0088  * @note
0089  *   - Hashes which require a specific ISA extension are noted. SSE2 is also noted,
0090  *     even though it is mandatory on x64.
0091  *   - Hashes with an asterisk are cryptographic. Note that MD5 is non-cryptographic
0092  *     by modern standards.
0093  *   - Small data velocity is a rough average of algorithm's efficiency for small
0094  *     data. For more accurate information, see the wiki.
0095  *   - More benchmarks and strength tests are found on the wiki:
0096  *         https://github.com/Cyan4973/xxHash/wiki
0097  *
0098  * Usage
0099  * ------
0100  * All xxHash variants use a similar API. Changing the algorithm is a trivial
0101  * substitution.
0102  *
0103  * @pre
0104  *    For functions which take an input and length parameter, the following
0105  *    requirements are assumed:
0106  *    - The range from [`input`, `input + length`) is valid, readable memory.
0107  *      - The only exception is if the `length` is `0`, `input` may be `NULL`.
0108  *    - For C++, the objects must have the *TriviallyCopyable* property, as the
0109  *      functions access bytes directly as if it was an array of `unsigned char`.
0110  *
0111  * @anchor single_shot_example
0112  * **Single Shot**
0113  *
0114  * These functions are stateless functions which hash a contiguous block of memory,
0115  * immediately returning the result. They are the easiest and usually the fastest
0116  * option.
0117  *
0118  * XXH32(), XXH64(), XXH3_64bits(), XXH3_128bits()
0119  *
0120  * @code{.c}
0121  *   #include <string.h>
0122  *   #include "xxhash.h"
0123  *
0124  *   // Example for a function which hashes a null terminated string with XXH32().
0125  *   XXH32_hash_t hash_string(const char* string, XXH32_hash_t seed)
0126  *   {
0127  *       // NULL pointers are only valid if the length is zero
0128  *       size_t length = (string == NULL) ? 0 : strlen(string);
0129  *       return XXH32(string, length, seed);
0130  *   }
0131  * @endcode
0132  *
0133  *
0134  * @anchor streaming_example
0135  * **Streaming**
0136  *
0137  * These groups of functions allow incremental hashing of unknown size, even
0138  * more than what would fit in a size_t.
0139  *
0140  * XXH32_reset(), XXH64_reset(), XXH3_64bits_reset(), XXH3_128bits_reset()
0141  *
0142  * @code{.c}
0143  *   #include <stdio.h>
0144  *   #include <assert.h>
0145  *   #include "xxhash.h"
0146  *   // Example for a function which hashes a FILE incrementally with XXH3_64bits().
0147  *   XXH64_hash_t hashFile(FILE* f)
0148  *   {
0149  *       // Allocate a state struct. Do not just use malloc() or new.
0150  *       XXH3_state_t* state = XXH3_createState();
0151  *       assert(state != NULL && "Out of memory!");
0152  *       // Reset the state to start a new hashing session.
0153  *       XXH3_64bits_reset(state);
0154  *       char buffer[4096];
0155  *       size_t count;
0156  *       // Read the file in chunks
0157  *       while ((count = fread(buffer, 1, sizeof(buffer), f)) != 0) {
0158  *           // Run update() as many times as necessary to process the data
0159  *           XXH3_64bits_update(state, buffer, count);
0160  *       }
0161  *       // Retrieve the finalized hash. This will not change the state.
0162  *       XXH64_hash_t result = XXH3_64bits_digest(state);
0163  *       // Free the state. Do not use free().
0164  *       XXH3_freeState(state);
0165  *       return result;
0166  *   }
0167  * @endcode
0168  *
0169  * Streaming functions generate the xxHash value from an incremental input.
0170  * This method is slower than single-call functions, due to state management.
0171  * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
0172  *
0173  * An XXH state must first be allocated using `XXH*_createState()`.
0174  *
0175  * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
0176  *
0177  * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
0178  *
0179  * The function returns an error code, with 0 meaning OK, and any other value
0180  * meaning there is an error.
0181  *
0182  * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
0183  * This function returns the nn-bits hash as an int or long long.
0184  *
0185  * It's still possible to continue inserting input into the hash state after a
0186  * digest, and generate new hash values later on by invoking `XXH*_digest()`.
0187  *
0188  * When done, release the state using `XXH*_freeState()`.
0189  *
0190  *
0191  * @anchor canonical_representation_example
0192  * **Canonical Representation**
0193  *
0194  * The default return values from XXH functions are unsigned 32, 64 and 128 bit
0195  * integers.
0196  * This the simplest and fastest format for further post-processing.
0197  *
0198  * However, this leaves open the question of what is the order on the byte level,
0199  * since little and big endian conventions will store the same number differently.
0200  *
0201  * The canonical representation settles this issue by mandating big-endian
0202  * convention, the same convention as human-readable numbers (large digits first).
0203  *
0204  * When writing hash values to storage, sending them over a network, or printing
0205  * them, it's highly recommended to use the canonical representation to ensure
0206  * portability across a wider range of systems, present and future.
0207  *
0208  * The following functions allow transformation of hash values to and from
0209  * canonical format.
0210  *
0211  * XXH32_canonicalFromHash(), XXH32_hashFromCanonical(),
0212  * XXH64_canonicalFromHash(), XXH64_hashFromCanonical(),
0213  * XXH128_canonicalFromHash(), XXH128_hashFromCanonical(),
0214  *
0215  * @code{.c}
0216  *   #include <stdio.h>
0217  *   #include "xxhash.h"
0218  *
0219  *   // Example for a function which prints XXH32_hash_t in human readable format
0220  *   void printXxh32(XXH32_hash_t hash)
0221  *   {
0222  *       XXH32_canonical_t cano;
0223  *       XXH32_canonicalFromHash(&cano, hash);
0224  *       size_t i;
0225  *       for(i = 0; i < sizeof(cano.digest); ++i) {
0226  *           printf("%02x", cano.digest[i]);
0227  *       }
0228  *       printf("\n");
0229  *   }
0230  *
0231  *   // Example for a function which converts XXH32_canonical_t to XXH32_hash_t
0232  *   XXH32_hash_t convertCanonicalToXxh32(XXH32_canonical_t cano)
0233  *   {
0234  *       XXH32_hash_t hash = XXH32_hashFromCanonical(&cano);
0235  *       return hash;
0236  *   }
0237  * @endcode
0238  *
0239  *
0240  * @file xxhash.h
0241  * xxHash prototypes and implementation
0242  */
0243 
0244 #if defined (__cplusplus)
0245 extern "C" {
0246 #endif
0247 
0248 /* ****************************
0249  *  INLINE mode
0250  ******************************/
0251 /*!
0252  * @defgroup public Public API
0253  * Contains details on the public xxHash functions.
0254  * @{
0255  */
0256 #ifdef XXH_DOXYGEN
0257 /*!
0258  * @brief Gives access to internal state declaration, required for static allocation.
0259  *
0260  * Incompatible with dynamic linking, due to risks of ABI changes.
0261  *
0262  * Usage:
0263  * @code{.c}
0264  *     #define XXH_STATIC_LINKING_ONLY
0265  *     #include "xxhash.h"
0266  * @endcode
0267  */
0268 #  define XXH_STATIC_LINKING_ONLY
0269 /* Do not undef XXH_STATIC_LINKING_ONLY for Doxygen */
0270 
0271 /*!
0272  * @brief Gives access to internal definitions.
0273  *
0274  * Usage:
0275  * @code{.c}
0276  *     #define XXH_STATIC_LINKING_ONLY
0277  *     #define XXH_IMPLEMENTATION
0278  *     #include "xxhash.h"
0279  * @endcode
0280  */
0281 #  define XXH_IMPLEMENTATION
0282 /* Do not undef XXH_IMPLEMENTATION for Doxygen */
0283 
0284 /*!
0285  * @brief Exposes the implementation and marks all functions as `inline`.
0286  *
0287  * Use these build macros to inline xxhash into the target unit.
0288  * Inlining improves performance on small inputs, especially when the length is
0289  * expressed as a compile-time constant:
0290  *
0291  *  https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
0292  *
0293  * It also keeps xxHash symbols private to the unit, so they are not exported.
0294  *
0295  * Usage:
0296  * @code{.c}
0297  *     #define XXH_INLINE_ALL
0298  *     #include "xxhash.h"
0299  * @endcode
0300  * Do not compile and link xxhash.o as a separate object, as it is not useful.
0301  */
0302 #  define XXH_INLINE_ALL
0303 #  undef XXH_INLINE_ALL
0304 /*!
0305  * @brief Exposes the implementation without marking functions as inline.
0306  */
0307 #  define XXH_PRIVATE_API
0308 #  undef XXH_PRIVATE_API
0309 /*!
0310  * @brief Emulate a namespace by transparently prefixing all symbols.
0311  *
0312  * If you want to include _and expose_ xxHash functions from within your own
0313  * library, but also want to avoid symbol collisions with other libraries which
0314  * may also include xxHash, you can use @ref XXH_NAMESPACE to automatically prefix
0315  * any public symbol from xxhash library with the value of @ref XXH_NAMESPACE
0316  * (therefore, avoid empty or numeric values).
0317  *
0318  * Note that no change is required within the calling program as long as it
0319  * includes `xxhash.h`: Regular symbol names will be automatically translated
0320  * by this header.
0321  */
0322 #  define XXH_NAMESPACE /* YOUR NAME HERE */
0323 #  undef XXH_NAMESPACE
0324 #endif
0325 
0326 #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
0327     && !defined(XXH_INLINE_ALL_31684351384)
0328    /* this section should be traversed only once */
0329 #  define XXH_INLINE_ALL_31684351384
0330    /* give access to the advanced API, required to compile implementations */
0331 #  undef XXH_STATIC_LINKING_ONLY   /* avoid macro redef */
0332 #  define XXH_STATIC_LINKING_ONLY
0333    /* make all functions private */
0334 #  undef XXH_PUBLIC_API
0335 #  if defined(__GNUC__)
0336 #    define XXH_PUBLIC_API static __inline __attribute__((__unused__))
0337 #  elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
0338 #    define XXH_PUBLIC_API static inline
0339 #  elif defined(_MSC_VER)
0340 #    define XXH_PUBLIC_API static __inline
0341 #  else
0342      /* note: this version may generate warnings for unused static functions */
0343 #    define XXH_PUBLIC_API static
0344 #  endif
0345 
0346    /*
0347     * This part deals with the special case where a unit wants to inline xxHash,
0348     * but "xxhash.h" has previously been included without XXH_INLINE_ALL,
0349     * such as part of some previously included *.h header file.
0350     * Without further action, the new include would just be ignored,
0351     * and functions would effectively _not_ be inlined (silent failure).
0352     * The following macros solve this situation by prefixing all inlined names,
0353     * avoiding naming collision with previous inclusions.
0354     */
0355    /* Before that, we unconditionally #undef all symbols,
0356     * in case they were already defined with XXH_NAMESPACE.
0357     * They will then be redefined for XXH_INLINE_ALL
0358     */
0359 #  undef XXH_versionNumber
0360     /* XXH32 */
0361 #  undef XXH32
0362 #  undef XXH32_createState
0363 #  undef XXH32_freeState
0364 #  undef XXH32_reset
0365 #  undef XXH32_update
0366 #  undef XXH32_digest
0367 #  undef XXH32_copyState
0368 #  undef XXH32_canonicalFromHash
0369 #  undef XXH32_hashFromCanonical
0370     /* XXH64 */
0371 #  undef XXH64
0372 #  undef XXH64_createState
0373 #  undef XXH64_freeState
0374 #  undef XXH64_reset
0375 #  undef XXH64_update
0376 #  undef XXH64_digest
0377 #  undef XXH64_copyState
0378 #  undef XXH64_canonicalFromHash
0379 #  undef XXH64_hashFromCanonical
0380     /* XXH3_64bits */
0381 #  undef XXH3_64bits
0382 #  undef XXH3_64bits_withSecret
0383 #  undef XXH3_64bits_withSeed
0384 #  undef XXH3_64bits_withSecretandSeed
0385 #  undef XXH3_createState
0386 #  undef XXH3_freeState
0387 #  undef XXH3_copyState
0388 #  undef XXH3_64bits_reset
0389 #  undef XXH3_64bits_reset_withSeed
0390 #  undef XXH3_64bits_reset_withSecret
0391 #  undef XXH3_64bits_update
0392 #  undef XXH3_64bits_digest
0393 #  undef XXH3_generateSecret
0394     /* XXH3_128bits */
0395 #  undef XXH128
0396 #  undef XXH3_128bits
0397 #  undef XXH3_128bits_withSeed
0398 #  undef XXH3_128bits_withSecret
0399 #  undef XXH3_128bits_reset
0400 #  undef XXH3_128bits_reset_withSeed
0401 #  undef XXH3_128bits_reset_withSecret
0402 #  undef XXH3_128bits_reset_withSecretandSeed
0403 #  undef XXH3_128bits_update
0404 #  undef XXH3_128bits_digest
0405 #  undef XXH128_isEqual
0406 #  undef XXH128_cmp
0407 #  undef XXH128_canonicalFromHash
0408 #  undef XXH128_hashFromCanonical
0409     /* Finally, free the namespace itself */
0410 #  undef XXH_NAMESPACE
0411 
0412     /* employ the namespace for XXH_INLINE_ALL */
0413 #  define XXH_NAMESPACE XXH_INLINE_
0414    /*
0415     * Some identifiers (enums, type names) are not symbols,
0416     * but they must nonetheless be renamed to avoid redeclaration.
0417     * Alternative solution: do not redeclare them.
0418     * However, this requires some #ifdefs, and has a more dispersed impact.
0419     * Meanwhile, renaming can be achieved in a single place.
0420     */
0421 #  define XXH_IPREF(Id)   XXH_NAMESPACE ## Id
0422 #  define XXH_OK XXH_IPREF(XXH_OK)
0423 #  define XXH_ERROR XXH_IPREF(XXH_ERROR)
0424 #  define XXH_errorcode XXH_IPREF(XXH_errorcode)
0425 #  define XXH32_canonical_t  XXH_IPREF(XXH32_canonical_t)
0426 #  define XXH64_canonical_t  XXH_IPREF(XXH64_canonical_t)
0427 #  define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
0428 #  define XXH32_state_s XXH_IPREF(XXH32_state_s)
0429 #  define XXH32_state_t XXH_IPREF(XXH32_state_t)
0430 #  define XXH64_state_s XXH_IPREF(XXH64_state_s)
0431 #  define XXH64_state_t XXH_IPREF(XXH64_state_t)
0432 #  define XXH3_state_s  XXH_IPREF(XXH3_state_s)
0433 #  define XXH3_state_t  XXH_IPREF(XXH3_state_t)
0434 #  define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
0435    /* Ensure the header is parsed again, even if it was previously included */
0436 #  undef XXHASH_H_5627135585666179
0437 #  undef XXHASH_H_STATIC_13879238742
0438 #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
0439 
0440 /* ****************************************************************
0441  *  Stable API
0442  *****************************************************************/
0443 #ifndef XXHASH_H_5627135585666179
0444 #define XXHASH_H_5627135585666179 1
0445 
0446 /*! @brief Marks a global symbol. */
0447 #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
0448 #  if defined(_WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
0449 #    ifdef XXH_EXPORT
0450 #      define XXH_PUBLIC_API __declspec(dllexport)
0451 #    elif XXH_IMPORT
0452 #      define XXH_PUBLIC_API __declspec(dllimport)
0453 #    endif
0454 #  else
0455 #    define XXH_PUBLIC_API   /* do nothing */
0456 #  endif
0457 #endif
0458 
0459 #ifdef XXH_NAMESPACE
0460 #  define XXH_CAT(A,B) A##B
0461 #  define XXH_NAME2(A,B) XXH_CAT(A,B)
0462 #  define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
0463 /* XXH32 */
0464 #  define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
0465 #  define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
0466 #  define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
0467 #  define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
0468 #  define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
0469 #  define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
0470 #  define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
0471 #  define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
0472 #  define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
0473 /* XXH64 */
0474 #  define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
0475 #  define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
0476 #  define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
0477 #  define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
0478 #  define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
0479 #  define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
0480 #  define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
0481 #  define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
0482 #  define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
0483 /* XXH3_64bits */
0484 #  define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
0485 #  define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
0486 #  define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
0487 #  define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed)
0488 #  define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
0489 #  define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
0490 #  define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
0491 #  define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
0492 #  define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
0493 #  define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
0494 #  define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed)
0495 #  define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
0496 #  define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
0497 #  define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
0498 #  define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed)
0499 /* XXH3_128bits */
0500 #  define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
0501 #  define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
0502 #  define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
0503 #  define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
0504 #  define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed)
0505 #  define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
0506 #  define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
0507 #  define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
0508 #  define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed)
0509 #  define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
0510 #  define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
0511 #  define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
0512 #  define XXH128_cmp     XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
0513 #  define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
0514 #  define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
0515 #endif
0516 
0517 
0518 /* *************************************
0519 *  Compiler specifics
0520 ***************************************/
0521 
0522 /* specific declaration modes for Windows */
0523 #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
0524 #  if defined(_WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
0525 #    ifdef XXH_EXPORT
0526 #      define XXH_PUBLIC_API __declspec(dllexport)
0527 #    elif XXH_IMPORT
0528 #      define XXH_PUBLIC_API __declspec(dllimport)
0529 #    endif
0530 #  else
0531 #    define XXH_PUBLIC_API   /* do nothing */
0532 #  endif
0533 #endif
0534 
0535 #if defined (__GNUC__)
0536 # define XXH_CONSTF  __attribute__((__const__))
0537 # define XXH_PUREF   __attribute__((__pure__))
0538 # define XXH_MALLOCF __attribute__((__malloc__))
0539 #else
0540 # define XXH_CONSTF  /* disable */
0541 # define XXH_PUREF
0542 # define XXH_MALLOCF
0543 #endif
0544 
0545 /* *************************************
0546 *  Version
0547 ***************************************/
0548 #define XXH_VERSION_MAJOR    0
0549 #define XXH_VERSION_MINOR    8
0550 #define XXH_VERSION_RELEASE  3
0551 /*! @brief Version number, encoded as two digits each */
0552 #define XXH_VERSION_NUMBER  (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
0553 
0554 /*!
0555  * @brief Obtains the xxHash version.
0556  *
0557  * This is mostly useful when xxHash is compiled as a shared library,
0558  * since the returned value comes from the library, as opposed to header file.
0559  *
0560  * @return @ref XXH_VERSION_NUMBER of the invoked library.
0561  */
0562 XXH_PUBLIC_API XXH_CONSTF unsigned XXH_versionNumber (void);
0563 
0564 
0565 /* ****************************
0566 *  Common basic types
0567 ******************************/
0568 #include <stddef.h>   /* size_t */
0569 /*!
0570  * @brief Exit code for the streaming API.
0571  */
0572 typedef enum {
0573     XXH_OK = 0, /*!< OK */
0574     XXH_ERROR   /*!< Error */
0575 } XXH_errorcode;
0576 
0577 
0578 /*-**********************************************************************
0579 *  32-bit hash
0580 ************************************************************************/
0581 #if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
0582 /*!
0583  * @brief An unsigned 32-bit integer.
0584  *
0585  * Not necessarily defined to `uint32_t` but functionally equivalent.
0586  */
0587 typedef uint32_t XXH32_hash_t;
0588 
0589 #elif !defined (__VMS) \
0590   && (defined (__cplusplus) \
0591   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
0592 #   ifdef _AIX
0593 #     include <inttypes.h>
0594 #   else
0595 #     include <stdint.h>
0596 #   endif
0597     typedef uint32_t XXH32_hash_t;
0598 
0599 #else
0600 #   include <limits.h>
0601 #   if UINT_MAX == 0xFFFFFFFFUL
0602       typedef unsigned int XXH32_hash_t;
0603 #   elif ULONG_MAX == 0xFFFFFFFFUL
0604       typedef unsigned long XXH32_hash_t;
0605 #   else
0606 #     error "unsupported platform: need a 32-bit type"
0607 #   endif
0608 #endif
0609 
0610 /*!
0611  * @}
0612  *
0613  * @defgroup XXH32_family XXH32 family
0614  * @ingroup public
0615  * Contains functions used in the classic 32-bit xxHash algorithm.
0616  *
0617  * @note
0618  *   XXH32 is useful for older platforms, with no or poor 64-bit performance.
0619  *   Note that the @ref XXH3_family provides competitive speed for both 32-bit
0620  *   and 64-bit systems, and offers true 64/128 bit hash results.
0621  *
0622  * @see @ref XXH64_family, @ref XXH3_family : Other xxHash families
0623  * @see @ref XXH32_impl for implementation details
0624  * @{
0625  */
0626 
0627 /*!
0628  * @brief Calculates the 32-bit hash of @p input using xxHash32.
0629  *
0630  * @param input The block of data to be hashed, at least @p length bytes in size.
0631  * @param length The length of @p input, in bytes.
0632  * @param seed The 32-bit seed to alter the hash's output predictably.
0633  *
0634  * @pre
0635  *   The memory between @p input and @p input + @p length must be valid,
0636  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
0637  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
0638  *
0639  * @return The calculated 32-bit xxHash32 value.
0640  *
0641  * @see @ref single_shot_example "Single Shot Example" for an example.
0642  */
0643 XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
0644 
0645 #ifndef XXH_NO_STREAM
0646 /*!
0647  * @typedef struct XXH32_state_s XXH32_state_t
0648  * @brief The opaque state struct for the XXH32 streaming API.
0649  *
0650  * @see XXH32_state_s for details.
0651  * @see @ref streaming_example "Streaming Example"
0652  */
0653 typedef struct XXH32_state_s XXH32_state_t;
0654 
0655 /*!
0656  * @brief Allocates an @ref XXH32_state_t.
0657  *
0658  * @return An allocated pointer of @ref XXH32_state_t on success.
0659  * @return `NULL` on failure.
0660  *
0661  * @note Must be freed with XXH32_freeState().
0662  *
0663  * @see @ref streaming_example "Streaming Example"
0664  */
0665 XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void);
0666 /*!
0667  * @brief Frees an @ref XXH32_state_t.
0668  *
0669  * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
0670  *
0671  * @return @ref XXH_OK.
0672  *
0673  * @note @p statePtr must be allocated with XXH32_createState().
0674  *
0675  * @see @ref streaming_example "Streaming Example"
0676  *
0677  */
0678 XXH_PUBLIC_API XXH_errorcode  XXH32_freeState(XXH32_state_t* statePtr);
0679 /*!
0680  * @brief Copies one @ref XXH32_state_t to another.
0681  *
0682  * @param dst_state The state to copy to.
0683  * @param src_state The state to copy from.
0684  * @pre
0685  *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
0686  */
0687 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
0688 
0689 /*!
0690  * @brief Resets an @ref XXH32_state_t to begin a new hash.
0691  *
0692  * @param statePtr The state struct to reset.
0693  * @param seed The 32-bit seed to alter the hash result predictably.
0694  *
0695  * @pre
0696  *   @p statePtr must not be `NULL`.
0697  *
0698  * @return @ref XXH_OK on success.
0699  * @return @ref XXH_ERROR on failure.
0700  *
0701  * @note This function resets and seeds a state. Call it before @ref XXH32_update().
0702  *
0703  * @see @ref streaming_example "Streaming Example"
0704  */
0705 XXH_PUBLIC_API XXH_errorcode XXH32_reset  (XXH32_state_t* statePtr, XXH32_hash_t seed);
0706 
0707 /*!
0708  * @brief Consumes a block of @p input to an @ref XXH32_state_t.
0709  *
0710  * @param statePtr The state struct to update.
0711  * @param input The block of data to be hashed, at least @p length bytes in size.
0712  * @param length The length of @p input, in bytes.
0713  *
0714  * @pre
0715  *   @p statePtr must not be `NULL`.
0716  * @pre
0717  *   The memory between @p input and @p input + @p length must be valid,
0718  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
0719  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
0720  *
0721  * @return @ref XXH_OK on success.
0722  * @return @ref XXH_ERROR on failure.
0723  *
0724  * @note Call this to incrementally consume blocks of data.
0725  *
0726  * @see @ref streaming_example "Streaming Example"
0727  */
0728 XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
0729 
0730 /*!
0731  * @brief Returns the calculated hash value from an @ref XXH32_state_t.
0732  *
0733  * @param statePtr The state struct to calculate the hash from.
0734  *
0735  * @pre
0736  *  @p statePtr must not be `NULL`.
0737  *
0738  * @return The calculated 32-bit xxHash32 value from that state.
0739  *
0740  * @note
0741  *   Calling XXH32_digest() will not affect @p statePtr, so you can update,
0742  *   digest, and update again.
0743  *
0744  * @see @ref streaming_example "Streaming Example"
0745  */
0746 XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
0747 #endif /* !XXH_NO_STREAM */
0748 
0749 /*******   Canonical representation   *******/
0750 
0751 /*!
0752  * @brief Canonical (big endian) representation of @ref XXH32_hash_t.
0753  */
0754 typedef struct {
0755     unsigned char digest[4]; /*!< Hash bytes, big endian */
0756 } XXH32_canonical_t;
0757 
0758 /*!
0759  * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
0760  *
0761  * @param dst  The @ref XXH32_canonical_t pointer to be stored to.
0762  * @param hash The @ref XXH32_hash_t to be converted.
0763  *
0764  * @pre
0765  *   @p dst must not be `NULL`.
0766  *
0767  * @see @ref canonical_representation_example "Canonical Representation Example"
0768  */
0769 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
0770 
0771 /*!
0772  * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
0773  *
0774  * @param src The @ref XXH32_canonical_t to convert.
0775  *
0776  * @pre
0777  *   @p src must not be `NULL`.
0778  *
0779  * @return The converted hash.
0780  *
0781  * @see @ref canonical_representation_example "Canonical Representation Example"
0782  */
0783 XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
0784 
0785 
0786 /*! @cond Doxygen ignores this part */
0787 #ifdef __has_attribute
0788 # define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
0789 #else
0790 # define XXH_HAS_ATTRIBUTE(x) 0
0791 #endif
0792 /*! @endcond */
0793 
0794 /*! @cond Doxygen ignores this part */
0795 /*
0796  * C23 __STDC_VERSION__ number hasn't been specified yet. For now
0797  * leave as `201711L` (C17 + 1).
0798  * TODO: Update to correct value when its been specified.
0799  */
0800 #define XXH_C23_VN 201711L
0801 /*! @endcond */
0802 
0803 /*! @cond Doxygen ignores this part */
0804 /* C-language Attributes are added in C23. */
0805 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) && defined(__has_c_attribute)
0806 # define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
0807 #else
0808 # define XXH_HAS_C_ATTRIBUTE(x) 0
0809 #endif
0810 /*! @endcond */
0811 
0812 /*! @cond Doxygen ignores this part */
0813 #if defined(__cplusplus) && defined(__has_cpp_attribute)
0814 # define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
0815 #else
0816 # define XXH_HAS_CPP_ATTRIBUTE(x) 0
0817 #endif
0818 /*! @endcond */
0819 
0820 /*! @cond Doxygen ignores this part */
0821 /*
0822  * Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
0823  * introduced in CPP17 and C23.
0824  * CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
0825  * C23   : https://en.cppreference.com/w/c/language/attributes/fallthrough
0826  */
0827 #if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough)
0828 # define XXH_FALLTHROUGH [[fallthrough]]
0829 #elif XXH_HAS_ATTRIBUTE(__fallthrough__)
0830 # define XXH_FALLTHROUGH __attribute__ ((__fallthrough__))
0831 #else
0832 # define XXH_FALLTHROUGH /* fallthrough */
0833 #endif
0834 /*! @endcond */
0835 
0836 /*! @cond Doxygen ignores this part */
0837 /*
0838  * Define XXH_NOESCAPE for annotated pointers in public API.
0839  * https://clang.llvm.org/docs/AttributeReference.html#noescape
0840  * As of writing this, only supported by clang.
0841  */
0842 #if XXH_HAS_ATTRIBUTE(noescape)
0843 # define XXH_NOESCAPE __attribute__((__noescape__))
0844 #else
0845 # define XXH_NOESCAPE
0846 #endif
0847 /*! @endcond */
0848 
0849 
0850 /*!
0851  * @}
0852  * @ingroup public
0853  * @{
0854  */
0855 
0856 #ifndef XXH_NO_LONG_LONG
0857 /*-**********************************************************************
0858 *  64-bit hash
0859 ************************************************************************/
0860 #if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
0861 /*!
0862  * @brief An unsigned 64-bit integer.
0863  *
0864  * Not necessarily defined to `uint64_t` but functionally equivalent.
0865  */
0866 typedef uint64_t XXH64_hash_t;
0867 #elif !defined (__VMS) \
0868   && (defined (__cplusplus) \
0869   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
0870 #   ifdef _AIX
0871 #     include <inttypes.h>
0872 #   else
0873 #     include <stdint.h>
0874 #   endif
0875    typedef uint64_t XXH64_hash_t;
0876 #else
0877 #  include <limits.h>
0878 #  if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
0879      /* LP64 ABI says uint64_t is unsigned long */
0880      typedef unsigned long XXH64_hash_t;
0881 #  else
0882      /* the following type must have a width of 64-bit */
0883      typedef unsigned long long XXH64_hash_t;
0884 #  endif
0885 #endif
0886 
0887 /*!
0888  * @}
0889  *
0890  * @defgroup XXH64_family XXH64 family
0891  * @ingroup public
0892  * @{
0893  * Contains functions used in the classic 64-bit xxHash algorithm.
0894  *
0895  * @note
0896  *   XXH3 provides competitive speed for both 32-bit and 64-bit systems,
0897  *   and offers true 64/128 bit hash results.
0898  *   It provides better speed for systems with vector processing capabilities.
0899  */
0900 
0901 /*!
0902  * @brief Calculates the 64-bit hash of @p input using xxHash64.
0903  *
0904  * @param input The block of data to be hashed, at least @p length bytes in size.
0905  * @param length The length of @p input, in bytes.
0906  * @param seed The 64-bit seed to alter the hash's output predictably.
0907  *
0908  * @pre
0909  *   The memory between @p input and @p input + @p length must be valid,
0910  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
0911  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
0912  *
0913  * @return The calculated 64-bit xxHash64 value.
0914  *
0915  * @see @ref single_shot_example "Single Shot Example" for an example.
0916  */
0917 XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
0918 
0919 /*******   Streaming   *******/
0920 #ifndef XXH_NO_STREAM
0921 /*!
0922  * @brief The opaque state struct for the XXH64 streaming API.
0923  *
0924  * @see XXH64_state_s for details.
0925  * @see @ref streaming_example "Streaming Example"
0926  */
0927 typedef struct XXH64_state_s XXH64_state_t;   /* incomplete type */
0928 
0929 /*!
0930  * @brief Allocates an @ref XXH64_state_t.
0931  *
0932  * @return An allocated pointer of @ref XXH64_state_t on success.
0933  * @return `NULL` on failure.
0934  *
0935  * @note Must be freed with XXH64_freeState().
0936  *
0937  * @see @ref streaming_example "Streaming Example"
0938  */
0939 XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void);
0940 
0941 /*!
0942  * @brief Frees an @ref XXH64_state_t.
0943  *
0944  * @param statePtr A pointer to an @ref XXH64_state_t allocated with @ref XXH64_createState().
0945  *
0946  * @return @ref XXH_OK.
0947  *
0948  * @note @p statePtr must be allocated with XXH64_createState().
0949  *
0950  * @see @ref streaming_example "Streaming Example"
0951  */
0952 XXH_PUBLIC_API XXH_errorcode  XXH64_freeState(XXH64_state_t* statePtr);
0953 
0954 /*!
0955  * @brief Copies one @ref XXH64_state_t to another.
0956  *
0957  * @param dst_state The state to copy to.
0958  * @param src_state The state to copy from.
0959  * @pre
0960  *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
0961  */
0962 XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state);
0963 
0964 /*!
0965  * @brief Resets an @ref XXH64_state_t to begin a new hash.
0966  *
0967  * @param statePtr The state struct to reset.
0968  * @param seed The 64-bit seed to alter the hash result predictably.
0969  *
0970  * @pre
0971  *   @p statePtr must not be `NULL`.
0972  *
0973  * @return @ref XXH_OK on success.
0974  * @return @ref XXH_ERROR on failure.
0975  *
0976  * @note This function resets and seeds a state. Call it before @ref XXH64_update().
0977  *
0978  * @see @ref streaming_example "Streaming Example"
0979  */
0980 XXH_PUBLIC_API XXH_errorcode XXH64_reset  (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed);
0981 
0982 /*!
0983  * @brief Consumes a block of @p input to an @ref XXH64_state_t.
0984  *
0985  * @param statePtr The state struct to update.
0986  * @param input The block of data to be hashed, at least @p length bytes in size.
0987  * @param length The length of @p input, in bytes.
0988  *
0989  * @pre
0990  *   @p statePtr must not be `NULL`.
0991  * @pre
0992  *   The memory between @p input and @p input + @p length must be valid,
0993  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
0994  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
0995  *
0996  * @return @ref XXH_OK on success.
0997  * @return @ref XXH_ERROR on failure.
0998  *
0999  * @note Call this to incrementally consume blocks of data.
1000  *
1001  * @see @ref streaming_example "Streaming Example"
1002  */
1003 XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
1004 
1005 /*!
1006  * @brief Returns the calculated hash value from an @ref XXH64_state_t.
1007  *
1008  * @param statePtr The state struct to calculate the hash from.
1009  *
1010  * @pre
1011  *  @p statePtr must not be `NULL`.
1012  *
1013  * @return The calculated 64-bit xxHash64 value from that state.
1014  *
1015  * @note
1016  *   Calling XXH64_digest() will not affect @p statePtr, so you can update,
1017  *   digest, and update again.
1018  *
1019  * @see @ref streaming_example "Streaming Example"
1020  */
1021 XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr);
1022 #endif /* !XXH_NO_STREAM */
1023 /*******   Canonical representation   *******/
1024 
1025 /*!
1026  * @brief Canonical (big endian) representation of @ref XXH64_hash_t.
1027  */
1028 typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
1029 
1030 /*!
1031  * @brief Converts an @ref XXH64_hash_t to a big endian @ref XXH64_canonical_t.
1032  *
1033  * @param dst The @ref XXH64_canonical_t pointer to be stored to.
1034  * @param hash The @ref XXH64_hash_t to be converted.
1035  *
1036  * @pre
1037  *   @p dst must not be `NULL`.
1038  *
1039  * @see @ref canonical_representation_example "Canonical Representation Example"
1040  */
1041 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash);
1042 
1043 /*!
1044  * @brief Converts an @ref XXH64_canonical_t to a native @ref XXH64_hash_t.
1045  *
1046  * @param src The @ref XXH64_canonical_t to convert.
1047  *
1048  * @pre
1049  *   @p src must not be `NULL`.
1050  *
1051  * @return The converted hash.
1052  *
1053  * @see @ref canonical_representation_example "Canonical Representation Example"
1054  */
1055 XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src);
1056 
1057 #ifndef XXH_NO_XXH3
1058 
1059 /*!
1060  * @}
1061  * ************************************************************************
1062  * @defgroup XXH3_family XXH3 family
1063  * @ingroup public
1064  * @{
1065  *
1066  * XXH3 is a more recent hash algorithm featuring:
1067  *  - Improved speed for both small and large inputs
1068  *  - True 64-bit and 128-bit outputs
1069  *  - SIMD acceleration
1070  *  - Improved 32-bit viability
1071  *
1072  * Speed analysis methodology is explained here:
1073  *
1074  *    https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
1075  *
1076  * Compared to XXH64, expect XXH3 to run approximately
1077  * ~2x faster on large inputs and >3x faster on small ones,
1078  * exact differences vary depending on platform.
1079  *
1080  * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
1081  * but does not require it.
1082  * Most 32-bit and 64-bit targets that can run XXH32 smoothly can run XXH3
1083  * at competitive speeds, even without vector support. Further details are
1084  * explained in the implementation.
1085  *
1086  * XXH3 has a fast scalar implementation, but it also includes accelerated SIMD
1087  * implementations for many common platforms:
1088  *   - AVX512
1089  *   - AVX2
1090  *   - SSE2
1091  *   - ARM NEON
1092  *   - WebAssembly SIMD128
1093  *   - POWER8 VSX
1094  *   - s390x ZVector
1095  * This can be controlled via the @ref XXH_VECTOR macro, but it automatically
1096  * selects the best version according to predefined macros. For the x86 family, an
1097  * automatic runtime dispatcher is included separately in @ref xxh_x86dispatch.c.
1098  *
1099  * XXH3 implementation is portable:
1100  * it has a generic C90 formulation that can be compiled on any platform,
1101  * all implementations generate exactly the same hash value on all platforms.
1102  * Starting from v0.8.0, it's also labelled "stable", meaning that
1103  * any future version will also generate the same hash value.
1104  *
1105  * XXH3 offers 2 variants, _64bits and _128bits.
1106  *
1107  * When only 64 bits are needed, prefer invoking the _64bits variant, as it
1108  * reduces the amount of mixing, resulting in faster speed on small inputs.
1109  * It's also generally simpler to manipulate a scalar return type than a struct.
1110  *
1111  * The API supports one-shot hashing, streaming mode, and custom secrets.
1112  */
1113 
1114 /*!
1115  * @ingroup tuning
1116  * @brief Possible values for @ref XXH_VECTOR.
1117  *
1118  * Unless set explicitly, determined automatically.
1119  */
1120 #  define XXH_SCALAR 0 /*!< Portable scalar version */
1121 #  define XXH_SSE2   1 /*!< SSE2 for Pentium 4, Opteron, all x86_64. */
1122 #  define XXH_AVX2   2 /*!< AVX2 for Haswell and Bulldozer */
1123 #  define XXH_AVX512 3 /*!< AVX512 for Skylake and Icelake */
1124 #  define XXH_NEON   4 /*!< NEON for most ARMv7-A, all AArch64, and WASM SIMD128 */
1125 #  define XXH_VSX    5 /*!< VSX and ZVector for POWER8/z13 (64-bit) */
1126 #  define XXH_SVE    6 /*!< SVE for some ARMv8-A and ARMv9-A */
1127 #  define XXH_LSX    7 /*!< LSX (128-bit SIMD) for LoongArch64 */
1128 
1129 
1130 /*-**********************************************************************
1131 *  XXH3 64-bit variant
1132 ************************************************************************/
1133 
1134 /*!
1135  * @brief Calculates 64-bit unseeded variant of XXH3 hash of @p input.
1136  *
1137  * @param input  The block of data to be hashed, at least @p length bytes in size.
1138  * @param length The length of @p input, in bytes.
1139  *
1140  * @pre
1141  *   The memory between @p input and @p input + @p length must be valid,
1142  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
1143  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
1144  *
1145  * @return The calculated 64-bit XXH3 hash value.
1146  *
1147  * @note
1148  *   This is equivalent to @ref XXH3_64bits_withSeed() with a seed of `0`, however
1149  *   it may have slightly better performance due to constant propagation of the
1150  *   defaults.
1151  *
1152  * @see
1153  *    XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants
1154  * @see @ref single_shot_example "Single Shot Example" for an example.
1155  */
1156 XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length);
1157 
1158 /*!
1159  * @brief Calculates 64-bit seeded variant of XXH3 hash of @p input.
1160  *
1161  * @param input  The block of data to be hashed, at least @p length bytes in size.
1162  * @param length The length of @p input, in bytes.
1163  * @param seed   The 64-bit seed to alter the hash result predictably.
1164  *
1165  * @pre
1166  *   The memory between @p input and @p input + @p length must be valid,
1167  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
1168  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
1169  *
1170  * @return The calculated 64-bit XXH3 hash value.
1171  *
1172  * @note
1173  *    seed == 0 produces the same results as @ref XXH3_64bits().
1174  *
1175  * This variant generates a custom secret on the fly based on default secret
1176  * altered using the @p seed value.
1177  *
1178  * While this operation is decently fast, note that it's not completely free.
1179  *
1180  * @see @ref single_shot_example "Single Shot Example" for an example.
1181  */
1182 XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
1183 
1184 /*!
1185  * The bare minimum size for a custom secret.
1186  *
1187  * @see
1188  *  XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
1189  *  XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
1190  */
1191 #define XXH3_SECRET_SIZE_MIN 136
1192 
1193 /*!
1194  * @brief Calculates 64-bit variant of XXH3 with a custom "secret".
1195  *
1196  * @param data       The block of data to be hashed, at least @p len bytes in size.
1197  * @param len        The length of @p data, in bytes.
1198  * @param secret     The secret data.
1199  * @param secretSize The length of @p secret, in bytes.
1200  *
1201  * @return The calculated 64-bit XXH3 hash value.
1202  *
1203  * @pre
1204  *   The memory between @p data and @p data + @p len must be valid,
1205  *   readable, contiguous memory. However, if @p length is `0`, @p data may be
1206  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
1207  *
1208  * It's possible to provide any blob of bytes as a "secret" to generate the hash.
1209  * This makes it more difficult for an external actor to prepare an intentional collision.
1210  * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN).
1211  * However, the quality of the secret impacts the dispersion of the hash algorithm.
1212  * Therefore, the secret _must_ look like a bunch of random bytes.
1213  * Avoid "trivial" or structured data such as repeated sequences or a text document.
1214  * Whenever in doubt about the "randomness" of the blob of bytes,
1215  * consider employing @ref XXH3_generateSecret() instead (see below).
1216  * It will generate a proper high entropy secret derived from the blob of bytes.
1217  * Another advantage of using XXH3_generateSecret() is that
1218  * it guarantees that all bits within the initial blob of bytes
1219  * will impact every bit of the output.
1220  * This is not necessarily the case when using the blob of bytes directly
1221  * because, when hashing _small_ inputs, only a portion of the secret is employed.
1222  *
1223  * @see @ref single_shot_example "Single Shot Example" for an example.
1224  */
1225 XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
1226 
1227 
1228 /*******   Streaming   *******/
1229 #ifndef XXH_NO_STREAM
1230 /*
1231  * Streaming requires state maintenance.
1232  * This operation costs memory and CPU.
1233  * As a consequence, streaming is slower than one-shot hashing.
1234  * For better performance, prefer one-shot functions whenever applicable.
1235  */
1236 
1237 /*!
1238  * @brief The opaque state struct for the XXH3 streaming API.
1239  *
1240  * @see XXH3_state_s for details.
1241  * @see @ref streaming_example "Streaming Example"
1242  */
1243 typedef struct XXH3_state_s XXH3_state_t;
1244 XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void);
1245 XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
1246 
1247 /*!
1248  * @brief Copies one @ref XXH3_state_t to another.
1249  *
1250  * @param dst_state The state to copy to.
1251  * @param src_state The state to copy from.
1252  * @pre
1253  *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
1254  */
1255 XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state);
1256 
1257 /*!
1258  * @brief Resets an @ref XXH3_state_t to begin a new hash.
1259  *
1260  * @param statePtr The state struct to reset.
1261  *
1262  * @pre
1263  *   @p statePtr must not be `NULL`.
1264  *
1265  * @return @ref XXH_OK on success.
1266  * @return @ref XXH_ERROR on failure.
1267  *
1268  * @note
1269  *   - This function resets `statePtr` and generate a secret with default parameters.
1270  *   - Call this function before @ref XXH3_64bits_update().
1271  *   - Digest will be equivalent to `XXH3_64bits()`.
1272  *
1273  * @see @ref streaming_example "Streaming Example"
1274  *
1275  */
1276 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
1277 
1278 /*!
1279  * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
1280  *
1281  * @param statePtr The state struct to reset.
1282  * @param seed     The 64-bit seed to alter the hash result predictably.
1283  *
1284  * @pre
1285  *   @p statePtr must not be `NULL`.
1286  *
1287  * @return @ref XXH_OK on success.
1288  * @return @ref XXH_ERROR on failure.
1289  *
1290  * @note
1291  *   - This function resets `statePtr` and generate a secret from `seed`.
1292  *   - Call this function before @ref XXH3_64bits_update().
1293  *   - Digest will be equivalent to `XXH3_64bits_withSeed()`.
1294  *
1295  * @see @ref streaming_example "Streaming Example"
1296  *
1297  */
1298 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
1299 
1300 /*!
1301  * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
1302  *
1303  * @param statePtr The state struct to reset.
1304  * @param secret     The secret data.
1305  * @param secretSize The length of @p secret, in bytes.
1306  *
1307  * @pre
1308  *   @p statePtr must not be `NULL`.
1309  *
1310  * @return @ref XXH_OK on success.
1311  * @return @ref XXH_ERROR on failure.
1312  *
1313  * @note
1314  *   `secret` is referenced, it _must outlive_ the hash streaming session.
1315  *
1316  * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN,
1317  * and the quality of produced hash values depends on secret's entropy
1318  * (secret's content should look like a bunch of random bytes).
1319  * When in doubt about the randomness of a candidate `secret`,
1320  * consider employing `XXH3_generateSecret()` instead (see below).
1321  *
1322  * @see @ref streaming_example "Streaming Example"
1323  */
1324 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
1325 
1326 /*!
1327  * @brief Consumes a block of @p input to an @ref XXH3_state_t.
1328  *
1329  * @param statePtr The state struct to update.
1330  * @param input The block of data to be hashed, at least @p length bytes in size.
1331  * @param length The length of @p input, in bytes.
1332  *
1333  * @pre
1334  *   @p statePtr must not be `NULL`.
1335  * @pre
1336  *   The memory between @p input and @p input + @p length must be valid,
1337  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
1338  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
1339  *
1340  * @return @ref XXH_OK on success.
1341  * @return @ref XXH_ERROR on failure.
1342  *
1343  * @note Call this to incrementally consume blocks of data.
1344  *
1345  * @see @ref streaming_example "Streaming Example"
1346  */
1347 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
1348 
1349 /*!
1350  * @brief Returns the calculated XXH3 64-bit hash value from an @ref XXH3_state_t.
1351  *
1352  * @param statePtr The state struct to calculate the hash from.
1353  *
1354  * @pre
1355  *  @p statePtr must not be `NULL`.
1356  *
1357  * @return The calculated XXH3 64-bit hash value from that state.
1358  *
1359  * @note
1360  *   Calling XXH3_64bits_digest() will not affect @p statePtr, so you can update,
1361  *   digest, and update again.
1362  *
1363  * @see @ref streaming_example "Streaming Example"
1364  */
1365 XXH_PUBLIC_API XXH_PUREF XXH64_hash_t  XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
1366 #endif /* !XXH_NO_STREAM */
1367 
1368 /* note : canonical representation of XXH3 is the same as XXH64
1369  * since they both produce XXH64_hash_t values */
1370 
1371 
1372 /*-**********************************************************************
1373 *  XXH3 128-bit variant
1374 ************************************************************************/
1375 
1376 /*!
1377  * @brief The return value from 128-bit hashes.
1378  *
1379  * Stored in little endian order, although the fields themselves are in native
1380  * endianness.
1381  */
1382 typedef struct {
1383     XXH64_hash_t low64;   /*!< `value & 0xFFFFFFFFFFFFFFFF` */
1384     XXH64_hash_t high64;  /*!< `value >> 64` */
1385 } XXH128_hash_t;
1386 
1387 /*!
1388  * @brief Calculates 128-bit unseeded variant of XXH3 of @p data.
1389  *
1390  * @param data The block of data to be hashed, at least @p length bytes in size.
1391  * @param len  The length of @p data, in bytes.
1392  *
1393  * @return The calculated 128-bit variant of XXH3 value.
1394  *
1395  * The 128-bit variant of XXH3 has more strength, but it has a bit of overhead
1396  * for shorter inputs.
1397  *
1398  * This is equivalent to @ref XXH3_128bits_withSeed() with a seed of `0`, however
1399  * it may have slightly better performance due to constant propagation of the
1400  * defaults.
1401  *
1402  * @see XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants
1403  * @see @ref single_shot_example "Single Shot Example" for an example.
1404  */
1405 XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len);
1406 /*! @brief Calculates 128-bit seeded variant of XXH3 hash of @p data.
1407  *
1408  * @param data The block of data to be hashed, at least @p length bytes in size.
1409  * @param len  The length of @p data, in bytes.
1410  * @param seed The 64-bit seed to alter the hash result predictably.
1411  *
1412  * @return The calculated 128-bit variant of XXH3 value.
1413  *
1414  * @note
1415  *    seed == 0 produces the same results as @ref XXH3_64bits().
1416  *
1417  * This variant generates a custom secret on the fly based on default secret
1418  * altered using the @p seed value.
1419  *
1420  * While this operation is decently fast, note that it's not completely free.
1421  *
1422  * @see XXH3_128bits(), XXH3_128bits_withSecret(): other seeding variants
1423  * @see @ref single_shot_example "Single Shot Example" for an example.
1424  */
1425 XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
1426 /*!
1427  * @brief Calculates 128-bit variant of XXH3 with a custom "secret".
1428  *
1429  * @param data       The block of data to be hashed, at least @p len bytes in size.
1430  * @param len        The length of @p data, in bytes.
1431  * @param secret     The secret data.
1432  * @param secretSize The length of @p secret, in bytes.
1433  *
1434  * @return The calculated 128-bit variant of XXH3 value.
1435  *
1436  * It's possible to provide any blob of bytes as a "secret" to generate the hash.
1437  * This makes it more difficult for an external actor to prepare an intentional collision.
1438  * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN).
1439  * However, the quality of the secret impacts the dispersion of the hash algorithm.
1440  * Therefore, the secret _must_ look like a bunch of random bytes.
1441  * Avoid "trivial" or structured data such as repeated sequences or a text document.
1442  * Whenever in doubt about the "randomness" of the blob of bytes,
1443  * consider employing @ref XXH3_generateSecret() instead (see below).
1444  * It will generate a proper high entropy secret derived from the blob of bytes.
1445  * Another advantage of using XXH3_generateSecret() is that
1446  * it guarantees that all bits within the initial blob of bytes
1447  * will impact every bit of the output.
1448  * This is not necessarily the case when using the blob of bytes directly
1449  * because, when hashing _small_ inputs, only a portion of the secret is employed.
1450  *
1451  * @see @ref single_shot_example "Single Shot Example" for an example.
1452  */
1453 XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
1454 
1455 /*******   Streaming   *******/
1456 #ifndef XXH_NO_STREAM
1457 /*
1458  * Streaming requires state maintenance.
1459  * This operation costs memory and CPU.
1460  * As a consequence, streaming is slower than one-shot hashing.
1461  * For better performance, prefer one-shot functions whenever applicable.
1462  *
1463  * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
1464  * Use already declared XXH3_createState() and XXH3_freeState().
1465  *
1466  * All reset and streaming functions have same meaning as their 64-bit counterpart.
1467  */
1468 
1469 /*!
1470  * @brief Resets an @ref XXH3_state_t to begin a new hash.
1471  *
1472  * @param statePtr The state struct to reset.
1473  *
1474  * @pre
1475  *   @p statePtr must not be `NULL`.
1476  *
1477  * @return @ref XXH_OK on success.
1478  * @return @ref XXH_ERROR on failure.
1479  *
1480  * @note
1481  *   - This function resets `statePtr` and generate a secret with default parameters.
1482  *   - Call it before @ref XXH3_128bits_update().
1483  *   - Digest will be equivalent to `XXH3_128bits()`.
1484  *
1485  * @see @ref streaming_example "Streaming Example"
1486  */
1487 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
1488 
1489 /*!
1490  * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
1491  *
1492  * @param statePtr The state struct to reset.
1493  * @param seed     The 64-bit seed to alter the hash result predictably.
1494  *
1495  * @pre
1496  *   @p statePtr must not be `NULL`.
1497  *
1498  * @return @ref XXH_OK on success.
1499  * @return @ref XXH_ERROR on failure.
1500  *
1501  * @note
1502  *   - This function resets `statePtr` and generate a secret from `seed`.
1503  *   - Call it before @ref XXH3_128bits_update().
1504  *   - Digest will be equivalent to `XXH3_128bits_withSeed()`.
1505  *
1506  * @see @ref streaming_example "Streaming Example"
1507  */
1508 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
1509 /*!
1510  * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
1511  *
1512  * @param statePtr   The state struct to reset.
1513  * @param secret     The secret data.
1514  * @param secretSize The length of @p secret, in bytes.
1515  *
1516  * @pre
1517  *   @p statePtr must not be `NULL`.
1518  *
1519  * @return @ref XXH_OK on success.
1520  * @return @ref XXH_ERROR on failure.
1521  *
1522  * `secret` is referenced, it _must outlive_ the hash streaming session.
1523  * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN,
1524  * and the quality of produced hash values depends on secret's entropy
1525  * (secret's content should look like a bunch of random bytes).
1526  * When in doubt about the randomness of a candidate `secret`,
1527  * consider employing `XXH3_generateSecret()` instead (see below).
1528  *
1529  * @see @ref streaming_example "Streaming Example"
1530  */
1531 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
1532 
1533 /*!
1534  * @brief Consumes a block of @p input to an @ref XXH3_state_t.
1535  *
1536  * Call this to incrementally consume blocks of data.
1537  *
1538  * @param statePtr The state struct to update.
1539  * @param input The block of data to be hashed, at least @p length bytes in size.
1540  * @param length The length of @p input, in bytes.
1541  *
1542  * @pre
1543  *   @p statePtr must not be `NULL`.
1544  *
1545  * @return @ref XXH_OK on success.
1546  * @return @ref XXH_ERROR on failure.
1547  *
1548  * @note
1549  *   The memory between @p input and @p input + @p length must be valid,
1550  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
1551  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
1552  *
1553  */
1554 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
1555 
1556 /*!
1557  * @brief Returns the calculated XXH3 128-bit hash value from an @ref XXH3_state_t.
1558  *
1559  * @param statePtr The state struct to calculate the hash from.
1560  *
1561  * @pre
1562  *  @p statePtr must not be `NULL`.
1563  *
1564  * @return The calculated XXH3 128-bit hash value from that state.
1565  *
1566  * @note
1567  *   Calling XXH3_128bits_digest() will not affect @p statePtr, so you can update,
1568  *   digest, and update again.
1569  *
1570  */
1571 XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
1572 #endif /* !XXH_NO_STREAM */
1573 
1574 /* Following helper functions make it possible to compare XXH128_hast_t values.
1575  * Since XXH128_hash_t is a structure, this capability is not offered by the language.
1576  * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
1577 
1578 /*!
1579  * @brief Check equality of two XXH128_hash_t values
1580  *
1581  * @param h1 The 128-bit hash value.
1582  * @param h2 Another 128-bit hash value.
1583  *
1584  * @return `1` if `h1` and `h2` are equal.
1585  * @return `0` if they are not.
1586  */
1587 XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
1588 
1589 /*!
1590  * @brief Compares two @ref XXH128_hash_t
1591  *
1592  * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
1593  *
1594  * @param h128_1 Left-hand side value
1595  * @param h128_2 Right-hand side value
1596  *
1597  * @return >0 if @p h128_1  > @p h128_2
1598  * @return =0 if @p h128_1 == @p h128_2
1599  * @return <0 if @p h128_1  < @p h128_2
1600  */
1601 XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2);
1602 
1603 
1604 /*******   Canonical representation   *******/
1605 typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
1606 
1607 
1608 /*!
1609  * @brief Converts an @ref XXH128_hash_t to a big endian @ref XXH128_canonical_t.
1610  *
1611  * @param dst  The @ref XXH128_canonical_t pointer to be stored to.
1612  * @param hash The @ref XXH128_hash_t to be converted.
1613  *
1614  * @pre
1615  *   @p dst must not be `NULL`.
1616  * @see @ref canonical_representation_example "Canonical Representation Example"
1617  */
1618 XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash);
1619 
1620 /*!
1621  * @brief Converts an @ref XXH128_canonical_t to a native @ref XXH128_hash_t.
1622  *
1623  * @param src The @ref XXH128_canonical_t to convert.
1624  *
1625  * @pre
1626  *   @p src must not be `NULL`.
1627  *
1628  * @return The converted hash.
1629  * @see @ref canonical_representation_example "Canonical Representation Example"
1630  */
1631 XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src);
1632 
1633 
1634 #endif  /* !XXH_NO_XXH3 */
1635 #endif  /* XXH_NO_LONG_LONG */
1636 
1637 /*!
1638  * @}
1639  */
1640 #endif /* XXHASH_H_5627135585666179 */
1641 
1642 
1643 
1644 #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
1645 #define XXHASH_H_STATIC_13879238742
1646 /* ****************************************************************************
1647  * This section contains declarations which are not guaranteed to remain stable.
1648  * They may change in future versions, becoming incompatible with a different
1649  * version of the library.
1650  * These declarations should only be used with static linking.
1651  * Never use them in association with dynamic linking!
1652  ***************************************************************************** */
1653 
1654 /*
1655  * These definitions are only present to allow static allocation
1656  * of XXH states, on stack or in a struct, for example.
1657  * Never **ever** access their members directly.
1658  */
1659 
1660 /*!
1661  * @internal
1662  * @brief Structure for XXH32 streaming API.
1663  *
1664  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
1665  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
1666  * an opaque type. This allows fields to safely be changed.
1667  *
1668  * Typedef'd to @ref XXH32_state_t.
1669  * Do not access the members of this struct directly.
1670  * @see XXH64_state_s, XXH3_state_s
1671  */
1672 struct XXH32_state_s {
1673    XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
1674    XXH32_hash_t large_len;    /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
1675    XXH32_hash_t acc[4];       /*!< Accumulator lanes */
1676    unsigned char buffer[16];  /*!< Internal buffer for partial reads. */
1677    XXH32_hash_t bufferedSize; /*!< Amount of data in @ref buffer */
1678    XXH32_hash_t reserved;     /*!< Reserved field. Do not read nor write to it. */
1679 };   /* typedef'd to XXH32_state_t */
1680 
1681 
1682 #ifndef XXH_NO_LONG_LONG  /* defined when there is no 64-bit support */
1683 
1684 /*!
1685  * @internal
1686  * @brief Structure for XXH64 streaming API.
1687  *
1688  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
1689  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
1690  * an opaque type. This allows fields to safely be changed.
1691  *
1692  * Typedef'd to @ref XXH64_state_t.
1693  * Do not access the members of this struct directly.
1694  * @see XXH32_state_s, XXH3_state_s
1695  */
1696 struct XXH64_state_s {
1697    XXH64_hash_t total_len;    /*!< Total length hashed. This is always 64-bit. */
1698    XXH64_hash_t acc[4];       /*!< Accumulator lanes */
1699    unsigned char buffer[32];  /*!< Internal buffer for partial reads.. */
1700    XXH32_hash_t bufferedSize; /*!< Amount of data in @ref buffer */
1701    XXH32_hash_t reserved32;   /*!< Reserved field, needed for padding anyways*/
1702    XXH64_hash_t reserved64;   /*!< Reserved field. Do not read or write to it. */
1703 };   /* typedef'd to XXH64_state_t */
1704 
1705 #ifndef XXH_NO_XXH3
1706 
1707 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
1708 #  define XXH_ALIGN(n)      _Alignas(n)
1709 #elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */
1710 /* In C++ alignas() is a keyword */
1711 #  define XXH_ALIGN(n)      alignas(n)
1712 #elif defined(__GNUC__)
1713 #  define XXH_ALIGN(n)      __attribute__ ((aligned(n)))
1714 #elif defined(_MSC_VER)
1715 #  define XXH_ALIGN(n)      __declspec(align(n))
1716 #else
1717 #  define XXH_ALIGN(n)   /* disabled */
1718 #endif
1719 
1720 /* Old GCC versions only accept the attribute after the type in structures. */
1721 #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L))   /* C11+ */ \
1722     && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \
1723     && defined(__GNUC__)
1724 #   define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
1725 #else
1726 #   define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
1727 #endif
1728 
1729 /*!
1730  * @brief The size of the internal XXH3 buffer.
1731  *
1732  * This is the optimal update size for incremental hashing.
1733  *
1734  * @see XXH3_64b_update(), XXH3_128b_update().
1735  */
1736 #define XXH3_INTERNALBUFFER_SIZE 256
1737 
1738 /*!
1739  * @internal
1740  * @brief Default size of the secret buffer (and @ref XXH3_kSecret).
1741  *
1742  * This is the size used in @ref XXH3_kSecret and the seeded functions.
1743  *
1744  * Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
1745  */
1746 #define XXH3_SECRET_DEFAULT_SIZE 192
1747 
1748 /*!
1749  * @internal
1750  * @brief Structure for XXH3 streaming API.
1751  *
1752  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
1753  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined.
1754  * Otherwise it is an opaque type.
1755  * Never use this definition in combination with dynamic library.
1756  * This allows fields to safely be changed in the future.
1757  *
1758  * @note ** This structure has a strict alignment requirement of 64 bytes!! **
1759  * Do not allocate this with `malloc()` or `new`,
1760  * it will not be sufficiently aligned.
1761  * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation.
1762  *
1763  * Typedef'd to @ref XXH3_state_t.
1764  * Do never access the members of this struct directly.
1765  *
1766  * @see XXH3_INITSTATE() for stack initialization.
1767  * @see XXH3_createState(), XXH3_freeState().
1768  * @see XXH32_state_s, XXH64_state_s
1769  */
1770 struct XXH3_state_s {
1771    XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
1772        /*!< The 8 accumulators. See @ref XXH32_state_s::v and @ref XXH64_state_s::v */
1773    XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
1774        /*!< Used to store a custom secret generated from a seed. */
1775    XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
1776        /*!< The internal buffer. @see XXH32_state_s::mem32 */
1777    XXH32_hash_t bufferedSize;
1778        /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
1779    XXH32_hash_t useSeed;
1780        /*!< Reserved field. Needed for padding on 64-bit. */
1781    size_t nbStripesSoFar;
1782        /*!< Number or stripes processed. */
1783    XXH64_hash_t totalLen;
1784        /*!< Total length hashed. 64-bit even on 32-bit targets. */
1785    size_t nbStripesPerBlock;
1786        /*!< Number of stripes per block. */
1787    size_t secretLimit;
1788        /*!< Size of @ref customSecret or @ref extSecret */
1789    XXH64_hash_t seed;
1790        /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
1791    XXH64_hash_t reserved64;
1792        /*!< Reserved field. */
1793    const unsigned char* extSecret;
1794        /*!< Reference to an external secret for the _withSecret variants, NULL
1795         *   for other variants. */
1796    /* note: there may be some padding at the end due to alignment on 64 bytes */
1797 }; /* typedef'd to XXH3_state_t */
1798 
1799 #undef XXH_ALIGN_MEMBER
1800 
1801 /*!
1802  * @brief Initializes a stack-allocated `XXH3_state_s`.
1803  *
1804  * When the @ref XXH3_state_t structure is merely emplaced on stack,
1805  * it should be initialized with XXH3_INITSTATE() or a memset()
1806  * in case its first reset uses XXH3_NNbits_reset_withSeed().
1807  * This init can be omitted if the first reset uses default or _withSecret mode.
1808  * This operation isn't necessary when the state is created with XXH3_createState().
1809  * Note that this doesn't prepare the state for a streaming operation,
1810  * it's still necessary to use XXH3_NNbits_reset*() afterwards.
1811  */
1812 #define XXH3_INITSTATE(XXH3_state_ptr)                       \
1813     do {                                                     \
1814         XXH3_state_t* tmp_xxh3_state_ptr = (XXH3_state_ptr); \
1815         tmp_xxh3_state_ptr->seed = 0;                        \
1816         tmp_xxh3_state_ptr->extSecret = NULL;                \
1817     } while(0)
1818 
1819 
1820 /*!
1821  * @brief Calculates the 128-bit hash of @p data using XXH3.
1822  *
1823  * @param data The block of data to be hashed, at least @p len bytes in size.
1824  * @param len  The length of @p data, in bytes.
1825  * @param seed The 64-bit seed to alter the hash's output predictably.
1826  *
1827  * @pre
1828  *   The memory between @p data and @p data + @p len must be valid,
1829  *   readable, contiguous memory. However, if @p len is `0`, @p data may be
1830  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
1831  *
1832  * @return The calculated 128-bit XXH3 value.
1833  *
1834  * @see @ref single_shot_example "Single Shot Example" for an example.
1835  */
1836 XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
1837 
1838 
1839 /* ===   Experimental API   === */
1840 /* Symbols defined below must be considered tied to a specific library version. */
1841 
1842 /*!
1843  * @brief Derive a high-entropy secret from any user-defined content, named customSeed.
1844  *
1845  * @param secretBuffer    A writable buffer for derived high-entropy secret data.
1846  * @param secretSize      Size of secretBuffer, in bytes.  Must be >= XXH3_SECRET_SIZE_MIN.
1847  * @param customSeed      A user-defined content.
1848  * @param customSeedSize  Size of customSeed, in bytes.
1849  *
1850  * @return @ref XXH_OK on success.
1851  * @return @ref XXH_ERROR on failure.
1852  *
1853  * The generated secret can be used in combination with `*_withSecret()` functions.
1854  * The `_withSecret()` variants are useful to provide a higher level of protection
1855  * than 64-bit seed, as it becomes much more difficult for an external actor to
1856  * guess how to impact the calculation logic.
1857  *
1858  * The function accepts as input a custom seed of any length and any content,
1859  * and derives from it a high-entropy secret of length @p secretSize into an
1860  * already allocated buffer @p secretBuffer.
1861  *
1862  * The generated secret can then be used with any `*_withSecret()` variant.
1863  * The functions @ref XXH3_128bits_withSecret(), @ref XXH3_64bits_withSecret(),
1864  * @ref XXH3_128bits_reset_withSecret() and @ref XXH3_64bits_reset_withSecret()
1865  * are part of this list. They all accept a `secret` parameter
1866  * which must be large enough for implementation reasons (>= @ref XXH3_SECRET_SIZE_MIN)
1867  * _and_ feature very high entropy (consist of random-looking bytes).
1868  * These conditions can be a high bar to meet, so @ref XXH3_generateSecret() can
1869  * be employed to ensure proper quality.
1870  *
1871  * @p customSeed can be anything. It can have any size, even small ones,
1872  * and its content can be anything, even "poor entropy" sources such as a bunch
1873  * of zeroes. The resulting `secret` will nonetheless provide all required qualities.
1874  *
1875  * @pre
1876  *   - @p secretSize must be >= @ref XXH3_SECRET_SIZE_MIN
1877  *   - When @p customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
1878  *
1879  * Example code:
1880  * @code{.c}
1881  *    #include <stdio.h>
1882  *    #include <stdlib.h>
1883  *    #include <string.h>
1884  *    #define XXH_STATIC_LINKING_ONLY // expose unstable API
1885  *    #include "xxhash.h"
1886  *    // Hashes argv[2] using the entropy from argv[1].
1887  *    int main(int argc, char* argv[])
1888  *    {
1889  *        char secret[XXH3_SECRET_SIZE_MIN];
1890  *        if (argv != 3) { return 1; }
1891  *        XXH3_generateSecret(secret, sizeof(secret), argv[1], strlen(argv[1]));
1892  *        XXH64_hash_t h = XXH3_64bits_withSecret(
1893  *             argv[2], strlen(argv[2]),
1894  *             secret, sizeof(secret)
1895  *        );
1896  *        printf("%016llx\n", (unsigned long long) h);
1897  *    }
1898  * @endcode
1899  */
1900 XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize);
1901 
1902 /*!
1903  * @brief Generate the same secret as the _withSeed() variants.
1904  *
1905  * @param secretBuffer A writable buffer of @ref XXH3_SECRET_DEFAULT_SIZE bytes
1906  * @param seed         The 64-bit seed to alter the hash result predictably.
1907  *
1908  * The generated secret can be used in combination with
1909  *`*_withSecret()` and `_withSecretandSeed()` variants.
1910  *
1911  * Example C++ `std::string` hash class:
1912  * @code{.cpp}
1913  *    #include <string>
1914  *    #define XXH_STATIC_LINKING_ONLY // expose unstable API
1915  *    #include "xxhash.h"
1916  *    // Slow, seeds each time
1917  *    class HashSlow {
1918  *        XXH64_hash_t seed;
1919  *    public:
1920  *        HashSlow(XXH64_hash_t s) : seed{s} {}
1921  *        size_t operator()(const std::string& x) const {
1922  *            return size_t{XXH3_64bits_withSeed(x.c_str(), x.length(), seed)};
1923  *        }
1924  *    };
1925  *    // Fast, caches the seeded secret for future uses.
1926  *    class HashFast {
1927  *        unsigned char secret[XXH3_SECRET_DEFAULT_SIZE];
1928  *    public:
1929  *        HashFast(XXH64_hash_t s) {
1930  *            XXH3_generateSecret_fromSeed(secret, seed);
1931  *        }
1932  *        size_t operator()(const std::string& x) const {
1933  *            return size_t{
1934  *                XXH3_64bits_withSecret(x.c_str(), x.length(), secret, sizeof(secret))
1935  *            };
1936  *        }
1937  *    };
1938  * @endcode
1939  */
1940 XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed);
1941 
1942 /*!
1943  * @brief Maximum size of "short" key in bytes.
1944  */
1945 #define XXH3_MIDSIZE_MAX 240
1946 
1947 /*!
1948  * @brief Calculates 64/128-bit seeded variant of XXH3 hash of @p data.
1949  *
1950  * @param data       The block of data to be hashed, at least @p len bytes in size.
1951  * @param len        The length of @p data, in bytes.
1952  * @param secret     The secret data.
1953  * @param secretSize The length of @p secret, in bytes.
1954  * @param seed       The 64-bit seed to alter the hash result predictably.
1955  *
1956  * These variants generate hash values using either:
1957  * - @p seed for "short" keys (< @ref XXH3_MIDSIZE_MAX = 240 bytes)
1958  * - @p secret for "large" keys (>= @ref XXH3_MIDSIZE_MAX).
1959  *
1960  * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
1961  * `_withSeed()` has to generate the secret on the fly for "large" keys.
1962  * It's fast, but can be perceptible for "not so large" keys (< 1 KB).
1963  * `_withSecret()` has to generate the masks on the fly for "small" keys,
1964  * which requires more instructions than _withSeed() variants.
1965  * Therefore, _withSecretandSeed variant combines the best of both worlds.
1966  *
1967  * When @p secret has been generated by XXH3_generateSecret_fromSeed(),
1968  * this variant produces *exactly* the same results as `_withSeed()` variant,
1969  * hence offering only a pure speed benefit on "large" input,
1970  * by skipping the need to regenerate the secret for every large input.
1971  *
1972  * Another usage scenario is to hash the secret to a 64-bit hash value,
1973  * for example with XXH3_64bits(), which then becomes the seed,
1974  * and then employ both the seed and the secret in _withSecretandSeed().
1975  * On top of speed, an added benefit is that each bit in the secret
1976  * has a 50% chance to swap each bit in the output, via its impact to the seed.
1977  *
1978  * This is not guaranteed when using the secret directly in "small data" scenarios,
1979  * because only portions of the secret are employed for small data.
1980  */
1981 XXH_PUBLIC_API XXH_PUREF XXH64_hash_t
1982 XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len,
1983                               XXH_NOESCAPE const void* secret, size_t secretSize,
1984                               XXH64_hash_t seed);
1985 
1986 /*!
1987  * @brief Calculates 128-bit seeded variant of XXH3 hash of @p data.
1988  *
1989  * @param data       The memory segment to be hashed, at least @p len bytes in size.
1990  * @param length     The length of @p data, in bytes.
1991  * @param secret     The secret used to alter hash result predictably.
1992  * @param secretSize The length of @p secret, in bytes (must be >= XXH3_SECRET_SIZE_MIN)
1993  * @param seed64     The 64-bit seed to alter the hash result predictably.
1994  *
1995  * @return @ref XXH_OK on success.
1996  * @return @ref XXH_ERROR on failure.
1997  *
1998  * @see XXH3_64bits_withSecretandSeed(): contract is the same.
1999  */
2000 XXH_PUBLIC_API XXH_PUREF XXH128_hash_t
2001 XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length,
2002                                XXH_NOESCAPE const void* secret, size_t secretSize,
2003                                XXH64_hash_t seed64);
2004 
2005 #ifndef XXH_NO_STREAM
2006 /*!
2007  * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
2008  *
2009  * @param statePtr   A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
2010  * @param secret     The secret data.
2011  * @param secretSize The length of @p secret, in bytes.
2012  * @param seed64     The 64-bit seed to alter the hash result predictably.
2013  *
2014  * @return @ref XXH_OK on success.
2015  * @return @ref XXH_ERROR on failure.
2016  *
2017  * @see XXH3_64bits_withSecretandSeed(). Contract is identical.
2018  */
2019 XXH_PUBLIC_API XXH_errorcode
2020 XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
2021                                     XXH_NOESCAPE const void* secret, size_t secretSize,
2022                                     XXH64_hash_t seed64);
2023 
2024 /*!
2025  * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
2026  *
2027  * @param statePtr   A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
2028  * @param secret     The secret data.
2029  * @param secretSize The length of @p secret, in bytes.
2030  * @param seed64     The 64-bit seed to alter the hash result predictably.
2031  *
2032  * @return @ref XXH_OK on success.
2033  * @return @ref XXH_ERROR on failure.
2034  *
2035  * @see XXH3_64bits_withSecretandSeed(). Contract is identical.
2036  *
2037  * Note: there was a bug in an earlier version of this function (<= v0.8.2)
2038  * that would make it generate an incorrect hash value
2039  * when @p seed == 0 and @p length < XXH3_MIDSIZE_MAX
2040  * and @p secret is different from XXH3_generateSecret_fromSeed().
2041  * As stated in the contract, the correct hash result must be
2042  * the same as XXH3_128bits_withSeed() when @p length <= XXH3_MIDSIZE_MAX.
2043  * Results generated by this older version are wrong, hence not comparable.
2044  */
2045 XXH_PUBLIC_API XXH_errorcode
2046 XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
2047                                      XXH_NOESCAPE const void* secret, size_t secretSize,
2048                                      XXH64_hash_t seed64);
2049 
2050 #endif /* !XXH_NO_STREAM */
2051 
2052 #endif  /* !XXH_NO_XXH3 */
2053 #endif  /* XXH_NO_LONG_LONG */
2054 #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
2055 #  define XXH_IMPLEMENTATION
2056 #endif
2057 
2058 #endif  /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
2059 
2060 
2061 /* ======================================================================== */
2062 /* ======================================================================== */
2063 /* ======================================================================== */
2064 
2065 
2066 /*-**********************************************************************
2067  * xxHash implementation
2068  *-**********************************************************************
2069  * xxHash's implementation used to be hosted inside xxhash.c.
2070  *
2071  * However, inlining requires implementation to be visible to the compiler,
2072  * hence be included alongside the header.
2073  * Previously, implementation was hosted inside xxhash.c,
2074  * which was then #included when inlining was activated.
2075  * This construction created issues with a few build and install systems,
2076  * as it required xxhash.c to be stored in /include directory.
2077  *
2078  * xxHash implementation is now directly integrated within xxhash.h.
2079  * As a consequence, xxhash.c is no longer needed in /include.
2080  *
2081  * xxhash.c is still available and is still useful.
2082  * In a "normal" setup, when xxhash is not inlined,
2083  * xxhash.h only exposes the prototypes and public symbols,
2084  * while xxhash.c can be built into an object file xxhash.o
2085  * which can then be linked into the final binary.
2086  ************************************************************************/
2087 
2088 #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
2089    || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
2090 #  define XXH_IMPLEM_13a8737387
2091 
2092 /* *************************************
2093 *  Tuning parameters
2094 ***************************************/
2095 
2096 /*!
2097  * @defgroup tuning Tuning parameters
2098  * @{
2099  *
2100  * Various macros to control xxHash's behavior.
2101  */
2102 #ifdef XXH_DOXYGEN
2103 /*!
2104  * @brief Define this to disable 64-bit code.
2105  *
2106  * Useful if only using the @ref XXH32_family and you have a strict C90 compiler.
2107  */
2108 #  define XXH_NO_LONG_LONG
2109 #  undef XXH_NO_LONG_LONG /* don't actually */
2110 /*!
2111  * @brief Controls how unaligned memory is accessed.
2112  *
2113  * By default, access to unaligned memory is controlled by `memcpy()`, which is
2114  * safe and portable.
2115  *
2116  * Unfortunately, on some target/compiler combinations, the generated assembly
2117  * is sub-optimal.
2118  *
2119  * The below switch allow selection of a different access method
2120  * in the search for improved performance.
2121  *
2122  * @par Possible options:
2123  *
2124  *  - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
2125  *   @par
2126  *     Use `memcpy()`. Safe and portable. Note that most modern compilers will
2127  *     eliminate the function call and treat it as an unaligned access.
2128  *
2129  *  - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((aligned(1)))`
2130  *   @par
2131  *     Depends on compiler extensions and is therefore not portable.
2132  *     This method is safe _if_ your compiler supports it,
2133  *     and *generally* as fast or faster than `memcpy`.
2134  *
2135  *  - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
2136  *  @par
2137  *     Casts directly and dereferences. This method doesn't depend on the
2138  *     compiler, but it violates the C standard as it directly dereferences an
2139  *     unaligned pointer. It can generate buggy code on targets which do not
2140  *     support unaligned memory accesses, but in some circumstances, it's the
2141  *     only known way to get the most performance.
2142  *
2143  *  - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
2144  *  @par
2145  *     Also portable. This can generate the best code on old compilers which don't
2146  *     inline small `memcpy()` calls, and it might also be faster on big-endian
2147  *     systems which lack a native byteswap instruction. However, some compilers
2148  *     will emit literal byteshifts even if the target supports unaligned access.
2149  *
2150  *
2151  * @warning
2152  *   Methods 1 and 2 rely on implementation-defined behavior. Use these with
2153  *   care, as what works on one compiler/platform/optimization level may cause
2154  *   another to read garbage data or even crash.
2155  *
2156  * See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
2157  *
2158  * Prefer these methods in priority order (0 > 3 > 1 > 2)
2159  */
2160 #  define XXH_FORCE_MEMORY_ACCESS 0
2161 
2162 /*!
2163  * @def XXH_SIZE_OPT
2164  * @brief Controls how much xxHash optimizes for size.
2165  *
2166  * xxHash, when compiled, tends to result in a rather large binary size. This
2167  * is mostly due to heavy usage to forced inlining and constant folding of the
2168  * @ref XXH3_family to increase performance.
2169  *
2170  * However, some developers prefer size over speed. This option can
2171  * significantly reduce the size of the generated code. When using the `-Os`
2172  * or `-Oz` options on GCC or Clang, this is defined to 1 by default,
2173  * otherwise it is defined to 0.
2174  *
2175  * Most of these size optimizations can be controlled manually.
2176  *
2177  * This is a number from 0-2.
2178  *  - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed
2179  *    comes first.
2180  *  - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more
2181  *    conservative and disables hacks that increase code size. It implies the
2182  *    options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0,
2183  *    and @ref XXH3_NEON_LANES == 8 if they are not already defined.
2184  *  - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible.
2185  *    Performance may cry. For example, the single shot functions just use the
2186  *    streaming API.
2187  */
2188 #  define XXH_SIZE_OPT 0
2189 
2190 /*!
2191  * @def XXH_FORCE_ALIGN_CHECK
2192  * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
2193  * and XXH64() only).
2194  *
2195  * This is an important performance trick for architectures without decent
2196  * unaligned memory access performance.
2197  *
2198  * It checks for input alignment, and when conditions are met, uses a "fast
2199  * path" employing direct 32-bit/64-bit reads, resulting in _dramatically
2200  * faster_ read speed.
2201  *
2202  * The check costs one initial branch per hash, which is generally negligible,
2203  * but not zero.
2204  *
2205  * Moreover, it's not useful to generate an additional code path if memory
2206  * access uses the same instruction for both aligned and unaligned
2207  * addresses (e.g. x86 and aarch64).
2208  *
2209  * In these cases, the alignment check can be removed by setting this macro to 0.
2210  * Then the code will always use unaligned memory access.
2211  * Align check is automatically disabled on x86, x64, ARM64, and some ARM chips
2212  * which are platforms known to offer good unaligned memory accesses performance.
2213  *
2214  * It is also disabled by default when @ref XXH_SIZE_OPT >= 1.
2215  *
2216  * This option does not affect XXH3 (only XXH32 and XXH64).
2217  */
2218 #  define XXH_FORCE_ALIGN_CHECK 0
2219 
2220 /*!
2221  * @def XXH_NO_INLINE_HINTS
2222  * @brief When non-zero, sets all functions to `static`.
2223  *
2224  * By default, xxHash tries to force the compiler to inline almost all internal
2225  * functions.
2226  *
2227  * This can usually improve performance due to reduced jumping and improved
2228  * constant folding, but significantly increases the size of the binary which
2229  * might not be favorable.
2230  *
2231  * Additionally, sometimes the forced inlining can be detrimental to performance,
2232  * depending on the architecture.
2233  *
2234  * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
2235  * compiler full control on whether to inline or not.
2236  *
2237  * When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if
2238  * @ref XXH_SIZE_OPT >= 1, this will automatically be defined.
2239  */
2240 #  define XXH_NO_INLINE_HINTS 0
2241 
2242 /*!
2243  * @def XXH3_INLINE_SECRET
2244  * @brief Determines whether to inline the XXH3 withSecret code.
2245  *
2246  * When the secret size is known, the compiler can improve the performance
2247  * of XXH3_64bits_withSecret() and XXH3_128bits_withSecret().
2248  *
2249  * However, if the secret size is not known, it doesn't have any benefit. This
2250  * happens when xxHash is compiled into a global symbol. Therefore, if
2251  * @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0.
2252  *
2253  * Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers
2254  * that are *sometimes* force inline on -Og, and it is impossible to automatically
2255  * detect this optimization level.
2256  */
2257 #  define XXH3_INLINE_SECRET 0
2258 
2259 /*!
2260  * @def XXH32_ENDJMP
2261  * @brief Whether to use a jump for `XXH32_finalize`.
2262  *
2263  * For performance, `XXH32_finalize` uses multiple branches in the finalizer.
2264  * This is generally preferable for performance,
2265  * but depending on exact architecture, a jmp may be preferable.
2266  *
2267  * This setting is only possibly making a difference for very small inputs.
2268  */
2269 #  define XXH32_ENDJMP 0
2270 
2271 /*!
2272  * @internal
2273  * @brief Redefines old internal names.
2274  *
2275  * For compatibility with code that uses xxHash's internals before the names
2276  * were changed to improve namespacing. There is no other reason to use this.
2277  */
2278 #  define XXH_OLD_NAMES
2279 #  undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
2280 
2281 /*!
2282  * @def XXH_NO_STREAM
2283  * @brief Disables the streaming API.
2284  *
2285  * When xxHash is not inlined and the streaming functions are not used, disabling
2286  * the streaming functions can improve code size significantly, especially with
2287  * the @ref XXH3_family which tends to make constant folded copies of itself.
2288  */
2289 #  define XXH_NO_STREAM
2290 #  undef XXH_NO_STREAM /* don't actually */
2291 #endif /* XXH_DOXYGEN */
2292 /*!
2293  * @}
2294  */
2295 
2296 #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
2297    /* prefer __packed__ structures (method 1) for GCC
2298     * < ARMv7 with unaligned access (e.g. Raspbian armhf) still uses byte shifting, so we use memcpy
2299     * which for some reason does unaligned loads. */
2300 #  if defined(__GNUC__) && !(defined(__ARM_ARCH) && __ARM_ARCH < 7 && defined(__ARM_FEATURE_UNALIGNED))
2301 #    define XXH_FORCE_MEMORY_ACCESS 1
2302 #  endif
2303 #endif
2304 
2305 #ifndef XXH_SIZE_OPT
2306    /* default to 1 for -Os or -Oz */
2307 #  if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__)
2308 #    define XXH_SIZE_OPT 1
2309 #  else
2310 #    define XXH_SIZE_OPT 0
2311 #  endif
2312 #endif
2313 
2314 #ifndef XXH_FORCE_ALIGN_CHECK  /* can be defined externally */
2315    /* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */
2316 #  if XXH_SIZE_OPT >= 1 || \
2317       defined(__i386)  || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \
2318    || defined(_M_IX86) || defined(_M_X64)     || defined(_M_ARM64)    || defined(_M_ARM) /* visual */
2319 #    define XXH_FORCE_ALIGN_CHECK 0
2320 #  else
2321 #    define XXH_FORCE_ALIGN_CHECK 1
2322 #  endif
2323 #endif
2324 
2325 #ifndef XXH_NO_INLINE_HINTS
2326 #  if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__)  /* -O0, -fno-inline */
2327 #    define XXH_NO_INLINE_HINTS 1
2328 #  else
2329 #    define XXH_NO_INLINE_HINTS 0
2330 #  endif
2331 #endif
2332 
2333 #ifndef XXH3_INLINE_SECRET
2334 #  if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \
2335      || !defined(XXH_INLINE_ALL)
2336 #    define XXH3_INLINE_SECRET 0
2337 #  else
2338 #    define XXH3_INLINE_SECRET 1
2339 #  endif
2340 #endif
2341 
2342 #ifndef XXH32_ENDJMP
2343 /* generally preferable for performance */
2344 #  define XXH32_ENDJMP 0
2345 #endif
2346 
2347 /*!
2348  * @defgroup impl Implementation
2349  * @{
2350  */
2351 
2352 
2353 /* *************************************
2354 *  Includes & Memory related functions
2355 ***************************************/
2356 #if defined(XXH_NO_STREAM)
2357 /* nothing */
2358 #elif defined(XXH_NO_STDLIB)
2359 
2360 /* When requesting to disable any mention of stdlib,
2361  * the library loses the ability to invoked malloc / free.
2362  * In practice, it means that functions like `XXH*_createState()`
2363  * will always fail, and return NULL.
2364  * This flag is useful in situations where
2365  * xxhash.h is integrated into some kernel, embedded or limited environment
2366  * without access to dynamic allocation.
2367  */
2368 
2369 static XXH_CONSTF void* XXH_malloc(size_t s) { (void)s; return NULL; }
2370 static void XXH_free(void* p) { (void)p; }
2371 
2372 #else
2373 
2374 /*
2375  * Modify the local functions below should you wish to use
2376  * different memory routines for malloc() and free()
2377  */
2378 #include <stdlib.h>
2379 
2380 /*!
2381  * @internal
2382  * @brief Modify this function to use a different routine than malloc().
2383  */
2384 static XXH_MALLOCF void* XXH_malloc(size_t s) { return malloc(s); }
2385 
2386 /*!
2387  * @internal
2388  * @brief Modify this function to use a different routine than free().
2389  */
2390 static void XXH_free(void* p) { free(p); }
2391 
2392 #endif  /* XXH_NO_STDLIB */
2393 
2394 #include <string.h>
2395 
2396 /*!
2397  * @internal
2398  * @brief Modify this function to use a different routine than memcpy().
2399  */
2400 static void* XXH_memcpy(void* dest, const void* src, size_t size)
2401 {
2402     return memcpy(dest,src,size);
2403 }
2404 
2405 #include <limits.h>   /* ULLONG_MAX */
2406 
2407 
2408 /* *************************************
2409 *  Compiler Specific Options
2410 ***************************************/
2411 #ifdef _MSC_VER /* Visual Studio warning fix */
2412 #  pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
2413 #endif
2414 
2415 #if XXH_NO_INLINE_HINTS  /* disable inlining hints */
2416 #  if defined(__GNUC__) || defined(__clang__)
2417 #    define XXH_FORCE_INLINE static __attribute__((__unused__))
2418 #  else
2419 #    define XXH_FORCE_INLINE static
2420 #  endif
2421 #  define XXH_NO_INLINE static
2422 /* enable inlining hints */
2423 #elif defined(__GNUC__) || defined(__clang__)
2424 #  define XXH_FORCE_INLINE static __inline__ __attribute__((__always_inline__, __unused__))
2425 #  define XXH_NO_INLINE static __attribute__((__noinline__))
2426 #elif defined(_MSC_VER)  /* Visual Studio */
2427 #  define XXH_FORCE_INLINE static __forceinline
2428 #  define XXH_NO_INLINE static __declspec(noinline)
2429 #elif defined (__cplusplus) \
2430   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L))   /* C99 */
2431 #  define XXH_FORCE_INLINE static inline
2432 #  define XXH_NO_INLINE static
2433 #else
2434 #  define XXH_FORCE_INLINE static
2435 #  define XXH_NO_INLINE static
2436 #endif
2437 
2438 #if defined(XXH_INLINE_ALL)
2439 #  define XXH_STATIC XXH_FORCE_INLINE
2440 #else
2441 #  define XXH_STATIC static
2442 #endif
2443 
2444 #if XXH3_INLINE_SECRET
2445 #  define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE
2446 #else
2447 #  define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE
2448 #endif
2449 
2450 #if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
2451 #  define XXH_RESTRICT   /* disable */
2452 #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* >= C99 */
2453 #  define XXH_RESTRICT   restrict
2454 #elif (defined (__GNUC__) && ((__GNUC__ > 3) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))) \
2455    || (defined (__clang__)) \
2456    || (defined (_MSC_VER) && (_MSC_VER >= 1400)) \
2457    || (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300))
2458 /*
2459  * There are a LOT more compilers that recognize __restrict but this
2460  * covers the major ones.
2461  */
2462 #  define XXH_RESTRICT   __restrict
2463 #else
2464 #  define XXH_RESTRICT   /* disable */
2465 #endif
2466 
2467 /* *************************************
2468 *  Debug
2469 ***************************************/
2470 /*!
2471  * @ingroup tuning
2472  * @def XXH_DEBUGLEVEL
2473  * @brief Sets the debugging level.
2474  *
2475  * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
2476  * compiler's command line options. The value must be a number.
2477  */
2478 #ifndef XXH_DEBUGLEVEL
2479 #  ifdef DEBUGLEVEL /* backwards compat */
2480 #    define XXH_DEBUGLEVEL DEBUGLEVEL
2481 #  else
2482 #    define XXH_DEBUGLEVEL 0
2483 #  endif
2484 #endif
2485 
2486 #if (XXH_DEBUGLEVEL>=1)
2487 #  include <assert.h>   /* note: can still be disabled with NDEBUG */
2488 #  define XXH_ASSERT(c)   assert(c)
2489 #else
2490 #  if defined(__INTEL_COMPILER)
2491 #    define XXH_ASSERT(c)   XXH_ASSUME((unsigned char) (c))
2492 #  else
2493 #    define XXH_ASSERT(c)   XXH_ASSUME(c)
2494 #  endif
2495 #endif
2496 
2497 /* note: use after variable declarations */
2498 #ifndef XXH_STATIC_ASSERT
2499 #  if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)    /* C11 */
2500 #    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0)
2501 #  elif defined(__cplusplus) && (__cplusplus >= 201103L)            /* C++11 */
2502 #    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
2503 #  else
2504 #    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0)
2505 #  endif
2506 #  define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c)
2507 #endif
2508 
2509 /*!
2510  * @internal
2511  * @def XXH_COMPILER_GUARD(var)
2512  * @brief Used to prevent unwanted optimizations for @p var.
2513  *
2514  * It uses an empty GCC inline assembly statement with a register constraint
2515  * which forces @p var into a general purpose register (eg eax, ebx, ecx
2516  * on x86) and marks it as modified.
2517  *
2518  * This is used in a few places to avoid unwanted autovectorization (e.g.
2519  * XXH32_round()). All vectorization we want is explicit via intrinsics,
2520  * and _usually_ isn't wanted elsewhere.
2521  *
2522  * We also use it to prevent unwanted constant folding for AArch64 in
2523  * XXH3_initCustomSecret_scalar().
2524  */
2525 #if defined(__GNUC__) || defined(__clang__)
2526 #  define XXH_COMPILER_GUARD(var) __asm__("" : "+r" (var))
2527 #else
2528 #  define XXH_COMPILER_GUARD(var) ((void)0)
2529 #endif
2530 
2531 /* Specifically for NEON vectors which use the "w" constraint, on
2532  * Clang. */
2533 #if defined(__clang__) && defined(__ARM_ARCH) && !defined(__wasm__)
2534 #  define XXH_COMPILER_GUARD_CLANG_NEON(var) __asm__("" : "+w" (var))
2535 #else
2536 #  define XXH_COMPILER_GUARD_CLANG_NEON(var) ((void)0)
2537 #endif
2538 
2539 /* *************************************
2540 *  Basic Types
2541 ***************************************/
2542 #if !defined (__VMS) \
2543  && (defined (__cplusplus) \
2544  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
2545 #   ifdef _AIX
2546 #     include <inttypes.h>
2547 #   else
2548 #     include <stdint.h>
2549 #   endif
2550     typedef uint8_t xxh_u8;
2551 #else
2552     typedef unsigned char xxh_u8;
2553 #endif
2554 typedef XXH32_hash_t xxh_u32;
2555 
2556 #ifdef XXH_OLD_NAMES
2557 #  warning "XXH_OLD_NAMES is planned to be removed starting v0.9. If the program depends on it, consider moving away from it by employing newer type names directly"
2558 #  define BYTE xxh_u8
2559 #  define U8   xxh_u8
2560 #  define U32  xxh_u32
2561 #endif
2562 
2563 /* ***   Memory access   *** */
2564 
2565 /*!
2566  * @internal
2567  * @fn xxh_u32 XXH_read32(const void* ptr)
2568  * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
2569  *
2570  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
2571  *
2572  * @param ptr The pointer to read from.
2573  * @return The 32-bit native endian integer from the bytes at @p ptr.
2574  */
2575 
2576 /*!
2577  * @internal
2578  * @fn xxh_u32 XXH_readLE32(const void* ptr)
2579  * @brief Reads an unaligned 32-bit little endian integer from @p ptr.
2580  *
2581  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
2582  *
2583  * @param ptr The pointer to read from.
2584  * @return The 32-bit little endian integer from the bytes at @p ptr.
2585  */
2586 
2587 /*!
2588  * @internal
2589  * @fn xxh_u32 XXH_readBE32(const void* ptr)
2590  * @brief Reads an unaligned 32-bit big endian integer from @p ptr.
2591  *
2592  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
2593  *
2594  * @param ptr The pointer to read from.
2595  * @return The 32-bit big endian integer from the bytes at @p ptr.
2596  */
2597 
2598 /*!
2599  * @internal
2600  * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
2601  * @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
2602  *
2603  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
2604  * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
2605  * always @ref XXH_alignment::XXH_unaligned.
2606  *
2607  * @param ptr The pointer to read from.
2608  * @param align Whether @p ptr is aligned.
2609  * @pre
2610  *   If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
2611  *   aligned.
2612  * @return The 32-bit little endian integer from the bytes at @p ptr.
2613  */
2614 
2615 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2616 /*
2617  * Manual byteshift. Best for old compilers which don't inline memcpy.
2618  * We actually directly use XXH_readLE32 and XXH_readBE32.
2619  */
2620 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
2621 
2622 /*
2623  * Force direct memory access. Only works on CPU which support unaligned memory
2624  * access in hardware.
2625  */
2626 static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
2627 
2628 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
2629 
2630 /*
2631  * __attribute__((aligned(1))) is supported by gcc and clang. Originally the
2632  * documentation claimed that it only increased the alignment, but actually it
2633  * can decrease it on gcc, clang, and icc:
2634  * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
2635  * https://gcc.godbolt.org/z/xYez1j67Y.
2636  */
2637 #ifdef XXH_OLD_NAMES
2638 typedef union { xxh_u32 u32; } __attribute__((__packed__)) unalign;
2639 #endif
2640 static xxh_u32 XXH_read32(const void* ptr)
2641 {
2642     typedef __attribute__((__aligned__(1))) xxh_u32 xxh_unalign32;
2643     return *((const xxh_unalign32*)ptr);
2644 }
2645 
2646 #else
2647 
2648 /*
2649  * Portable and safe solution. Generally efficient.
2650  * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
2651  */
2652 static xxh_u32 XXH_read32(const void* memPtr)
2653 {
2654     xxh_u32 val;
2655     XXH_memcpy(&val, memPtr, sizeof(val));
2656     return val;
2657 }
2658 
2659 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
2660 
2661 
2662 /* ***   Endianness   *** */
2663 
2664 /*!
2665  * @ingroup tuning
2666  * @def XXH_CPU_LITTLE_ENDIAN
2667  * @brief Whether the target is little endian.
2668  *
2669  * Defined to 1 if the target is little endian, or 0 if it is big endian.
2670  * It can be defined externally, for example on the compiler command line.
2671  *
2672  * If it is not defined,
2673  * a runtime check (which is usually constant folded) is used instead.
2674  *
2675  * @note
2676  *   This is not necessarily defined to an integer constant.
2677  *
2678  * @see XXH_isLittleEndian() for the runtime check.
2679  */
2680 #ifndef XXH_CPU_LITTLE_ENDIAN
2681 /*
2682  * Try to detect endianness automatically, to avoid the nonstandard behavior
2683  * in `XXH_isLittleEndian()`
2684  */
2685 #  if defined(_WIN32) /* Windows is always little endian */ \
2686      || defined(__LITTLE_ENDIAN__) \
2687      || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
2688 #    define XXH_CPU_LITTLE_ENDIAN 1
2689 #  elif defined(__BIG_ENDIAN__) \
2690      || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2691 #    define XXH_CPU_LITTLE_ENDIAN 0
2692 #  else
2693 /*!
2694  * @internal
2695  * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
2696  *
2697  * Most compilers will constant fold this.
2698  */
2699 static int XXH_isLittleEndian(void)
2700 {
2701     /*
2702      * Portable and well-defined behavior.
2703      * Don't use static: it is detrimental to performance.
2704      */
2705     const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
2706     return one.c[0];
2707 }
2708 #   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian()
2709 #  endif
2710 #endif
2711 
2712 
2713 
2714 
2715 /* ****************************************
2716 *  Compiler-specific Functions and Macros
2717 ******************************************/
2718 #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
2719 
2720 #ifdef __has_builtin
2721 #  define XXH_HAS_BUILTIN(x) __has_builtin(x)
2722 #else
2723 #  define XXH_HAS_BUILTIN(x) 0
2724 #endif
2725 
2726 
2727 
2728 /*
2729  * C23 and future versions have standard "unreachable()".
2730  * Once it has been implemented reliably we can add it as an
2731  * additional case:
2732  *
2733  * ```
2734  * #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN)
2735  * #  include <stddef.h>
2736  * #  ifdef unreachable
2737  * #    define XXH_UNREACHABLE() unreachable()
2738  * #  endif
2739  * #endif
2740  * ```
2741  *
2742  * Note C++23 also has std::unreachable() which can be detected
2743  * as follows:
2744  * ```
2745  * #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L)
2746  * #  include <utility>
2747  * #  define XXH_UNREACHABLE() std::unreachable()
2748  * #endif
2749  * ```
2750  * NB: `__cpp_lib_unreachable` is defined in the `<version>` header.
2751  * We don't use that as including `<utility>` in `extern "C"` blocks
2752  * doesn't work on GCC12
2753  */
2754 
2755 #if XXH_HAS_BUILTIN(__builtin_unreachable)
2756 #  define XXH_UNREACHABLE() __builtin_unreachable()
2757 
2758 #elif defined(_MSC_VER)
2759 #  define XXH_UNREACHABLE() __assume(0)
2760 
2761 #else
2762 #  define XXH_UNREACHABLE()
2763 #endif
2764 
2765 #if XXH_HAS_BUILTIN(__builtin_assume)
2766 #  define XXH_ASSUME(c) __builtin_assume(c)
2767 #else
2768 #  define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); }
2769 #endif
2770 
2771 /*!
2772  * @internal
2773  * @def XXH_rotl32(x,r)
2774  * @brief 32-bit rotate left.
2775  *
2776  * @param x The 32-bit integer to be rotated.
2777  * @param r The number of bits to rotate.
2778  * @pre
2779  *   @p r > 0 && @p r < 32
2780  * @note
2781  *   @p x and @p r may be evaluated multiple times.
2782  * @return The rotated result.
2783  */
2784 #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
2785                                && XXH_HAS_BUILTIN(__builtin_rotateleft64)
2786 #  define XXH_rotl32 __builtin_rotateleft32
2787 #  define XXH_rotl64 __builtin_rotateleft64
2788 #elif XXH_HAS_BUILTIN(__builtin_stdc_rotate_left)
2789 #  define XXH_rotl32 __builtin_stdc_rotate_left
2790 #  define XXH_rotl64 __builtin_stdc_rotate_left
2791 /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
2792 #elif defined(_MSC_VER)
2793 #  define XXH_rotl32(x,r) _rotl(x,r)
2794 #  define XXH_rotl64(x,r) _rotl64(x,r)
2795 #else
2796 #  define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
2797 #  define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
2798 #endif
2799 
2800 /*!
2801  * @internal
2802  * @fn xxh_u32 XXH_swap32(xxh_u32 x)
2803  * @brief A 32-bit byteswap.
2804  *
2805  * @param x The 32-bit integer to byteswap.
2806  * @return @p x, byteswapped.
2807  */
2808 #if defined(_MSC_VER)     /* Visual Studio */
2809 #  define XXH_swap32 _byteswap_ulong
2810 #elif XXH_GCC_VERSION >= 403
2811 #  define XXH_swap32 __builtin_bswap32
2812 #else
2813 static xxh_u32 XXH_swap32 (xxh_u32 x)
2814 {
2815     return  ((x << 24) & 0xff000000 ) |
2816             ((x <<  8) & 0x00ff0000 ) |
2817             ((x >>  8) & 0x0000ff00 ) |
2818             ((x >> 24) & 0x000000ff );
2819 }
2820 #endif
2821 
2822 
2823 /* ***************************
2824 *  Memory reads
2825 *****************************/
2826 
2827 /*!
2828  * @internal
2829  * @brief Enum to indicate whether a pointer is aligned.
2830  */
2831 typedef enum {
2832     XXH_aligned,  /*!< Aligned */
2833     XXH_unaligned /*!< Possibly unaligned */
2834 } XXH_alignment;
2835 
2836 /*
2837  * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
2838  *
2839  * This is ideal for older compilers which don't inline memcpy.
2840  */
2841 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2842 
2843 XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
2844 {
2845     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2846     return bytePtr[0]
2847          | ((xxh_u32)bytePtr[1] << 8)
2848          | ((xxh_u32)bytePtr[2] << 16)
2849          | ((xxh_u32)bytePtr[3] << 24);
2850 }
2851 
2852 XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
2853 {
2854     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2855     return bytePtr[3]
2856          | ((xxh_u32)bytePtr[2] << 8)
2857          | ((xxh_u32)bytePtr[1] << 16)
2858          | ((xxh_u32)bytePtr[0] << 24);
2859 }
2860 
2861 #else
2862 XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
2863 {
2864     return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
2865 }
2866 
2867 static xxh_u32 XXH_readBE32(const void* ptr)
2868 {
2869     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
2870 }
2871 #endif
2872 
2873 XXH_FORCE_INLINE xxh_u32
2874 XXH_readLE32_align(const void* ptr, XXH_alignment align)
2875 {
2876     if (align==XXH_unaligned) {
2877         return XXH_readLE32(ptr);
2878     } else {
2879         return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
2880     }
2881 }
2882 
2883 
2884 /* *************************************
2885 *  Misc
2886 ***************************************/
2887 /*! @ingroup public */
2888 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
2889 
2890 
2891 /* *******************************************************************
2892 *  32-bit hash functions
2893 *********************************************************************/
2894 /*!
2895  * @}
2896  * @defgroup XXH32_impl XXH32 implementation
2897  * @ingroup impl
2898  *
2899  * Details on the XXH32 implementation.
2900  * @{
2901  */
2902  /* #define instead of static const, to be used as initializers */
2903 #define XXH_PRIME32_1  0x9E3779B1U  /*!< 0b10011110001101110111100110110001 */
2904 #define XXH_PRIME32_2  0x85EBCA77U  /*!< 0b10000101111010111100101001110111 */
2905 #define XXH_PRIME32_3  0xC2B2AE3DU  /*!< 0b11000010101100101010111000111101 */
2906 #define XXH_PRIME32_4  0x27D4EB2FU  /*!< 0b00100111110101001110101100101111 */
2907 #define XXH_PRIME32_5  0x165667B1U  /*!< 0b00010110010101100110011110110001 */
2908 
2909 #ifdef XXH_OLD_NAMES
2910 #  define PRIME32_1 XXH_PRIME32_1
2911 #  define PRIME32_2 XXH_PRIME32_2
2912 #  define PRIME32_3 XXH_PRIME32_3
2913 #  define PRIME32_4 XXH_PRIME32_4
2914 #  define PRIME32_5 XXH_PRIME32_5
2915 #endif
2916 
2917 /*!
2918  * @internal
2919  * @brief Normal stripe processing routine.
2920  *
2921  * This shuffles the bits so that any bit from @p input impacts several bits in
2922  * @p acc.
2923  *
2924  * @param acc The accumulator lane.
2925  * @param input The stripe of input to mix.
2926  * @return The mixed accumulator lane.
2927  */
2928 static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
2929 {
2930     acc += input * XXH_PRIME32_2;
2931     acc  = XXH_rotl32(acc, 13);
2932     acc *= XXH_PRIME32_1;
2933 #if (defined(__SSE4_1__) || defined(__aarch64__) || defined(__wasm_simd128__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
2934     /*
2935      * UGLY HACK:
2936      * A compiler fence is used to prevent GCC and Clang from
2937      * autovectorizing the XXH32 loop (pragmas and attributes don't work for some
2938      * reason) without globally disabling SSE4.1.
2939      *
2940      * The reason we want to avoid vectorization is because despite working on
2941      * 4 integers at a time, there are multiple factors slowing XXH32 down on
2942      * SSE4:
2943      * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
2944      *   newer chips!) making it slightly slower to multiply four integers at
2945      *   once compared to four integers independently. Even when pmulld was
2946      *   fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
2947      *   just to multiply unless doing a long operation.
2948      *
2949      * - Four instructions are required to rotate,
2950      *      movqda tmp,  v // not required with VEX encoding
2951      *      pslld  tmp, 13 // tmp <<= 13
2952      *      psrld  v,   19 // x >>= 19
2953      *      por    v,  tmp // x |= tmp
2954      *   compared to one for scalar:
2955      *      roll   v, 13    // reliably fast across the board
2956      *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason
2957      *
2958      * - Instruction level parallelism is actually more beneficial here because
2959      *   the SIMD actually serializes this operation: While v1 is rotating, v2
2960      *   can load data, while v3 can multiply. SSE forces them to operate
2961      *   together.
2962      *
2963      * This is also enabled on AArch64, as Clang is *very aggressive* in vectorizing
2964      * the loop. NEON is only faster on the A53, and with the newer cores, it is less
2965      * than half the speed.
2966      *
2967      * Additionally, this is used on WASM SIMD128 because it JITs to the same
2968      * SIMD instructions and has the same issue.
2969      */
2970     XXH_COMPILER_GUARD(acc);
2971 #endif
2972     return acc;
2973 }
2974 
2975 /*!
2976  * @internal
2977  * @brief Mixes all bits to finalize the hash.
2978  *
2979  * The final mix ensures that all input bits have a chance to impact any bit in
2980  * the output digest, resulting in an unbiased distribution.
2981  *
2982  * @param hash The hash to avalanche.
2983  * @return The avalanched hash.
2984  */
2985 static xxh_u32 XXH32_avalanche(xxh_u32 hash)
2986 {
2987     hash ^= hash >> 15;
2988     hash *= XXH_PRIME32_2;
2989     hash ^= hash >> 13;
2990     hash *= XXH_PRIME32_3;
2991     hash ^= hash >> 16;
2992     return hash;
2993 }
2994 
2995 #define XXH_get32bits(p) XXH_readLE32_align(p, align)
2996 
2997 /*!
2998  * @internal
2999  * @brief Sets up the initial accumulator state for XXH32().
3000  */
3001 XXH_FORCE_INLINE void
3002 XXH32_initAccs(xxh_u32 *acc, xxh_u32 seed)
3003 {
3004     XXH_ASSERT(acc != NULL);
3005     acc[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
3006     acc[1] = seed + XXH_PRIME32_2;
3007     acc[2] = seed + 0;
3008     acc[3] = seed - XXH_PRIME32_1;
3009 }
3010 
3011 /*!
3012  * @internal
3013  * @brief Consumes a block of data for XXH32().
3014  *
3015  * @return the end input pointer.
3016  */
3017 XXH_FORCE_INLINE const xxh_u8 *
3018 XXH32_consumeLong(
3019     xxh_u32 *XXH_RESTRICT acc,
3020     xxh_u8 const *XXH_RESTRICT input,
3021     size_t len,
3022     XXH_alignment align
3023 )
3024 {
3025     const xxh_u8* const bEnd = input + len;
3026     const xxh_u8* const limit = bEnd - 15;
3027     XXH_ASSERT(acc != NULL);
3028     XXH_ASSERT(input != NULL);
3029     XXH_ASSERT(len >= 16);
3030     do {
3031         acc[0] = XXH32_round(acc[0], XXH_get32bits(input)); input += 4;
3032         acc[1] = XXH32_round(acc[1], XXH_get32bits(input)); input += 4;
3033         acc[2] = XXH32_round(acc[2], XXH_get32bits(input)); input += 4;
3034         acc[3] = XXH32_round(acc[3], XXH_get32bits(input)); input += 4;
3035     } while (input < limit);
3036 
3037     return input;
3038 }
3039 
3040 /*!
3041  * @internal
3042  * @brief Merges the accumulator lanes together for XXH32()
3043  */
3044 XXH_FORCE_INLINE XXH_PUREF xxh_u32
3045 XXH32_mergeAccs(const xxh_u32 *acc)
3046 {
3047     XXH_ASSERT(acc != NULL);
3048     return XXH_rotl32(acc[0], 1)  + XXH_rotl32(acc[1], 7)
3049          + XXH_rotl32(acc[2], 12) + XXH_rotl32(acc[3], 18);
3050 }
3051 
3052 /*!
3053  * @internal
3054  * @brief Processes the last 0-15 bytes of @p ptr.
3055  *
3056  * There may be up to 15 bytes remaining to consume from the input.
3057  * This final stage will digest them to ensure that all input bytes are present
3058  * in the final mix.
3059  *
3060  * @param hash The hash to finalize.
3061  * @param ptr The pointer to the remaining input.
3062  * @param len The remaining length, modulo 16.
3063  * @param align Whether @p ptr is aligned.
3064  * @return The finalized hash.
3065  * @see XXH64_finalize().
3066  */
3067 static XXH_PUREF xxh_u32
3068 XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
3069 {
3070 #define XXH_PROCESS1 do {                             \
3071     hash += (*ptr++) * XXH_PRIME32_5;                 \
3072     hash = XXH_rotl32(hash, 11) * XXH_PRIME32_1;      \
3073 } while (0)
3074 
3075 #define XXH_PROCESS4 do {                             \
3076     hash += XXH_get32bits(ptr) * XXH_PRIME32_3;       \
3077     ptr += 4;                                         \
3078     hash  = XXH_rotl32(hash, 17) * XXH_PRIME32_4;     \
3079 } while (0)
3080 
3081     if (ptr==NULL) XXH_ASSERT(len == 0);
3082 
3083     /* Compact rerolled version; generally faster */
3084     if (!XXH32_ENDJMP) {
3085         len &= 15;
3086         while (len >= 4) {
3087             XXH_PROCESS4;
3088             len -= 4;
3089         }
3090         while (len > 0) {
3091             XXH_PROCESS1;
3092             --len;
3093         }
3094         return XXH32_avalanche(hash);
3095     } else {
3096          switch(len&15) /* or switch(bEnd - p) */ {
3097            case 12:      XXH_PROCESS4;
3098                          XXH_FALLTHROUGH;  /* fallthrough */
3099            case 8:       XXH_PROCESS4;
3100                          XXH_FALLTHROUGH;  /* fallthrough */
3101            case 4:       XXH_PROCESS4;
3102                          return XXH32_avalanche(hash);
3103 
3104            case 13:      XXH_PROCESS4;
3105                          XXH_FALLTHROUGH;  /* fallthrough */
3106            case 9:       XXH_PROCESS4;
3107                          XXH_FALLTHROUGH;  /* fallthrough */
3108            case 5:       XXH_PROCESS4;
3109                          XXH_PROCESS1;
3110                          return XXH32_avalanche(hash);
3111 
3112            case 14:      XXH_PROCESS4;
3113                          XXH_FALLTHROUGH;  /* fallthrough */
3114            case 10:      XXH_PROCESS4;
3115                          XXH_FALLTHROUGH;  /* fallthrough */
3116            case 6:       XXH_PROCESS4;
3117                          XXH_PROCESS1;
3118                          XXH_PROCESS1;
3119                          return XXH32_avalanche(hash);
3120 
3121            case 15:      XXH_PROCESS4;
3122                          XXH_FALLTHROUGH;  /* fallthrough */
3123            case 11:      XXH_PROCESS4;
3124                          XXH_FALLTHROUGH;  /* fallthrough */
3125            case 7:       XXH_PROCESS4;
3126                          XXH_FALLTHROUGH;  /* fallthrough */
3127            case 3:       XXH_PROCESS1;
3128                          XXH_FALLTHROUGH;  /* fallthrough */
3129            case 2:       XXH_PROCESS1;
3130                          XXH_FALLTHROUGH;  /* fallthrough */
3131            case 1:       XXH_PROCESS1;
3132                          XXH_FALLTHROUGH;  /* fallthrough */
3133            case 0:       return XXH32_avalanche(hash);
3134         }
3135         XXH_ASSERT(0);
3136         return hash;   /* reaching this point is deemed impossible */
3137     }
3138 }
3139 
3140 #ifdef XXH_OLD_NAMES
3141 #  define PROCESS1 XXH_PROCESS1
3142 #  define PROCESS4 XXH_PROCESS4
3143 #else
3144 #  undef XXH_PROCESS1
3145 #  undef XXH_PROCESS4
3146 #endif
3147 
3148 /*!
3149  * @internal
3150  * @brief The implementation for @ref XXH32().
3151  *
3152  * @param input , len , seed Directly passed from @ref XXH32().
3153  * @param align Whether @p input is aligned.
3154  * @return The calculated hash.
3155  */
3156 XXH_FORCE_INLINE XXH_PUREF xxh_u32
3157 XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
3158 {
3159     xxh_u32 h32;
3160 
3161     if (input==NULL) XXH_ASSERT(len == 0);
3162 
3163     if (len>=16) {
3164         xxh_u32 acc[4];
3165         XXH32_initAccs(acc, seed);
3166 
3167         input = XXH32_consumeLong(acc, input, len, align);
3168 
3169         h32 = XXH32_mergeAccs(acc);
3170     } else {
3171         h32  = seed + XXH_PRIME32_5;
3172     }
3173 
3174     h32 += (xxh_u32)len;
3175 
3176     return XXH32_finalize(h32, input, len&15, align);
3177 }
3178 
3179 /*! @ingroup XXH32_family */
3180 XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
3181 {
3182 #if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
3183     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
3184     XXH32_state_t state;
3185     XXH32_reset(&state, seed);
3186     XXH32_update(&state, (const xxh_u8*)input, len);
3187     return XXH32_digest(&state);
3188 #else
3189     if (XXH_FORCE_ALIGN_CHECK) {
3190         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
3191             return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
3192     }   }
3193 
3194     return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
3195 #endif
3196 }
3197 
3198 
3199 
3200 /*******   Hash streaming   *******/
3201 #ifndef XXH_NO_STREAM
3202 /*! @ingroup XXH32_family */
3203 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
3204 {
3205     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
3206 }
3207 /*! @ingroup XXH32_family */
3208 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
3209 {
3210     XXH_free(statePtr);
3211     return XXH_OK;
3212 }
3213 
3214 /*! @ingroup XXH32_family */
3215 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
3216 {
3217     XXH_memcpy(dstState, srcState, sizeof(*dstState));
3218 }
3219 
3220 /*! @ingroup XXH32_family */
3221 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
3222 {
3223     XXH_ASSERT(statePtr != NULL);
3224     memset(statePtr, 0, sizeof(*statePtr));
3225     XXH32_initAccs(statePtr->acc, seed);
3226     return XXH_OK;
3227 }
3228 
3229 
3230 /*! @ingroup XXH32_family */
3231 XXH_PUBLIC_API XXH_errorcode
3232 XXH32_update(XXH32_state_t* state, const void* input, size_t len)
3233 {
3234     if (input==NULL) {
3235         XXH_ASSERT(len == 0);
3236         return XXH_OK;
3237     }
3238 
3239     state->total_len_32 += (XXH32_hash_t)len;
3240     state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
3241 
3242     XXH_ASSERT(state->bufferedSize < sizeof(state->buffer));
3243     if (len < sizeof(state->buffer) - state->bufferedSize)  {   /* fill in tmp buffer */
3244         XXH_memcpy(state->buffer + state->bufferedSize, input, len);
3245         state->bufferedSize += (XXH32_hash_t)len;
3246         return XXH_OK;
3247     }
3248 
3249     {   const xxh_u8* xinput = (const xxh_u8*)input;
3250         const xxh_u8* const bEnd = xinput + len;
3251 
3252         if (state->bufferedSize) {   /* non-empty buffer: complete first */
3253             XXH_memcpy(state->buffer + state->bufferedSize, xinput, sizeof(state->buffer) - state->bufferedSize);
3254             xinput += sizeof(state->buffer) - state->bufferedSize;
3255             /* then process one round */
3256             (void)XXH32_consumeLong(state->acc, state->buffer, sizeof(state->buffer), XXH_aligned);
3257             state->bufferedSize = 0;
3258         }
3259 
3260         XXH_ASSERT(xinput <= bEnd);
3261         if ((size_t)(bEnd - xinput) >= sizeof(state->buffer)) {
3262             /* Process the remaining data */
3263             xinput = XXH32_consumeLong(state->acc, xinput, (size_t)(bEnd - xinput), XXH_unaligned);
3264         }
3265 
3266         if (xinput < bEnd) {
3267             /* Copy the leftover to the tmp buffer */
3268             XXH_memcpy(state->buffer, xinput, (size_t)(bEnd-xinput));
3269             state->bufferedSize = (unsigned)(bEnd-xinput);
3270         }
3271     }
3272 
3273     return XXH_OK;
3274 }
3275 
3276 
3277 /*! @ingroup XXH32_family */
3278 XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
3279 {
3280     xxh_u32 h32;
3281 
3282     if (state->large_len) {
3283         h32 = XXH32_mergeAccs(state->acc);
3284     } else {
3285         h32 = state->acc[2] /* == seed */ + XXH_PRIME32_5;
3286     }
3287 
3288     h32 += state->total_len_32;
3289 
3290     return XXH32_finalize(h32, state->buffer, state->bufferedSize, XXH_aligned);
3291 }
3292 #endif /* !XXH_NO_STREAM */
3293 
3294 /*******   Canonical representation   *******/
3295 
3296 /*! @ingroup XXH32_family */
3297 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
3298 {
3299     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
3300     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
3301     XXH_memcpy(dst, &hash, sizeof(*dst));
3302 }
3303 /*! @ingroup XXH32_family */
3304 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
3305 {
3306     return XXH_readBE32(src);
3307 }
3308 
3309 
3310 #ifndef XXH_NO_LONG_LONG
3311 
3312 /* *******************************************************************
3313 *  64-bit hash functions
3314 *********************************************************************/
3315 /*!
3316  * @}
3317  * @ingroup impl
3318  * @{
3319  */
3320 /*******   Memory access   *******/
3321 
3322 typedef XXH64_hash_t xxh_u64;
3323 
3324 #ifdef XXH_OLD_NAMES
3325 #  define U64 xxh_u64
3326 #endif
3327 
3328 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
3329 /*
3330  * Manual byteshift. Best for old compilers which don't inline memcpy.
3331  * We actually directly use XXH_readLE64 and XXH_readBE64.
3332  */
3333 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
3334 
3335 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
3336 static xxh_u64 XXH_read64(const void* memPtr)
3337 {
3338     return *(const xxh_u64*) memPtr;
3339 }
3340 
3341 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
3342 
3343 /*
3344  * __attribute__((aligned(1))) is supported by gcc and clang. Originally the
3345  * documentation claimed that it only increased the alignment, but actually it
3346  * can decrease it on gcc, clang, and icc:
3347  * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
3348  * https://gcc.godbolt.org/z/xYez1j67Y.
3349  */
3350 #ifdef XXH_OLD_NAMES
3351 typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((__packed__)) unalign64;
3352 #endif
3353 static xxh_u64 XXH_read64(const void* ptr)
3354 {
3355     typedef __attribute__((__aligned__(1))) xxh_u64 xxh_unalign64;
3356     return *((const xxh_unalign64*)ptr);
3357 }
3358 
3359 #else
3360 
3361 /*
3362  * Portable and safe solution. Generally efficient.
3363  * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
3364  */
3365 static xxh_u64 XXH_read64(const void* memPtr)
3366 {
3367     xxh_u64 val;
3368     XXH_memcpy(&val, memPtr, sizeof(val));
3369     return val;
3370 }
3371 
3372 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
3373 
3374 #if defined(_MSC_VER)     /* Visual Studio */
3375 #  define XXH_swap64 _byteswap_uint64
3376 #elif XXH_GCC_VERSION >= 403
3377 #  define XXH_swap64 __builtin_bswap64
3378 #else
3379 static xxh_u64 XXH_swap64(xxh_u64 x)
3380 {
3381     return  ((x << 56) & 0xff00000000000000ULL) |
3382             ((x << 40) & 0x00ff000000000000ULL) |
3383             ((x << 24) & 0x0000ff0000000000ULL) |
3384             ((x << 8)  & 0x000000ff00000000ULL) |
3385             ((x >> 8)  & 0x00000000ff000000ULL) |
3386             ((x >> 24) & 0x0000000000ff0000ULL) |
3387             ((x >> 40) & 0x000000000000ff00ULL) |
3388             ((x >> 56) & 0x00000000000000ffULL);
3389 }
3390 #endif
3391 
3392 
3393 /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
3394 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
3395 
3396 XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
3397 {
3398     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
3399     return bytePtr[0]
3400          | ((xxh_u64)bytePtr[1] << 8)
3401          | ((xxh_u64)bytePtr[2] << 16)
3402          | ((xxh_u64)bytePtr[3] << 24)
3403          | ((xxh_u64)bytePtr[4] << 32)
3404          | ((xxh_u64)bytePtr[5] << 40)
3405          | ((xxh_u64)bytePtr[6] << 48)
3406          | ((xxh_u64)bytePtr[7] << 56);
3407 }
3408 
3409 XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
3410 {
3411     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
3412     return bytePtr[7]
3413          | ((xxh_u64)bytePtr[6] << 8)
3414          | ((xxh_u64)bytePtr[5] << 16)
3415          | ((xxh_u64)bytePtr[4] << 24)
3416          | ((xxh_u64)bytePtr[3] << 32)
3417          | ((xxh_u64)bytePtr[2] << 40)
3418          | ((xxh_u64)bytePtr[1] << 48)
3419          | ((xxh_u64)bytePtr[0] << 56);
3420 }
3421 
3422 #else
3423 XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
3424 {
3425     return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
3426 }
3427 
3428 static xxh_u64 XXH_readBE64(const void* ptr)
3429 {
3430     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
3431 }
3432 #endif
3433 
3434 XXH_FORCE_INLINE xxh_u64
3435 XXH_readLE64_align(const void* ptr, XXH_alignment align)
3436 {
3437     if (align==XXH_unaligned)
3438         return XXH_readLE64(ptr);
3439     else
3440         return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
3441 }
3442 
3443 
3444 /*******   xxh64   *******/
3445 /*!
3446  * @}
3447  * @defgroup XXH64_impl XXH64 implementation
3448  * @ingroup impl
3449  *
3450  * Details on the XXH64 implementation.
3451  * @{
3452  */
3453 /* #define rather that static const, to be used as initializers */
3454 #define XXH_PRIME64_1  0x9E3779B185EBCA87ULL  /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
3455 #define XXH_PRIME64_2  0xC2B2AE3D27D4EB4FULL  /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
3456 #define XXH_PRIME64_3  0x165667B19E3779F9ULL  /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
3457 #define XXH_PRIME64_4  0x85EBCA77C2B2AE63ULL  /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
3458 #define XXH_PRIME64_5  0x27D4EB2F165667C5ULL  /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
3459 
3460 #ifdef XXH_OLD_NAMES
3461 #  define PRIME64_1 XXH_PRIME64_1
3462 #  define PRIME64_2 XXH_PRIME64_2
3463 #  define PRIME64_3 XXH_PRIME64_3
3464 #  define PRIME64_4 XXH_PRIME64_4
3465 #  define PRIME64_5 XXH_PRIME64_5
3466 #endif
3467 
3468 /*! @copydoc XXH32_round */
3469 static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
3470 {
3471     acc += input * XXH_PRIME64_2;
3472     acc  = XXH_rotl64(acc, 31);
3473     acc *= XXH_PRIME64_1;
3474 #if (defined(__AVX512F__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
3475     /*
3476      * DISABLE AUTOVECTORIZATION:
3477      * A compiler fence is used to prevent GCC and Clang from
3478      * autovectorizing the XXH64 loop (pragmas and attributes don't work for some
3479      * reason) without globally disabling AVX512.
3480      *
3481      * Autovectorization of XXH64 tends to be detrimental,
3482      * though the exact outcome may change depending on exact cpu and compiler version.
3483      * For information, it has been reported as detrimental for Skylake-X,
3484      * but possibly beneficial for Zen4.
3485      *
3486      * The default is to disable auto-vectorization,
3487      * but you can select to enable it instead using `XXH_ENABLE_AUTOVECTORIZE` build variable.
3488      */
3489     XXH_COMPILER_GUARD(acc);
3490 #endif
3491     return acc;
3492 }
3493 
3494 static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
3495 {
3496     val  = XXH64_round(0, val);
3497     acc ^= val;
3498     acc  = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
3499     return acc;
3500 }
3501 
3502 /*! @copydoc XXH32_avalanche */
3503 static xxh_u64 XXH64_avalanche(xxh_u64 hash)
3504 {
3505     hash ^= hash >> 33;
3506     hash *= XXH_PRIME64_2;
3507     hash ^= hash >> 29;
3508     hash *= XXH_PRIME64_3;
3509     hash ^= hash >> 32;
3510     return hash;
3511 }
3512 
3513 
3514 #define XXH_get64bits(p) XXH_readLE64_align(p, align)
3515 
3516 /*!
3517  * @internal
3518  * @brief Sets up the initial accumulator state for XXH64().
3519  */
3520 XXH_FORCE_INLINE void
3521 XXH64_initAccs(xxh_u64 *acc, xxh_u64 seed)
3522 {
3523     XXH_ASSERT(acc != NULL);
3524     acc[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
3525     acc[1] = seed + XXH_PRIME64_2;
3526     acc[2] = seed + 0;
3527     acc[3] = seed - XXH_PRIME64_1;
3528 }
3529 
3530 /*!
3531  * @internal
3532  * @brief Consumes a block of data for XXH64().
3533  *
3534  * @return the end input pointer.
3535  */
3536 XXH_FORCE_INLINE const xxh_u8 *
3537 XXH64_consumeLong(
3538     xxh_u64 *XXH_RESTRICT acc,
3539     xxh_u8 const *XXH_RESTRICT input,
3540     size_t len,
3541     XXH_alignment align
3542 )
3543 {
3544     const xxh_u8* const bEnd = input + len;
3545     const xxh_u8* const limit = bEnd - 31;
3546     XXH_ASSERT(acc != NULL);
3547     XXH_ASSERT(input != NULL);
3548     XXH_ASSERT(len >= 32);
3549     do {
3550         /* reroll on 32-bit */
3551         if (sizeof(void *) < sizeof(xxh_u64)) {
3552             size_t i;
3553             for (i = 0; i < 4; i++) {
3554                 acc[i] = XXH64_round(acc[i], XXH_get64bits(input));
3555                 input += 8;
3556             }
3557         } else {
3558             acc[0] = XXH64_round(acc[0], XXH_get64bits(input)); input += 8;
3559             acc[1] = XXH64_round(acc[1], XXH_get64bits(input)); input += 8;
3560             acc[2] = XXH64_round(acc[2], XXH_get64bits(input)); input += 8;
3561             acc[3] = XXH64_round(acc[3], XXH_get64bits(input)); input += 8;
3562         }
3563     } while (input < limit);
3564 
3565     return input;
3566 }
3567 
3568 /*!
3569  * @internal
3570  * @brief Merges the accumulator lanes together for XXH64()
3571  */
3572 XXH_FORCE_INLINE XXH_PUREF xxh_u64
3573 XXH64_mergeAccs(const xxh_u64 *acc)
3574 {
3575     XXH_ASSERT(acc != NULL);
3576     {
3577         xxh_u64 h64 = XXH_rotl64(acc[0], 1) + XXH_rotl64(acc[1], 7)
3578                     + XXH_rotl64(acc[2], 12) + XXH_rotl64(acc[3], 18);
3579         /* reroll on 32-bit */
3580         if (sizeof(void *) < sizeof(xxh_u64)) {
3581             size_t i;
3582             for (i = 0; i < 4; i++) {
3583                 h64 = XXH64_mergeRound(h64, acc[i]);
3584             }
3585         } else {
3586             h64 = XXH64_mergeRound(h64, acc[0]);
3587             h64 = XXH64_mergeRound(h64, acc[1]);
3588             h64 = XXH64_mergeRound(h64, acc[2]);
3589             h64 = XXH64_mergeRound(h64, acc[3]);
3590         }
3591         return h64;
3592     }
3593 }
3594 
3595 /*!
3596  * @internal
3597  * @brief Processes the last 0-31 bytes of @p ptr.
3598  *
3599  * There may be up to 31 bytes remaining to consume from the input.
3600  * This final stage will digest them to ensure that all input bytes are present
3601  * in the final mix.
3602  *
3603  * @param hash The hash to finalize.
3604  * @param ptr The pointer to the remaining input.
3605  * @param len The remaining length, modulo 32.
3606  * @param align Whether @p ptr is aligned.
3607  * @return The finalized hash
3608  * @see XXH32_finalize().
3609  */
3610 XXH_STATIC XXH_PUREF xxh_u64
3611 XXH64_finalize(xxh_u64 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
3612 {
3613     if (ptr==NULL) XXH_ASSERT(len == 0);
3614     len &= 31;
3615     while (len >= 8) {
3616         xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
3617         ptr += 8;
3618         hash ^= k1;
3619         hash  = XXH_rotl64(hash,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
3620         len -= 8;
3621     }
3622     if (len >= 4) {
3623         hash ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
3624         ptr += 4;
3625         hash = XXH_rotl64(hash, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
3626         len -= 4;
3627     }
3628     while (len > 0) {
3629         hash ^= (*ptr++) * XXH_PRIME64_5;
3630         hash = XXH_rotl64(hash, 11) * XXH_PRIME64_1;
3631         --len;
3632     }
3633     return  XXH64_avalanche(hash);
3634 }
3635 
3636 #ifdef XXH_OLD_NAMES
3637 #  define PROCESS1_64 XXH_PROCESS1_64
3638 #  define PROCESS4_64 XXH_PROCESS4_64
3639 #  define PROCESS8_64 XXH_PROCESS8_64
3640 #else
3641 #  undef XXH_PROCESS1_64
3642 #  undef XXH_PROCESS4_64
3643 #  undef XXH_PROCESS8_64
3644 #endif
3645 
3646 /*!
3647  * @internal
3648  * @brief The implementation for @ref XXH64().
3649  *
3650  * @param input , len , seed Directly passed from @ref XXH64().
3651  * @param align Whether @p input is aligned.
3652  * @return The calculated hash.
3653  */
3654 XXH_FORCE_INLINE XXH_PUREF xxh_u64
3655 XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
3656 {
3657     xxh_u64 h64;
3658     if (input==NULL) XXH_ASSERT(len == 0);
3659 
3660     if (len>=32) {  /* Process a large block of data */
3661         xxh_u64 acc[4];
3662         XXH64_initAccs(acc, seed);
3663 
3664         input = XXH64_consumeLong(acc, input, len, align);
3665 
3666         h64 = XXH64_mergeAccs(acc);
3667     } else {
3668         h64  = seed + XXH_PRIME64_5;
3669     }
3670 
3671     h64 += (xxh_u64) len;
3672 
3673     return XXH64_finalize(h64, input, len, align);
3674 }
3675 
3676 
3677 /*! @ingroup XXH64_family */
3678 XXH_PUBLIC_API XXH64_hash_t XXH64 (XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
3679 {
3680 #if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
3681     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
3682     XXH64_state_t state;
3683     XXH64_reset(&state, seed);
3684     XXH64_update(&state, (const xxh_u8*)input, len);
3685     return XXH64_digest(&state);
3686 #else
3687     if (XXH_FORCE_ALIGN_CHECK) {
3688         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
3689             return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
3690     }   }
3691 
3692     return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
3693 
3694 #endif
3695 }
3696 
3697 /*******   Hash Streaming   *******/
3698 #ifndef XXH_NO_STREAM
3699 /*! @ingroup XXH64_family*/
3700 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
3701 {
3702     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
3703 }
3704 /*! @ingroup XXH64_family */
3705 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
3706 {
3707     XXH_free(statePtr);
3708     return XXH_OK;
3709 }
3710 
3711 /*! @ingroup XXH64_family */
3712 XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState)
3713 {
3714     XXH_memcpy(dstState, srcState, sizeof(*dstState));
3715 }
3716 
3717 /*! @ingroup XXH64_family */
3718 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed)
3719 {
3720     XXH_ASSERT(statePtr != NULL);
3721     memset(statePtr, 0, sizeof(*statePtr));
3722     XXH64_initAccs(statePtr->acc, seed);
3723     return XXH_OK;
3724 }
3725 
3726 /*! @ingroup XXH64_family */
3727 XXH_PUBLIC_API XXH_errorcode
3728 XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len)
3729 {
3730     if (input==NULL) {
3731         XXH_ASSERT(len == 0);
3732         return XXH_OK;
3733     }
3734 
3735     state->total_len += len;
3736 
3737     XXH_ASSERT(state->bufferedSize <= sizeof(state->buffer));
3738     if (len < sizeof(state->buffer) - state->bufferedSize)  {   /* fill in tmp buffer */
3739         XXH_memcpy(state->buffer + state->bufferedSize, input, len);
3740         state->bufferedSize += (XXH32_hash_t)len;
3741         return XXH_OK;
3742     }
3743 
3744     {   const xxh_u8* xinput = (const xxh_u8*)input;
3745         const xxh_u8* const bEnd = xinput + len;
3746 
3747         if (state->bufferedSize) {   /* non-empty buffer => complete first */
3748             XXH_memcpy(state->buffer + state->bufferedSize, xinput, sizeof(state->buffer) - state->bufferedSize);
3749             xinput += sizeof(state->buffer) - state->bufferedSize;
3750             /* and process one round */
3751             (void)XXH64_consumeLong(state->acc, state->buffer, sizeof(state->buffer), XXH_aligned);
3752             state->bufferedSize = 0;
3753         }
3754 
3755         XXH_ASSERT(xinput <= bEnd);
3756         if ((size_t)(bEnd - xinput) >= sizeof(state->buffer)) {
3757             /* Process the remaining data */
3758             xinput = XXH64_consumeLong(state->acc, xinput, (size_t)(bEnd - xinput), XXH_unaligned);
3759         }
3760 
3761         if (xinput < bEnd) {
3762             /* Copy the leftover to the tmp buffer */
3763             XXH_memcpy(state->buffer, xinput, (size_t)(bEnd-xinput));
3764             state->bufferedSize = (unsigned)(bEnd-xinput);
3765         }
3766     }
3767 
3768     return XXH_OK;
3769 }
3770 
3771 
3772 /*! @ingroup XXH64_family */
3773 XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state)
3774 {
3775     xxh_u64 h64;
3776 
3777     if (state->total_len >= 32) {
3778         h64 = XXH64_mergeAccs(state->acc);
3779     } else {
3780         h64  = state->acc[2] /*seed*/ + XXH_PRIME64_5;
3781     }
3782 
3783     h64 += (xxh_u64) state->total_len;
3784 
3785     return XXH64_finalize(h64, state->buffer, (size_t)state->total_len, XXH_aligned);
3786 }
3787 #endif /* !XXH_NO_STREAM */
3788 
3789 /******* Canonical representation   *******/
3790 
3791 /*! @ingroup XXH64_family */
3792 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash)
3793 {
3794     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
3795     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
3796     XXH_memcpy(dst, &hash, sizeof(*dst));
3797 }
3798 
3799 /*! @ingroup XXH64_family */
3800 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src)
3801 {
3802     return XXH_readBE64(src);
3803 }
3804 
3805 #ifndef XXH_NO_XXH3
3806 
3807 /* *********************************************************************
3808 *  XXH3
3809 *  New generation hash designed for speed on small keys and vectorization
3810 ************************************************************************ */
3811 /*!
3812  * @}
3813  * @defgroup XXH3_impl XXH3 implementation
3814  * @ingroup impl
3815  * @{
3816  */
3817 
3818 /* ===   Compiler specifics   === */
3819 
3820 
3821 #if (defined(__GNUC__) && (__GNUC__ >= 3))  \
3822   || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
3823   || defined(__clang__)
3824 #    define XXH_likely(x) __builtin_expect(x, 1)
3825 #    define XXH_unlikely(x) __builtin_expect(x, 0)
3826 #else
3827 #    define XXH_likely(x) (x)
3828 #    define XXH_unlikely(x) (x)
3829 #endif
3830 
3831 #ifndef XXH_HAS_INCLUDE
3832 #  ifdef __has_include
3833 /*
3834  * Not defined as XXH_HAS_INCLUDE(x) (function-like) because
3835  * this causes segfaults in Apple Clang 4.2 (on Mac OS X 10.7 Lion)
3836  */
3837 #    define XXH_HAS_INCLUDE __has_include
3838 #  else
3839 #    define XXH_HAS_INCLUDE(x) 0
3840 #  endif
3841 #endif
3842 
3843 #if defined(__GNUC__) || defined(__clang__)
3844 #  if defined(__ARM_FEATURE_SVE)
3845 #    include <arm_sve.h>
3846 #  endif
3847 #  if defined(__ARM_NEON__) || defined(__ARM_NEON) \
3848    || (defined(_M_ARM) && _M_ARM >= 7) \
3849    || defined(_M_ARM64) || defined(_M_ARM64EC) \
3850    || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* WASM SIMD128 via SIMDe */
3851 #    define inline __inline__  /* circumvent a clang bug */
3852 #    include <arm_neon.h>
3853 #    undef inline
3854 #  elif defined(__AVX2__)
3855 #    include <immintrin.h>
3856 #  elif defined(__SSE2__)
3857 #    include <emmintrin.h>
3858 #  elif defined(__loongarch_sx)
3859 #    include <lsxintrin.h>
3860 #  endif
3861 #endif
3862 
3863 #if defined(_MSC_VER)
3864 #  include <intrin.h>
3865 #endif
3866 
3867 /*
3868  * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
3869  * remaining a true 64-bit/128-bit hash function.
3870  *
3871  * This is done by prioritizing a subset of 64-bit operations that can be
3872  * emulated without too many steps on the average 32-bit machine.
3873  *
3874  * For example, these two lines seem similar, and run equally fast on 64-bit:
3875  *
3876  *   xxh_u64 x;
3877  *   x ^= (x >> 47); // good
3878  *   x ^= (x >> 13); // bad
3879  *
3880  * However, to a 32-bit machine, there is a major difference.
3881  *
3882  * x ^= (x >> 47) looks like this:
3883  *
3884  *   x.lo ^= (x.hi >> (47 - 32));
3885  *
3886  * while x ^= (x >> 13) looks like this:
3887  *
3888  *   // note: funnel shifts are not usually cheap.
3889  *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
3890  *   x.hi ^= (x.hi >> 13);
3891  *
3892  * The first one is significantly faster than the second, simply because the
3893  * shift is larger than 32. This means:
3894  *  - All the bits we need are in the upper 32 bits, so we can ignore the lower
3895  *    32 bits in the shift.
3896  *  - The shift result will always fit in the lower 32 bits, and therefore,
3897  *    we can ignore the upper 32 bits in the xor.
3898  *
3899  * Thanks to this optimization, XXH3 only requires these features to be efficient:
3900  *
3901  *  - Usable unaligned access
3902  *  - A 32-bit or 64-bit ALU
3903  *      - If 32-bit, a decent ADC instruction
3904  *  - A 32 or 64-bit multiply with a 64-bit result
3905  *  - For the 128-bit variant, a decent byteswap helps short inputs.
3906  *
3907  * The first two are already required by XXH32, and almost all 32-bit and 64-bit
3908  * platforms which can run XXH32 can run XXH3 efficiently.
3909  *
3910  * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
3911  * notable exception.
3912  *
3913  * First of all, Thumb-1 lacks support for the UMULL instruction which
3914  * performs the important long multiply. This means numerous __aeabi_lmul
3915  * calls.
3916  *
3917  * Second of all, the 8 functional registers are just not enough.
3918  * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
3919  * Lo registers, and this shuffling results in thousands more MOVs than A32.
3920  *
3921  * A32 and T32 don't have this limitation. They can access all 14 registers,
3922  * do a 32->64 multiply with UMULL, and the flexible operand allowing free
3923  * shifts is helpful, too.
3924  *
3925  * Therefore, we do a quick sanity check.
3926  *
3927  * If compiling Thumb-1 for a target which supports ARM instructions, we will
3928  * emit a warning, as it is not a "sane" platform to compile for.
3929  *
3930  * Usually, if this happens, it is because of an accident and you probably need
3931  * to specify -march, as you likely meant to compile for a newer architecture.
3932  *
3933  * Credit: large sections of the vectorial and asm source code paths
3934  *         have been contributed by @easyaspi314
3935  */
3936 #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
3937 #   warning "XXH3 is highly inefficient without ARM or Thumb-2."
3938 #endif
3939 
3940 /* ==========================================
3941  * Vectorization detection
3942  * ========================================== */
3943 
3944 #ifdef XXH_DOXYGEN
3945 /*!
3946  * @ingroup tuning
3947  * @brief Overrides the vectorization implementation chosen for XXH3.
3948  *
3949  * Can be defined to 0 to disable SIMD or any of the values mentioned in
3950  * @ref XXH_VECTOR_TYPE.
3951  *
3952  * If this is not defined, it uses predefined macros to determine the best
3953  * implementation.
3954  */
3955 #  define XXH_VECTOR XXH_SCALAR
3956 /*!
3957  * @ingroup tuning
3958  * @brief Selects the minimum alignment for XXH3's accumulators.
3959  *
3960  * When using SIMD, this should match the alignment required for said vector
3961  * type, so, for example, 32 for AVX2.
3962  *
3963  * Default: Auto detected.
3964  */
3965 #  define XXH_ACC_ALIGN 8
3966 #endif
3967 
3968 /* Actual definition */
3969 #ifndef XXH_DOXYGEN
3970 #endif
3971 
3972 #ifndef XXH_VECTOR    /* can be defined on command line */
3973 #  if defined(__ARM_FEATURE_SVE)
3974 #    define XXH_VECTOR XXH_SVE
3975 #  elif ( \
3976         defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
3977      || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \
3978      || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* wasm simd128 via SIMDe */ \
3979    ) && ( \
3980         defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
3981     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
3982    )
3983 #    define XXH_VECTOR XXH_NEON
3984 #  elif defined(__AVX512F__)
3985 #    define XXH_VECTOR XXH_AVX512
3986 #  elif defined(__AVX2__)
3987 #    define XXH_VECTOR XXH_AVX2
3988 #  elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
3989 #    define XXH_VECTOR XXH_SSE2
3990 #  elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
3991      || (defined(__s390x__) && defined(__VEC__)) \
3992      && defined(__GNUC__) /* TODO: IBM XL */
3993 #    define XXH_VECTOR XXH_VSX
3994 #  elif defined(__loongarch_sx)
3995 #    define XXH_VECTOR XXH_LSX
3996 #  else
3997 #    define XXH_VECTOR XXH_SCALAR
3998 #  endif
3999 #endif
4000 
4001 /* __ARM_FEATURE_SVE is only supported by GCC & Clang. */
4002 #if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE)
4003 #  ifdef _MSC_VER
4004 #    pragma warning(once : 4606)
4005 #  else
4006 #    warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead."
4007 #  endif
4008 #  undef XXH_VECTOR
4009 #  define XXH_VECTOR XXH_SCALAR
4010 #endif
4011 
4012 /*
4013  * Controls the alignment of the accumulator,
4014  * for compatibility with aligned vector loads, which are usually faster.
4015  */
4016 #ifndef XXH_ACC_ALIGN
4017 #  if defined(XXH_X86DISPATCH)
4018 #     define XXH_ACC_ALIGN 64  /* for compatibility with avx512 */
4019 #  elif XXH_VECTOR == XXH_SCALAR  /* scalar */
4020 #     define XXH_ACC_ALIGN 8
4021 #  elif XXH_VECTOR == XXH_SSE2  /* sse2 */
4022 #     define XXH_ACC_ALIGN 16
4023 #  elif XXH_VECTOR == XXH_AVX2  /* avx2 */
4024 #     define XXH_ACC_ALIGN 32
4025 #  elif XXH_VECTOR == XXH_NEON  /* neon */
4026 #     define XXH_ACC_ALIGN 16
4027 #  elif XXH_VECTOR == XXH_VSX   /* vsx */
4028 #     define XXH_ACC_ALIGN 16
4029 #  elif XXH_VECTOR == XXH_AVX512  /* avx512 */
4030 #     define XXH_ACC_ALIGN 64
4031 #  elif XXH_VECTOR == XXH_SVE   /* sve */
4032 #     define XXH_ACC_ALIGN 64
4033 #  elif XXH_VECTOR == XXH_LSX   /* lsx */
4034 #     define XXH_ACC_ALIGN 64
4035 #  endif
4036 #endif
4037 
4038 #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
4039     || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
4040 #  define XXH_SEC_ALIGN XXH_ACC_ALIGN
4041 #elif XXH_VECTOR == XXH_SVE
4042 #  define XXH_SEC_ALIGN XXH_ACC_ALIGN
4043 #else
4044 #  define XXH_SEC_ALIGN 8
4045 #endif
4046 
4047 #if defined(__GNUC__) || defined(__clang__)
4048 #  define XXH_ALIASING __attribute__((__may_alias__))
4049 #else
4050 #  define XXH_ALIASING /* nothing */
4051 #endif
4052 
4053 /*
4054  * UGLY HACK:
4055  * GCC usually generates the best code with -O3 for xxHash.
4056  *
4057  * However, when targeting AVX2, it is overzealous in its unrolling resulting
4058  * in code roughly 3/4 the speed of Clang.
4059  *
4060  * There are other issues, such as GCC splitting _mm256_loadu_si256 into
4061  * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
4062  * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
4063  *
4064  * That is why when compiling the AVX2 version, it is recommended to use either
4065  *   -O2 -mavx2 -march=haswell
4066  * or
4067  *   -O2 -mavx2 -mno-avx256-split-unaligned-load
4068  * for decent performance, or to use Clang instead.
4069  *
4070  * Fortunately, we can control the first one with a pragma that forces GCC into
4071  * -O2, but the other one we can't control without "failed to inline always
4072  * inline function due to target mismatch" warnings.
4073  */
4074 #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
4075   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
4076   && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
4077 #  pragma GCC push_options
4078 #  pragma GCC optimize("-O2")
4079 #endif
4080 
4081 #if XXH_VECTOR == XXH_NEON
4082 
4083 /*
4084  * UGLY HACK: While AArch64 GCC on Linux does not seem to care, on macOS, GCC -O3
4085  * optimizes out the entire hashLong loop because of the aliasing violation.
4086  *
4087  * However, GCC is also inefficient at load-store optimization with vld1q/vst1q,
4088  * so the only option is to mark it as aliasing.
4089  */
4090 typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING;
4091 
4092 /*!
4093  * @internal
4094  * @brief `vld1q_u64` but faster and alignment-safe.
4095  *
4096  * On AArch64, unaligned access is always safe, but on ARMv7-a, it is only
4097  * *conditionally* safe (`vld1` has an alignment bit like `movdq[ua]` in x86).
4098  *
4099  * GCC for AArch64 sees `vld1q_u8` as an intrinsic instead of a load, so it
4100  * prohibits load-store optimizations. Therefore, a direct dereference is used.
4101  *
4102  * Otherwise, `vld1q_u8` is used with `vreinterpretq_u8_u64` to do a safe
4103  * unaligned load.
4104  */
4105 #if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__)
4106 XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */
4107 {
4108     return *(xxh_aliasing_uint64x2_t const *)ptr;
4109 }
4110 #else
4111 XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr)
4112 {
4113     return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr));
4114 }
4115 #endif
4116 
4117 /*!
4118  * @internal
4119  * @brief `vmlal_u32` on low and high halves of a vector.
4120  *
4121  * This is a workaround for AArch64 GCC < 11 which implemented arm_neon.h with
4122  * inline assembly and were therefore incapable of merging the `vget_{low, high}_u32`
4123  * with `vmlal_u32`.
4124  */
4125 #if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 11
4126 XXH_FORCE_INLINE uint64x2_t
4127 XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
4128 {
4129     /* Inline assembly is the only way */
4130     __asm__("umlal   %0.2d, %1.2s, %2.2s" : "+w" (acc) : "w" (lhs), "w" (rhs));
4131     return acc;
4132 }
4133 XXH_FORCE_INLINE uint64x2_t
4134 XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
4135 {
4136     /* This intrinsic works as expected */
4137     return vmlal_high_u32(acc, lhs, rhs);
4138 }
4139 #else
4140 /* Portable intrinsic versions */
4141 XXH_FORCE_INLINE uint64x2_t
4142 XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
4143 {
4144     return vmlal_u32(acc, vget_low_u32(lhs), vget_low_u32(rhs));
4145 }
4146 /*! @copydoc XXH_vmlal_low_u32
4147  * Assume the compiler converts this to vmlal_high_u32 on aarch64 */
4148 XXH_FORCE_INLINE uint64x2_t
4149 XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
4150 {
4151     return vmlal_u32(acc, vget_high_u32(lhs), vget_high_u32(rhs));
4152 }
4153 #endif
4154 
4155 /*!
4156  * @ingroup tuning
4157  * @brief Controls the NEON to scalar ratio for XXH3
4158  *
4159  * This can be set to 2, 4, 6, or 8.
4160  *
4161  * ARM Cortex CPUs are _very_ sensitive to how their pipelines are used.
4162  *
4163  * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but only 2 of those
4164  * can be NEON. If you are only using NEON instructions, you are only using 2/3 of the CPU
4165  * bandwidth.
4166  *
4167  * This is even more noticeable on the more advanced cores like the Cortex-A76 which
4168  * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once.
4169  *
4170  * Therefore, to make the most out of the pipeline, it is beneficial to run 6 NEON lanes
4171  * and 2 scalar lanes, which is chosen by default.
4172  *
4173  * This does not apply to Apple processors or 32-bit processors, which run better with
4174  * full NEON. These will default to 8. Additionally, size-optimized builds run 8 lanes.
4175  *
4176  * This change benefits CPUs with large micro-op buffers without negatively affecting
4177  * most other CPUs:
4178  *
4179  *  | Chipset               | Dispatch type       | NEON only | 6:2 hybrid | Diff. |
4180  *  |:----------------------|:--------------------|----------:|-----------:|------:|
4181  *  | Snapdragon 730 (A76)  | 2 NEON/8 micro-ops  |  8.8 GB/s |  10.1 GB/s |  ~16% |
4182  *  | Snapdragon 835 (A73)  | 2 NEON/3 micro-ops  |  5.1 GB/s |   5.3 GB/s |   ~5% |
4183  *  | Marvell PXA1928 (A53) | In-order dual-issue |  1.9 GB/s |   1.9 GB/s |    0% |
4184  *  | Apple M1              | 4 NEON/8 micro-ops  | 37.3 GB/s |  36.1 GB/s |  ~-3% |
4185  *
4186  * It also seems to fix some bad codegen on GCC, making it almost as fast as clang.
4187  *
4188  * When using WASM SIMD128, if this is 2 or 6, SIMDe will scalarize 2 of the lanes meaning
4189  * it effectively becomes worse 4.
4190  *
4191  * @see XXH3_accumulate_512_neon()
4192  */
4193 # ifndef XXH3_NEON_LANES
4194 #  if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \
4195    && !defined(__APPLE__) && XXH_SIZE_OPT <= 0
4196 #   define XXH3_NEON_LANES 6
4197 #  else
4198 #   define XXH3_NEON_LANES XXH_ACC_NB
4199 #  endif
4200 # endif
4201 #endif  /* XXH_VECTOR == XXH_NEON */
4202 
4203 /*
4204  * VSX and Z Vector helpers.
4205  *
4206  * This is very messy, and any pull requests to clean this up are welcome.
4207  *
4208  * There are a lot of problems with supporting VSX and s390x, due to
4209  * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
4210  */
4211 #if XXH_VECTOR == XXH_VSX
4212 /* Annoyingly, these headers _may_ define three macros: `bool`, `vector`,
4213  * and `pixel`. This is a problem for obvious reasons.
4214  *
4215  * These keywords are unnecessary; the spec literally says they are
4216  * equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd
4217  * after including the header.
4218  *
4219  * We use pragma push_macro/pop_macro to keep the namespace clean. */
4220 #  pragma push_macro("bool")
4221 #  pragma push_macro("vector")
4222 #  pragma push_macro("pixel")
4223 /* silence potential macro redefined warnings */
4224 #  undef bool
4225 #  undef vector
4226 #  undef pixel
4227 
4228 #  if defined(__s390x__)
4229 #    include <s390intrin.h>
4230 #  else
4231 #    include <altivec.h>
4232 #  endif
4233 
4234 /* Restore the original macro values, if applicable. */
4235 #  pragma pop_macro("pixel")
4236 #  pragma pop_macro("vector")
4237 #  pragma pop_macro("bool")
4238 
4239 typedef __vector unsigned long long xxh_u64x2;
4240 typedef __vector unsigned char xxh_u8x16;
4241 typedef __vector unsigned xxh_u32x4;
4242 
4243 /*
4244  * UGLY HACK: Similar to aarch64 macOS GCC, s390x GCC has the same aliasing issue.
4245  */
4246 typedef xxh_u64x2 xxh_aliasing_u64x2 XXH_ALIASING;
4247 
4248 # ifndef XXH_VSX_BE
4249 #  if defined(__BIG_ENDIAN__) \
4250   || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
4251 #    define XXH_VSX_BE 1
4252 #  elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
4253 #    warning "-maltivec=be is not recommended. Please use native endianness."
4254 #    define XXH_VSX_BE 1
4255 #  else
4256 #    define XXH_VSX_BE 0
4257 #  endif
4258 # endif /* !defined(XXH_VSX_BE) */
4259 
4260 # if XXH_VSX_BE
4261 #  if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
4262 #    define XXH_vec_revb vec_revb
4263 #  else
4264 /*!
4265  * A polyfill for POWER9's vec_revb().
4266  */
4267 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
4268 {
4269     xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
4270                                   0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
4271     return vec_perm(val, val, vByteSwap);
4272 }
4273 #  endif
4274 # endif /* XXH_VSX_BE */
4275 
4276 /*!
4277  * Performs an unaligned vector load and byte swaps it on big endian.
4278  */
4279 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
4280 {
4281     xxh_u64x2 ret;
4282     XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2));
4283 # if XXH_VSX_BE
4284     ret = XXH_vec_revb(ret);
4285 # endif
4286     return ret;
4287 }
4288 
4289 /*
4290  * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
4291  *
4292  * These intrinsics weren't added until GCC 8, despite existing for a while,
4293  * and they are endian dependent. Also, their meaning swap depending on version.
4294  * */
4295 # if defined(__s390x__)
4296  /* s390x is always big endian, no issue on this platform */
4297 #  define XXH_vec_mulo vec_mulo
4298 #  define XXH_vec_mule vec_mule
4299 # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__)
4300 /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
4301  /* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */
4302 #  define XXH_vec_mulo __builtin_altivec_vmulouw
4303 #  define XXH_vec_mule __builtin_altivec_vmuleuw
4304 # else
4305 /* gcc needs inline assembly */
4306 /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
4307 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
4308 {
4309     xxh_u64x2 result;
4310     __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
4311     return result;
4312 }
4313 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
4314 {
4315     xxh_u64x2 result;
4316     __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
4317     return result;
4318 }
4319 # endif /* XXH_vec_mulo, XXH_vec_mule */
4320 #endif /* XXH_VECTOR == XXH_VSX */
4321 
4322 #if XXH_VECTOR == XXH_SVE
4323 #define ACCRND(acc, offset) \
4324 do { \
4325     svuint64_t input_vec = svld1_u64(mask, xinput + offset);         \
4326     svuint64_t secret_vec = svld1_u64(mask, xsecret + offset);       \
4327     svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec);     \
4328     svuint64_t swapped = svtbl_u64(input_vec, kSwap);                \
4329     svuint64_t mixed_lo = svextw_u64_x(mask, mixed);                 \
4330     svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32);            \
4331     svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \
4332     acc = svadd_u64_x(mask, acc, mul);                               \
4333 } while (0)
4334 #endif /* XXH_VECTOR == XXH_SVE */
4335 
4336 /* prefetch
4337  * can be disabled, by declaring XXH_NO_PREFETCH build macro */
4338 #if defined(XXH_NO_PREFETCH)
4339 #  define XXH_PREFETCH(ptr)  (void)(ptr)  /* disabled */
4340 #else
4341 #  if XXH_SIZE_OPT >= 1
4342 #    define XXH_PREFETCH(ptr) (void)(ptr)
4343 #  elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))  /* _mm_prefetch() not defined outside of x86/x64 */
4344 #    include <mmintrin.h>   /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
4345 #    define XXH_PREFETCH(ptr)  _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
4346 #  elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
4347 #    define XXH_PREFETCH(ptr)  __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
4348 #  else
4349 #    define XXH_PREFETCH(ptr) (void)(ptr)  /* disabled */
4350 #  endif
4351 #endif  /* XXH_NO_PREFETCH */
4352 
4353 
4354 /* ==========================================
4355  * XXH3 default settings
4356  * ========================================== */
4357 
4358 #define XXH_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */
4359 
4360 #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
4361 #  error "default keyset is not large enough"
4362 #endif
4363 
4364 /*! Pseudorandom secret taken directly from FARSH. */
4365 XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
4366     0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
4367     0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
4368     0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
4369     0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
4370     0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
4371     0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
4372     0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
4373     0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
4374     0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
4375     0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
4376     0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
4377     0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
4378 };
4379 
4380 static const xxh_u64 PRIME_MX1 = 0x165667919E3779F9ULL;  /*!< 0b0001011001010110011001111001000110011110001101110111100111111001 */
4381 static const xxh_u64 PRIME_MX2 = 0x9FB21C651E98DF25ULL;  /*!< 0b1001111110110010000111000110010100011110100110001101111100100101 */
4382 
4383 #ifdef XXH_OLD_NAMES
4384 #  define kSecret XXH3_kSecret
4385 #endif
4386 
4387 #ifdef XXH_DOXYGEN
4388 /*!
4389  * @brief Calculates a 32-bit to 64-bit long multiply.
4390  *
4391  * Implemented as a macro.
4392  *
4393  * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
4394  * need to (but it shouldn't need to anyways, it is about 7 instructions to do
4395  * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
4396  * use that instead of the normal method.
4397  *
4398  * If you are compiling for platforms like Thumb-1 and don't have a better option,
4399  * you may also want to write your own long multiply routine here.
4400  *
4401  * @param x, y Numbers to be multiplied
4402  * @return 64-bit product of the low 32 bits of @p x and @p y.
4403  */
4404 XXH_FORCE_INLINE xxh_u64
4405 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
4406 {
4407    return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
4408 }
4409 #elif defined(_MSC_VER) && defined(_M_IX86)
4410 #    define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
4411 #else
4412 /*
4413  * Downcast + upcast is usually better than masking on older compilers like
4414  * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
4415  *
4416  * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
4417  * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
4418  */
4419 #    define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
4420 #endif
4421 
4422 /*!
4423  * @brief Calculates a 64->128-bit long multiply.
4424  *
4425  * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
4426  * version.
4427  *
4428  * @param lhs , rhs The 64-bit integers to be multiplied
4429  * @return The 128-bit result represented in an @ref XXH128_hash_t.
4430  */
4431 static XXH128_hash_t
4432 XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
4433 {
4434     /*
4435      * GCC/Clang __uint128_t method.
4436      *
4437      * On most 64-bit targets, GCC and Clang define a __uint128_t type.
4438      * This is usually the best way as it usually uses a native long 64-bit
4439      * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
4440      *
4441      * Usually.
4442      *
4443      * Despite being a 32-bit platform, Clang (and emscripten) define this type
4444      * despite not having the arithmetic for it. This results in a laggy
4445      * compiler builtin call which calculates a full 128-bit multiply.
4446      * In that case it is best to use the portable one.
4447      * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
4448      */
4449 #if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \
4450     && defined(__SIZEOF_INT128__) \
4451     || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
4452 
4453     __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
4454     XXH128_hash_t r128;
4455     r128.low64  = (xxh_u64)(product);
4456     r128.high64 = (xxh_u64)(product >> 64);
4457     return r128;
4458 
4459     /*
4460      * MSVC for x64's _umul128 method.
4461      *
4462      * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
4463      *
4464      * This compiles to single operand MUL on x64.
4465      */
4466 #elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC)
4467 
4468 #ifndef _MSC_VER
4469 #   pragma intrinsic(_umul128)
4470 #endif
4471     xxh_u64 product_high;
4472     xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
4473     XXH128_hash_t r128;
4474     r128.low64  = product_low;
4475     r128.high64 = product_high;
4476     return r128;
4477 
4478     /*
4479      * MSVC for ARM64's __umulh method.
4480      *
4481      * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
4482      */
4483 #elif defined(_M_ARM64) || defined(_M_ARM64EC)
4484 
4485 #ifndef _MSC_VER
4486 #   pragma intrinsic(__umulh)
4487 #endif
4488     XXH128_hash_t r128;
4489     r128.low64  = lhs * rhs;
4490     r128.high64 = __umulh(lhs, rhs);
4491     return r128;
4492 
4493 #else
4494     /*
4495      * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
4496      *
4497      * This is a fast and simple grade school multiply, which is shown below
4498      * with base 10 arithmetic instead of base 0x100000000.
4499      *
4500      *           9 3 // D2 lhs = 93
4501      *         x 7 5 // D2 rhs = 75
4502      *     ----------
4503      *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
4504      *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
4505      *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
4506      *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
4507      *     ---------
4508      *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
4509      *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
4510      *     ---------
4511      *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
4512      *
4513      * The reasons for adding the products like this are:
4514      *  1. It avoids manual carry tracking. Just like how
4515      *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
4516      *     This avoids a lot of complexity.
4517      *
4518      *  2. It hints for, and on Clang, compiles to, the powerful UMAAL
4519      *     instruction available in ARM's Digital Signal Processing extension
4520      *     in 32-bit ARMv6 and later, which is shown below:
4521      *
4522      *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
4523      *         {
4524      *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
4525      *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
4526      *             *RdHi = (xxh_u32)(product >> 32);
4527      *         }
4528      *
4529      *     This instruction was designed for efficient long multiplication, and
4530      *     allows this to be calculated in only 4 instructions at speeds
4531      *     comparable to some 64-bit ALUs.
4532      *
4533      *  3. It isn't terrible on other platforms. Usually this will be a couple
4534      *     of 32-bit ADD/ADCs.
4535      */
4536 
4537     /* First calculate all of the cross products. */
4538     xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
4539     xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32,        rhs & 0xFFFFFFFF);
4540     xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
4541     xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32,        rhs >> 32);
4542 
4543     /* Now add the products together. These will never overflow. */
4544     xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
4545     xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32)        + hi_hi;
4546     xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
4547 
4548     XXH128_hash_t r128;
4549     r128.low64  = lower;
4550     r128.high64 = upper;
4551     return r128;
4552 #endif
4553 }
4554 
4555 /*!
4556  * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
4557  *
4558  * The reason for the separate function is to prevent passing too many structs
4559  * around by value. This will hopefully inline the multiply, but we don't force it.
4560  *
4561  * @param lhs , rhs The 64-bit integers to multiply
4562  * @return The low 64 bits of the product XOR'd by the high 64 bits.
4563  * @see XXH_mult64to128()
4564  */
4565 static xxh_u64
4566 XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
4567 {
4568     XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
4569     return product.low64 ^ product.high64;
4570 }
4571 
4572 /*! Seems to produce slightly better code on GCC for some reason. */
4573 XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
4574 {
4575     XXH_ASSERT(0 <= shift && shift < 64);
4576     return v64 ^ (v64 >> shift);
4577 }
4578 
4579 /*
4580  * This is a fast avalanche stage,
4581  * suitable when input bits are already partially mixed
4582  */
4583 static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
4584 {
4585     h64 = XXH_xorshift64(h64, 37);
4586     h64 *= PRIME_MX1;
4587     h64 = XXH_xorshift64(h64, 32);
4588     return h64;
4589 }
4590 
4591 /*
4592  * This is a stronger avalanche,
4593  * inspired by Pelle Evensen's rrmxmx
4594  * preferable when input has not been previously mixed
4595  */
4596 static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
4597 {
4598     /* this mix is inspired by Pelle Evensen's rrmxmx */
4599     h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
4600     h64 *= PRIME_MX2;
4601     h64 ^= (h64 >> 35) + len ;
4602     h64 *= PRIME_MX2;
4603     return XXH_xorshift64(h64, 28);
4604 }
4605 
4606 
4607 /* ==========================================
4608  * Short keys
4609  * ==========================================
4610  * One of the shortcomings of XXH32 and XXH64 was that their performance was
4611  * sub-optimal on short lengths. It used an iterative algorithm which strongly
4612  * favored lengths that were a multiple of 4 or 8.
4613  *
4614  * Instead of iterating over individual inputs, we use a set of single shot
4615  * functions which piece together a range of lengths and operate in constant time.
4616  *
4617  * Additionally, the number of multiplies has been significantly reduced. This
4618  * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
4619  *
4620  * Depending on the platform, this may or may not be faster than XXH32, but it
4621  * is almost guaranteed to be faster than XXH64.
4622  */
4623 
4624 /*
4625  * At very short lengths, there isn't enough input to fully hide secrets, or use
4626  * the entire secret.
4627  *
4628  * There is also only a limited amount of mixing we can do before significantly
4629  * impacting performance.
4630  *
4631  * Therefore, we use different sections of the secret and always mix two secret
4632  * samples with an XOR. This should have no effect on performance on the
4633  * seedless or withSeed variants because everything _should_ be constant folded
4634  * by modern compilers.
4635  *
4636  * The XOR mixing hides individual parts of the secret and increases entropy.
4637  *
4638  * This adds an extra layer of strength for custom secrets.
4639  */
4640 XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
4641 XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4642 {
4643     XXH_ASSERT(input != NULL);
4644     XXH_ASSERT(1 <= len && len <= 3);
4645     XXH_ASSERT(secret != NULL);
4646     /*
4647      * len = 1: combined = { input[0], 0x01, input[0], input[0] }
4648      * len = 2: combined = { input[1], 0x02, input[0], input[1] }
4649      * len = 3: combined = { input[2], 0x03, input[0], input[1] }
4650      */
4651     {   xxh_u8  const c1 = input[0];
4652         xxh_u8  const c2 = input[len >> 1];
4653         xxh_u8  const c3 = input[len - 1];
4654         xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2  << 24)
4655                                | ((xxh_u32)c3 <<  0) | ((xxh_u32)len << 8);
4656         xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
4657         xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
4658         return XXH64_avalanche(keyed);
4659     }
4660 }
4661 
4662 XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
4663 XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4664 {
4665     XXH_ASSERT(input != NULL);
4666     XXH_ASSERT(secret != NULL);
4667     XXH_ASSERT(4 <= len && len <= 8);
4668     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
4669     {   xxh_u32 const input1 = XXH_readLE32(input);
4670         xxh_u32 const input2 = XXH_readLE32(input + len - 4);
4671         xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
4672         xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
4673         xxh_u64 const keyed = input64 ^ bitflip;
4674         return XXH3_rrmxmx(keyed, len);
4675     }
4676 }
4677 
4678 XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
4679 XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4680 {
4681     XXH_ASSERT(input != NULL);
4682     XXH_ASSERT(secret != NULL);
4683     XXH_ASSERT(9 <= len && len <= 16);
4684     {   xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
4685         xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
4686         xxh_u64 const input_lo = XXH_readLE64(input)           ^ bitflip1;
4687         xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
4688         xxh_u64 const acc = len
4689                           + XXH_swap64(input_lo) + input_hi
4690                           + XXH3_mul128_fold64(input_lo, input_hi);
4691         return XXH3_avalanche(acc);
4692     }
4693 }
4694 
4695 XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
4696 XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4697 {
4698     XXH_ASSERT(len <= 16);
4699     {   if (XXH_likely(len >  8)) return XXH3_len_9to16_64b(input, len, secret, seed);
4700         if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
4701         if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
4702         return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
4703     }
4704 }
4705 
4706 /*
4707  * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
4708  * multiplication by zero, affecting hashes of lengths 17 to 240.
4709  *
4710  * However, they are very unlikely.
4711  *
4712  * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
4713  * unseeded non-cryptographic hashes, it does not attempt to defend itself
4714  * against specially crafted inputs, only random inputs.
4715  *
4716  * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
4717  * cancelling out the secret is taken an arbitrary number of times (addressed
4718  * in XXH3_accumulate_512), this collision is very unlikely with random inputs
4719  * and/or proper seeding:
4720  *
4721  * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
4722  * function that is only called up to 16 times per hash with up to 240 bytes of
4723  * input.
4724  *
4725  * This is not too bad for a non-cryptographic hash function, especially with
4726  * only 64 bit outputs.
4727  *
4728  * The 128-bit variant (which trades some speed for strength) is NOT affected
4729  * by this, although it is always a good idea to use a proper seed if you care
4730  * about strength.
4731  */
4732 XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
4733                                      const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
4734 {
4735 #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
4736   && defined(__i386__) && defined(__SSE2__)  /* x86 + SSE2 */ \
4737   && !defined(XXH_ENABLE_AUTOVECTORIZE)      /* Define to disable like XXH32 hack */
4738     /*
4739      * UGLY HACK:
4740      * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
4741      * slower code.
4742      *
4743      * By forcing seed64 into a register, we disrupt the cost model and
4744      * cause it to scalarize. See `XXH32_round()`
4745      *
4746      * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
4747      * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
4748      * GCC 9.2, despite both emitting scalar code.
4749      *
4750      * GCC generates much better scalar code than Clang for the rest of XXH3,
4751      * which is why finding a more optimal codepath is an interest.
4752      */
4753     XXH_COMPILER_GUARD(seed64);
4754 #endif
4755     {   xxh_u64 const input_lo = XXH_readLE64(input);
4756         xxh_u64 const input_hi = XXH_readLE64(input+8);
4757         return XXH3_mul128_fold64(
4758             input_lo ^ (XXH_readLE64(secret)   + seed64),
4759             input_hi ^ (XXH_readLE64(secret+8) - seed64)
4760         );
4761     }
4762 }
4763 
4764 /* For mid range keys, XXH3 uses a Mum-hash variant. */
4765 XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
4766 XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
4767                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4768                      XXH64_hash_t seed)
4769 {
4770     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
4771     XXH_ASSERT(16 < len && len <= 128);
4772 
4773     {   xxh_u64 acc = len * XXH_PRIME64_1;
4774 #if XXH_SIZE_OPT >= 1
4775         /* Smaller and cleaner, but slightly slower. */
4776         unsigned int i = (unsigned int)(len - 1) / 32;
4777         do {
4778             acc += XXH3_mix16B(input+16 * i, secret+32*i, seed);
4779             acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed);
4780         } while (i-- != 0);
4781 #else
4782         if (len > 32) {
4783             if (len > 64) {
4784                 if (len > 96) {
4785                     acc += XXH3_mix16B(input+48, secret+96, seed);
4786                     acc += XXH3_mix16B(input+len-64, secret+112, seed);
4787                 }
4788                 acc += XXH3_mix16B(input+32, secret+64, seed);
4789                 acc += XXH3_mix16B(input+len-48, secret+80, seed);
4790             }
4791             acc += XXH3_mix16B(input+16, secret+32, seed);
4792             acc += XXH3_mix16B(input+len-32, secret+48, seed);
4793         }
4794         acc += XXH3_mix16B(input+0, secret+0, seed);
4795         acc += XXH3_mix16B(input+len-16, secret+16, seed);
4796 #endif
4797         return XXH3_avalanche(acc);
4798     }
4799 }
4800 
4801 XXH_NO_INLINE XXH_PUREF XXH64_hash_t
4802 XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
4803                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4804                       XXH64_hash_t seed)
4805 {
4806     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
4807     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
4808 
4809     #define XXH3_MIDSIZE_STARTOFFSET 3
4810     #define XXH3_MIDSIZE_LASTOFFSET  17
4811 
4812     {   xxh_u64 acc = len * XXH_PRIME64_1;
4813         xxh_u64 acc_end;
4814         unsigned int const nbRounds = (unsigned int)len / 16;
4815         unsigned int i;
4816         XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
4817         for (i=0; i<8; i++) {
4818             acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
4819         }
4820         /* last bytes */
4821         acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
4822         XXH_ASSERT(nbRounds >= 8);
4823         acc = XXH3_avalanche(acc);
4824 #if defined(__clang__)                                /* Clang */ \
4825     && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
4826     && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
4827         /*
4828          * UGLY HACK:
4829          * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
4830          * In everywhere else, it uses scalar code.
4831          *
4832          * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
4833          * would still be slower than UMAAL (see XXH_mult64to128).
4834          *
4835          * Unfortunately, Clang doesn't handle the long multiplies properly and
4836          * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
4837          * scalarized into an ugly mess of VMOV.32 instructions.
4838          *
4839          * This mess is difficult to avoid without turning autovectorization
4840          * off completely, but they are usually relatively minor and/or not
4841          * worth it to fix.
4842          *
4843          * This loop is the easiest to fix, as unlike XXH32, this pragma
4844          * _actually works_ because it is a loop vectorization instead of an
4845          * SLP vectorization.
4846          */
4847         #pragma clang loop vectorize(disable)
4848 #endif
4849         for (i=8 ; i < nbRounds; i++) {
4850             /*
4851              * Prevents clang for unrolling the acc loop and interleaving with this one.
4852              */
4853             XXH_COMPILER_GUARD(acc);
4854             acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
4855         }
4856         return XXH3_avalanche(acc + acc_end);
4857     }
4858 }
4859 
4860 
4861 /* =======     Long Keys     ======= */
4862 
4863 #define XXH_STRIPE_LEN 64
4864 #define XXH_SECRET_CONSUME_RATE 8   /* nb of secret bytes consumed at each accumulation */
4865 #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
4866 
4867 #ifdef XXH_OLD_NAMES
4868 #  define STRIPE_LEN XXH_STRIPE_LEN
4869 #  define ACC_NB XXH_ACC_NB
4870 #endif
4871 
4872 #ifndef XXH_PREFETCH_DIST
4873 #  ifdef __clang__
4874 #    define XXH_PREFETCH_DIST 320
4875 #  else
4876 #    if (XXH_VECTOR == XXH_AVX512)
4877 #      define XXH_PREFETCH_DIST 512
4878 #    else
4879 #      define XXH_PREFETCH_DIST 384
4880 #    endif
4881 #  endif  /* __clang__ */
4882 #endif  /* XXH_PREFETCH_DIST */
4883 
4884 /*
4885  * These macros are to generate an XXH3_accumulate() function.
4886  * The two arguments select the name suffix and target attribute.
4887  *
4888  * The name of this symbol is XXH3_accumulate_<name>() and it calls
4889  * XXH3_accumulate_512_<name>().
4890  *
4891  * It may be useful to hand implement this function if the compiler fails to
4892  * optimize the inline function.
4893  */
4894 #define XXH3_ACCUMULATE_TEMPLATE(name)                      \
4895 void                                                        \
4896 XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc,           \
4897                        const xxh_u8* XXH_RESTRICT input,    \
4898                        const xxh_u8* XXH_RESTRICT secret,   \
4899                        size_t nbStripes)                    \
4900 {                                                           \
4901     size_t n;                                               \
4902     for (n = 0; n < nbStripes; n++ ) {                      \
4903         const xxh_u8* const in = input + n*XXH_STRIPE_LEN;  \
4904         XXH_PREFETCH(in + XXH_PREFETCH_DIST);               \
4905         XXH3_accumulate_512_##name(                         \
4906                  acc,                                       \
4907                  in,                                        \
4908                  secret + n*XXH_SECRET_CONSUME_RATE);       \
4909     }                                                       \
4910 }
4911 
4912 
4913 XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
4914 {
4915     if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
4916     XXH_memcpy(dst, &v64, sizeof(v64));
4917 }
4918 
4919 /* Several intrinsic functions below are supposed to accept __int64 as argument,
4920  * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
4921  * However, several environments do not define __int64 type,
4922  * requiring a workaround.
4923  */
4924 #if !defined (__VMS) \
4925   && (defined (__cplusplus) \
4926   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
4927     typedef int64_t xxh_i64;
4928 #else
4929     /* the following type must have a width of 64-bit */
4930     typedef long long xxh_i64;
4931 #endif
4932 
4933 
4934 /*
4935  * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
4936  *
4937  * It is a hardened version of UMAC, based off of FARSH's implementation.
4938  *
4939  * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
4940  * implementations, and it is ridiculously fast.
4941  *
4942  * We harden it by mixing the original input to the accumulators as well as the product.
4943  *
4944  * This means that in the (relatively likely) case of a multiply by zero, the
4945  * original input is preserved.
4946  *
4947  * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
4948  * cross-pollination, as otherwise the upper and lower halves would be
4949  * essentially independent.
4950  *
4951  * This doesn't matter on 64-bit hashes since they all get merged together in
4952  * the end, so we skip the extra step.
4953  *
4954  * Both XXH3_64bits and XXH3_128bits use this subroutine.
4955  */
4956 
4957 #if (XXH_VECTOR == XXH_AVX512) \
4958      || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
4959 
4960 #ifndef XXH_TARGET_AVX512
4961 # define XXH_TARGET_AVX512  /* disable attribute target */
4962 #endif
4963 
4964 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
4965 XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
4966                      const void* XXH_RESTRICT input,
4967                      const void* XXH_RESTRICT secret)
4968 {
4969     __m512i* const xacc = (__m512i *) acc;
4970     XXH_ASSERT((((size_t)acc) & 63) == 0);
4971     XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
4972 
4973     {
4974         /* data_vec    = input[0]; */
4975         __m512i const data_vec    = _mm512_loadu_si512   (input);
4976         /* key_vec     = secret[0]; */
4977         __m512i const key_vec     = _mm512_loadu_si512   (secret);
4978         /* data_key    = data_vec ^ key_vec; */
4979         __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec);
4980         /* data_key_lo = data_key >> 32; */
4981         __m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32);
4982         /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
4983         __m512i const product     = _mm512_mul_epu32     (data_key, data_key_lo);
4984         /* xacc[0] += swap(data_vec); */
4985         __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
4986         __m512i const sum       = _mm512_add_epi64(*xacc, data_swap);
4987         /* xacc[0] += product; */
4988         *xacc = _mm512_add_epi64(product, sum);
4989     }
4990 }
4991 XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512)
4992 
4993 /*
4994  * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
4995  *
4996  * Multiplication isn't perfect, as explained by Google in HighwayHash:
4997  *
4998  *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
4999  *  // varying degrees. In descending order of goodness, bytes
5000  *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
5001  *  // As expected, the upper and lower bytes are much worse.
5002  *
5003  * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
5004  *
5005  * Since our algorithm uses a pseudorandom secret to add some variance into the
5006  * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
5007  *
5008  * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
5009  * extraction.
5010  *
5011  * Both XXH3_64bits and XXH3_128bits use this subroutine.
5012  */
5013 
5014 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
5015 XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
5016 {
5017     XXH_ASSERT((((size_t)acc) & 63) == 0);
5018     XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
5019     {   __m512i* const xacc = (__m512i*) acc;
5020         const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
5021 
5022         /* xacc[0] ^= (xacc[0] >> 47) */
5023         __m512i const acc_vec     = *xacc;
5024         __m512i const shifted     = _mm512_srli_epi64    (acc_vec, 47);
5025         /* xacc[0] ^= secret; */
5026         __m512i const key_vec     = _mm512_loadu_si512   (secret);
5027         __m512i const data_key    = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */);
5028 
5029         /* xacc[0] *= XXH_PRIME32_1; */
5030         __m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32);
5031         __m512i const prod_lo     = _mm512_mul_epu32     (data_key, prime32);
5032         __m512i const prod_hi     = _mm512_mul_epu32     (data_key_hi, prime32);
5033         *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
5034     }
5035 }
5036 
5037 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
5038 XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
5039 {
5040     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
5041     XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
5042     XXH_ASSERT(((size_t)customSecret & 63) == 0);
5043     (void)(&XXH_writeLE64);
5044     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
5045         __m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64);
5046         __m512i const seed     = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos);
5047 
5048         const __m512i* const src  = (const __m512i*) ((const void*) XXH3_kSecret);
5049               __m512i* const dest = (      __m512i*) customSecret;
5050         int i;
5051         XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
5052         XXH_ASSERT(((size_t)dest & 63) == 0);
5053         for (i=0; i < nbRounds; ++i) {
5054             dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed);
5055     }   }
5056 }
5057 
5058 #endif
5059 
5060 #if (XXH_VECTOR == XXH_AVX2) \
5061     || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
5062 
5063 #ifndef XXH_TARGET_AVX2
5064 # define XXH_TARGET_AVX2  /* disable attribute target */
5065 #endif
5066 
5067 XXH_FORCE_INLINE XXH_TARGET_AVX2 void
5068 XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
5069                     const void* XXH_RESTRICT input,
5070                     const void* XXH_RESTRICT secret)
5071 {
5072     XXH_ASSERT((((size_t)acc) & 31) == 0);
5073     {   __m256i* const xacc    =       (__m256i *) acc;
5074         /* Unaligned. This is mainly for pointer arithmetic, and because
5075          * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason. */
5076         const         __m256i* const xinput  = (const __m256i *) input;
5077         /* Unaligned. This is mainly for pointer arithmetic, and because
5078          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
5079         const         __m256i* const xsecret = (const __m256i *) secret;
5080 
5081         size_t i;
5082         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
5083             /* data_vec    = xinput[i]; */
5084             __m256i const data_vec    = _mm256_loadu_si256    (xinput+i);
5085             /* key_vec     = xsecret[i]; */
5086             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
5087             /* data_key    = data_vec ^ key_vec; */
5088             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
5089             /* data_key_lo = data_key >> 32; */
5090             __m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32);
5091             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
5092             __m256i const product     = _mm256_mul_epu32     (data_key, data_key_lo);
5093             /* xacc[i] += swap(data_vec); */
5094             __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
5095             __m256i const sum       = _mm256_add_epi64(xacc[i], data_swap);
5096             /* xacc[i] += product; */
5097             xacc[i] = _mm256_add_epi64(product, sum);
5098     }   }
5099 }
5100 XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2)
5101 
5102 XXH_FORCE_INLINE XXH_TARGET_AVX2 void
5103 XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
5104 {
5105     XXH_ASSERT((((size_t)acc) & 31) == 0);
5106     {   __m256i* const xacc = (__m256i*) acc;
5107         /* Unaligned. This is mainly for pointer arithmetic, and because
5108          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
5109         const         __m256i* const xsecret = (const __m256i *) secret;
5110         const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
5111 
5112         size_t i;
5113         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
5114             /* xacc[i] ^= (xacc[i] >> 47) */
5115             __m256i const acc_vec     = xacc[i];
5116             __m256i const shifted     = _mm256_srli_epi64    (acc_vec, 47);
5117             __m256i const data_vec    = _mm256_xor_si256     (acc_vec, shifted);
5118             /* xacc[i] ^= xsecret; */
5119             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
5120             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
5121 
5122             /* xacc[i] *= XXH_PRIME32_1; */
5123             __m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32);
5124             __m256i const prod_lo     = _mm256_mul_epu32     (data_key, prime32);
5125             __m256i const prod_hi     = _mm256_mul_epu32     (data_key_hi, prime32);
5126             xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
5127         }
5128     }
5129 }
5130 
5131 XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
5132 {
5133     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
5134     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
5135     XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
5136     (void)(&XXH_writeLE64);
5137     XXH_PREFETCH(customSecret);
5138     {   __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64);
5139 
5140         const __m256i* const src  = (const __m256i*) ((const void*) XXH3_kSecret);
5141               __m256i*       dest = (      __m256i*) customSecret;
5142 
5143 #       if defined(__GNUC__) || defined(__clang__)
5144         /*
5145          * On GCC & Clang, marking 'dest' as modified will cause the compiler:
5146          *   - do not extract the secret from sse registers in the internal loop
5147          *   - use less common registers, and avoid pushing these reg into stack
5148          */
5149         XXH_COMPILER_GUARD(dest);
5150 #       endif
5151         XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */
5152         XXH_ASSERT(((size_t)dest & 31) == 0);
5153 
5154         /* GCC -O2 need unroll loop manually */
5155         dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed);
5156         dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed);
5157         dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed);
5158         dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed);
5159         dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed);
5160         dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed);
5161     }
5162 }
5163 
5164 #endif
5165 
5166 /* x86dispatch always generates SSE2 */
5167 #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
5168 
5169 #ifndef XXH_TARGET_SSE2
5170 # define XXH_TARGET_SSE2  /* disable attribute target */
5171 #endif
5172 
5173 XXH_FORCE_INLINE XXH_TARGET_SSE2 void
5174 XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
5175                     const void* XXH_RESTRICT input,
5176                     const void* XXH_RESTRICT secret)
5177 {
5178     /* SSE2 is just a half-scale version of the AVX2 version. */
5179     XXH_ASSERT((((size_t)acc) & 15) == 0);
5180     {   __m128i* const xacc    =       (__m128i *) acc;
5181         /* Unaligned. This is mainly for pointer arithmetic, and because
5182          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
5183         const         __m128i* const xinput  = (const __m128i *) input;
5184         /* Unaligned. This is mainly for pointer arithmetic, and because
5185          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
5186         const         __m128i* const xsecret = (const __m128i *) secret;
5187 
5188         size_t i;
5189         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
5190             /* data_vec    = xinput[i]; */
5191             __m128i const data_vec    = _mm_loadu_si128   (xinput+i);
5192             /* key_vec     = xsecret[i]; */
5193             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
5194             /* data_key    = data_vec ^ key_vec; */
5195             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
5196             /* data_key_lo = data_key >> 32; */
5197             __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
5198             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
5199             __m128i const product     = _mm_mul_epu32     (data_key, data_key_lo);
5200             /* xacc[i] += swap(data_vec); */
5201             __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
5202             __m128i const sum       = _mm_add_epi64(xacc[i], data_swap);
5203             /* xacc[i] += product; */
5204             xacc[i] = _mm_add_epi64(product, sum);
5205     }   }
5206 }
5207 XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2)
5208 
5209 XXH_FORCE_INLINE XXH_TARGET_SSE2 void
5210 XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
5211 {
5212     XXH_ASSERT((((size_t)acc) & 15) == 0);
5213     {   __m128i* const xacc = (__m128i*) acc;
5214         /* Unaligned. This is mainly for pointer arithmetic, and because
5215          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
5216         const         __m128i* const xsecret = (const __m128i *) secret;
5217         const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
5218 
5219         size_t i;
5220         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
5221             /* xacc[i] ^= (xacc[i] >> 47) */
5222             __m128i const acc_vec     = xacc[i];
5223             __m128i const shifted     = _mm_srli_epi64    (acc_vec, 47);
5224             __m128i const data_vec    = _mm_xor_si128     (acc_vec, shifted);
5225             /* xacc[i] ^= xsecret[i]; */
5226             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
5227             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
5228 
5229             /* xacc[i] *= XXH_PRIME32_1; */
5230             __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
5231             __m128i const prod_lo     = _mm_mul_epu32     (data_key, prime32);
5232             __m128i const prod_hi     = _mm_mul_epu32     (data_key_hi, prime32);
5233             xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
5234         }
5235     }
5236 }
5237 
5238 XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
5239 {
5240     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
5241     (void)(&XXH_writeLE64);
5242     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
5243 
5244 #       if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
5245         /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */
5246         XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) };
5247         __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
5248 #       else
5249         __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64);
5250 #       endif
5251         int i;
5252 
5253         const void* const src16 = XXH3_kSecret;
5254         __m128i* dst16 = (__m128i*) customSecret;
5255 #       if defined(__GNUC__) || defined(__clang__)
5256         /*
5257          * On GCC & Clang, marking 'dest' as modified will cause the compiler:
5258          *   - do not extract the secret from sse registers in the internal loop
5259          *   - use less common registers, and avoid pushing these reg into stack
5260          */
5261         XXH_COMPILER_GUARD(dst16);
5262 #       endif
5263         XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */
5264         XXH_ASSERT(((size_t)dst16 & 15) == 0);
5265 
5266         for (i=0; i < nbRounds; ++i) {
5267             dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed);
5268     }   }
5269 }
5270 
5271 #endif
5272 
5273 #if (XXH_VECTOR == XXH_NEON)
5274 
5275 /* forward declarations for the scalar routines */
5276 XXH_FORCE_INLINE void
5277 XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input,
5278                  void const* XXH_RESTRICT secret, size_t lane);
5279 
5280 XXH_FORCE_INLINE void
5281 XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
5282                          void const* XXH_RESTRICT secret, size_t lane);
5283 
5284 /*!
5285  * @internal
5286  * @brief The bulk processing loop for NEON and WASM SIMD128.
5287  *
5288  * The NEON code path is actually partially scalar when running on AArch64. This
5289  * is to optimize the pipelining and can have up to 15% speedup depending on the
5290  * CPU, and it also mitigates some GCC codegen issues.
5291  *
5292  * @see XXH3_NEON_LANES for configuring this and details about this optimization.
5293  *
5294  * NEON's 32-bit to 64-bit long multiply takes a half vector of 32-bit
5295  * integers instead of the other platforms which mask full 64-bit vectors,
5296  * so the setup is more complicated than just shifting right.
5297  *
5298  * Additionally, there is an optimization for 4 lanes at once noted below.
5299  *
5300  * Since, as stated, the most optimal amount of lanes for Cortexes is 6,
5301  * there needs to be *three* versions of the accumulate operation used
5302  * for the remaining 2 lanes.
5303  *
5304  * WASM's SIMD128 uses SIMDe's arm_neon.h polyfill because the intrinsics overlap
5305  * nearly perfectly.
5306  */
5307 
5308 XXH_FORCE_INLINE void
5309 XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
5310                     const void* XXH_RESTRICT input,
5311                     const void* XXH_RESTRICT secret)
5312 {
5313     XXH_ASSERT((((size_t)acc) & 15) == 0);
5314     XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0);
5315     {   /* GCC for darwin arm64 does not like aliasing here */
5316         xxh_aliasing_uint64x2_t* const xacc = (xxh_aliasing_uint64x2_t*) acc;
5317         /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
5318         uint8_t const* xinput = (const uint8_t *) input;
5319         uint8_t const* xsecret  = (const uint8_t *) secret;
5320 
5321         size_t i;
5322 #ifdef __wasm_simd128__
5323         /*
5324          * On WASM SIMD128, Clang emits direct address loads when XXH3_kSecret
5325          * is constant propagated, which results in it converting it to this
5326          * inside the loop:
5327          *
5328          *    a = v128.load(XXH3_kSecret +  0 + $secret_offset, offset = 0)
5329          *    b = v128.load(XXH3_kSecret + 16 + $secret_offset, offset = 0)
5330          *    ...
5331          *
5332          * This requires a full 32-bit address immediate (and therefore a 6 byte
5333          * instruction) as well as an add for each offset.
5334          *
5335          * Putting an asm guard prevents it from folding (at the cost of losing
5336          * the alignment hint), and uses the free offset in `v128.load` instead
5337          * of adding secret_offset each time which overall reduces code size by
5338          * about a kilobyte and improves performance.
5339          */
5340         XXH_COMPILER_GUARD(xsecret);
5341 #endif
5342         /* Scalar lanes use the normal scalarRound routine */
5343         for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
5344             XXH3_scalarRound(acc, input, secret, i);
5345         }
5346         i = 0;
5347         /* 4 NEON lanes at a time. */
5348         for (; i+1 < XXH3_NEON_LANES / 2; i+=2) {
5349             /* data_vec = xinput[i]; */
5350             uint64x2_t data_vec_1 = XXH_vld1q_u64(xinput  + (i * 16));
5351             uint64x2_t data_vec_2 = XXH_vld1q_u64(xinput  + ((i+1) * 16));
5352             /* key_vec  = xsecret[i];  */
5353             uint64x2_t key_vec_1  = XXH_vld1q_u64(xsecret + (i * 16));
5354             uint64x2_t key_vec_2  = XXH_vld1q_u64(xsecret + ((i+1) * 16));
5355             /* data_swap = swap(data_vec) */
5356             uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1);
5357             uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1);
5358             /* data_key = data_vec ^ key_vec; */
5359             uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1);
5360             uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2);
5361 
5362             /*
5363              * If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a
5364              * de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to
5365              * get one vector with the low 32 bits of each lane, and one vector
5366              * with the high 32 bits of each lane.
5367              *
5368              * The intrinsic returns a double vector because the original ARMv7-a
5369              * instruction modified both arguments in place. AArch64 and SIMD128 emit
5370              * two instructions from this intrinsic.
5371              *
5372              *  [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ]
5373              *  [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ]
5374              */
5375             uint32x4x2_t unzipped = vuzpq_u32(
5376                 vreinterpretq_u32_u64(data_key_1),
5377                 vreinterpretq_u32_u64(data_key_2)
5378             );
5379             /* data_key_lo = data_key & 0xFFFFFFFF */
5380             uint32x4_t data_key_lo = unzipped.val[0];
5381             /* data_key_hi = data_key >> 32 */
5382             uint32x4_t data_key_hi = unzipped.val[1];
5383             /*
5384              * Then, we can split the vectors horizontally and multiply which, as for most
5385              * widening intrinsics, have a variant that works on both high half vectors
5386              * for free on AArch64. A similar instruction is available on SIMD128.
5387              *
5388              * sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi
5389              */
5390             uint64x2_t sum_1 = XXH_vmlal_low_u32(data_swap_1, data_key_lo, data_key_hi);
5391             uint64x2_t sum_2 = XXH_vmlal_high_u32(data_swap_2, data_key_lo, data_key_hi);
5392             /*
5393              * Clang reorders
5394              *    a += b * c;     // umlal   swap.2d, dkl.2s, dkh.2s
5395              *    c += a;         // add     acc.2d, acc.2d, swap.2d
5396              * to
5397              *    c += a;         // add     acc.2d, acc.2d, swap.2d
5398              *    c += b * c;     // umlal   acc.2d, dkl.2s, dkh.2s
5399              *
5400              * While it would make sense in theory since the addition is faster,
5401              * for reasons likely related to umlal being limited to certain NEON
5402              * pipelines, this is worse. A compiler guard fixes this.
5403              */
5404             XXH_COMPILER_GUARD_CLANG_NEON(sum_1);
5405             XXH_COMPILER_GUARD_CLANG_NEON(sum_2);
5406             /* xacc[i] = acc_vec + sum; */
5407             xacc[i]   = vaddq_u64(xacc[i], sum_1);
5408             xacc[i+1] = vaddq_u64(xacc[i+1], sum_2);
5409         }
5410         /* Operate on the remaining NEON lanes 2 at a time. */
5411         for (; i < XXH3_NEON_LANES / 2; i++) {
5412             /* data_vec = xinput[i]; */
5413             uint64x2_t data_vec = XXH_vld1q_u64(xinput  + (i * 16));
5414             /* key_vec  = xsecret[i];  */
5415             uint64x2_t key_vec  = XXH_vld1q_u64(xsecret + (i * 16));
5416             /* acc_vec_2 = swap(data_vec) */
5417             uint64x2_t data_swap = vextq_u64(data_vec, data_vec, 1);
5418             /* data_key = data_vec ^ key_vec; */
5419             uint64x2_t data_key = veorq_u64(data_vec, key_vec);
5420             /* For two lanes, just use VMOVN and VSHRN. */
5421             /* data_key_lo = data_key & 0xFFFFFFFF; */
5422             uint32x2_t data_key_lo = vmovn_u64(data_key);
5423             /* data_key_hi = data_key >> 32; */
5424             uint32x2_t data_key_hi = vshrn_n_u64(data_key, 32);
5425             /* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi; */
5426             uint64x2_t sum = vmlal_u32(data_swap, data_key_lo, data_key_hi);
5427             /* Same Clang workaround as before */
5428             XXH_COMPILER_GUARD_CLANG_NEON(sum);
5429             /* xacc[i] = acc_vec + sum; */
5430             xacc[i] = vaddq_u64 (xacc[i], sum);
5431         }
5432     }
5433 }
5434 XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon)
5435 
5436 XXH_FORCE_INLINE void
5437 XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
5438 {
5439     XXH_ASSERT((((size_t)acc) & 15) == 0);
5440 
5441     {   xxh_aliasing_uint64x2_t* xacc       = (xxh_aliasing_uint64x2_t*) acc;
5442         uint8_t const* xsecret = (uint8_t const*) secret;
5443 
5444         size_t i;
5445         /* WASM uses operator overloads and doesn't need these. */
5446 #ifndef __wasm_simd128__
5447         /* { prime32_1, prime32_1 } */
5448         uint32x2_t const kPrimeLo = vdup_n_u32(XXH_PRIME32_1);
5449         /* { 0, prime32_1, 0, prime32_1 } */
5450         uint32x4_t const kPrimeHi = vreinterpretq_u32_u64(vdupq_n_u64((xxh_u64)XXH_PRIME32_1 << 32));
5451 #endif
5452 
5453         /* AArch64 uses both scalar and neon at the same time */
5454         for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
5455             XXH3_scalarScrambleRound(acc, secret, i);
5456         }
5457         for (i=0; i < XXH3_NEON_LANES / 2; i++) {
5458             /* xacc[i] ^= (xacc[i] >> 47); */
5459             uint64x2_t acc_vec  = xacc[i];
5460             uint64x2_t shifted  = vshrq_n_u64(acc_vec, 47);
5461             uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
5462 
5463             /* xacc[i] ^= xsecret[i]; */
5464             uint64x2_t key_vec  = XXH_vld1q_u64(xsecret + (i * 16));
5465             uint64x2_t data_key = veorq_u64(data_vec, key_vec);
5466             /* xacc[i] *= XXH_PRIME32_1 */
5467 #ifdef __wasm_simd128__
5468             /* SIMD128 has multiply by u64x2, use it instead of expanding and scalarizing */
5469             xacc[i] = data_key * XXH_PRIME32_1;
5470 #else
5471             /*
5472              * Expanded version with portable NEON intrinsics
5473              *
5474              *    lo(x) * lo(y) + (hi(x) * lo(y) << 32)
5475              *
5476              * prod_hi = hi(data_key) * lo(prime) << 32
5477              *
5478              * Since we only need 32 bits of this multiply a trick can be used, reinterpreting the vector
5479              * as a uint32x4_t and multiplying by { 0, prime, 0, prime } to cancel out the unwanted bits
5480              * and avoid the shift.
5481              */
5482             uint32x4_t prod_hi = vmulq_u32 (vreinterpretq_u32_u64(data_key), kPrimeHi);
5483             /* Extract low bits for vmlal_u32  */
5484             uint32x2_t data_key_lo = vmovn_u64(data_key);
5485             /* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */
5486             xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo);
5487 #endif
5488         }
5489     }
5490 }
5491 #endif
5492 
5493 #if (XXH_VECTOR == XXH_VSX)
5494 
5495 XXH_FORCE_INLINE void
5496 XXH3_accumulate_512_vsx(  void* XXH_RESTRICT acc,
5497                     const void* XXH_RESTRICT input,
5498                     const void* XXH_RESTRICT secret)
5499 {
5500     /* presumed aligned */
5501     xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
5502     xxh_u8 const* const xinput   = (xxh_u8 const*) input;   /* no alignment restriction */
5503     xxh_u8 const* const xsecret  = (xxh_u8 const*) secret;    /* no alignment restriction */
5504     xxh_u64x2 const v32 = { 32, 32 };
5505     size_t i;
5506     for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
5507         /* data_vec = xinput[i]; */
5508         xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + 16*i);
5509         /* key_vec = xsecret[i]; */
5510         xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + 16*i);
5511         xxh_u64x2 const data_key = data_vec ^ key_vec;
5512         /* shuffled = (data_key << 32) | (data_key >> 32); */
5513         xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
5514         /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
5515         xxh_u64x2 const product  = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
5516         /* acc_vec = xacc[i]; */
5517         xxh_u64x2 acc_vec        = xacc[i];
5518         acc_vec += product;
5519 
5520         /* swap high and low halves */
5521 #ifdef __s390x__
5522         acc_vec += vec_permi(data_vec, data_vec, 2);
5523 #else
5524         acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
5525 #endif
5526         xacc[i] = acc_vec;
5527     }
5528 }
5529 XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx)
5530 
5531 XXH_FORCE_INLINE void
5532 XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
5533 {
5534     XXH_ASSERT((((size_t)acc) & 15) == 0);
5535 
5536     {   xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
5537         const xxh_u8* const xsecret = (const xxh_u8*) secret;
5538         /* constants */
5539         xxh_u64x2 const v32  = { 32, 32 };
5540         xxh_u64x2 const v47 = { 47, 47 };
5541         xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
5542         size_t i;
5543         for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
5544             /* xacc[i] ^= (xacc[i] >> 47); */
5545             xxh_u64x2 const acc_vec  = xacc[i];
5546             xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
5547 
5548             /* xacc[i] ^= xsecret[i]; */
5549             xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + 16*i);
5550             xxh_u64x2 const data_key = data_vec ^ key_vec;
5551 
5552             /* xacc[i] *= XXH_PRIME32_1 */
5553             /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF);  */
5554             xxh_u64x2 const prod_even  = XXH_vec_mule((xxh_u32x4)data_key, prime);
5555             /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */
5556             xxh_u64x2 const prod_odd  = XXH_vec_mulo((xxh_u32x4)data_key, prime);
5557             xacc[i] = prod_odd + (prod_even << v32);
5558     }   }
5559 }
5560 
5561 #endif
5562 
5563 #if (XXH_VECTOR == XXH_SVE)
5564 
5565 XXH_FORCE_INLINE void
5566 XXH3_accumulate_512_sve( void* XXH_RESTRICT acc,
5567                    const void* XXH_RESTRICT input,
5568                    const void* XXH_RESTRICT secret)
5569 {
5570     uint64_t *xacc = (uint64_t *)acc;
5571     const uint64_t *xinput = (const uint64_t *)(const void *)input;
5572     const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
5573     svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
5574     uint64_t element_count = svcntd();
5575     if (element_count >= 8) {
5576         svbool_t mask = svptrue_pat_b64(SV_VL8);
5577         svuint64_t vacc = svld1_u64(mask, xacc);
5578         ACCRND(vacc, 0);
5579         svst1_u64(mask, xacc, vacc);
5580     } else if (element_count == 2) {   /* sve128 */
5581         svbool_t mask = svptrue_pat_b64(SV_VL2);
5582         svuint64_t acc0 = svld1_u64(mask, xacc + 0);
5583         svuint64_t acc1 = svld1_u64(mask, xacc + 2);
5584         svuint64_t acc2 = svld1_u64(mask, xacc + 4);
5585         svuint64_t acc3 = svld1_u64(mask, xacc + 6);
5586         ACCRND(acc0, 0);
5587         ACCRND(acc1, 2);
5588         ACCRND(acc2, 4);
5589         ACCRND(acc3, 6);
5590         svst1_u64(mask, xacc + 0, acc0);
5591         svst1_u64(mask, xacc + 2, acc1);
5592         svst1_u64(mask, xacc + 4, acc2);
5593         svst1_u64(mask, xacc + 6, acc3);
5594     } else {
5595         svbool_t mask = svptrue_pat_b64(SV_VL4);
5596         svuint64_t acc0 = svld1_u64(mask, xacc + 0);
5597         svuint64_t acc1 = svld1_u64(mask, xacc + 4);
5598         ACCRND(acc0, 0);
5599         ACCRND(acc1, 4);
5600         svst1_u64(mask, xacc + 0, acc0);
5601         svst1_u64(mask, xacc + 4, acc1);
5602     }
5603 }
5604 
5605 XXH_FORCE_INLINE void
5606 XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc,
5607                const xxh_u8* XXH_RESTRICT input,
5608                const xxh_u8* XXH_RESTRICT secret,
5609                size_t nbStripes)
5610 {
5611     if (nbStripes != 0) {
5612         uint64_t *xacc = (uint64_t *)acc;
5613         const uint64_t *xinput = (const uint64_t *)(const void *)input;
5614         const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
5615         svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
5616         uint64_t element_count = svcntd();
5617         if (element_count >= 8) {
5618             svbool_t mask = svptrue_pat_b64(SV_VL8);
5619             svuint64_t vacc = svld1_u64(mask, xacc + 0);
5620             do {
5621                 /* svprfd(svbool_t, void *, enum svfprop); */
5622                 svprfd(mask, xinput + 128, SV_PLDL1STRM);
5623                 ACCRND(vacc, 0);
5624                 xinput += 8;
5625                 xsecret += 1;
5626                 nbStripes--;
5627            } while (nbStripes != 0);
5628 
5629            svst1_u64(mask, xacc + 0, vacc);
5630         } else if (element_count == 2) { /* sve128 */
5631             svbool_t mask = svptrue_pat_b64(SV_VL2);
5632             svuint64_t acc0 = svld1_u64(mask, xacc + 0);
5633             svuint64_t acc1 = svld1_u64(mask, xacc + 2);
5634             svuint64_t acc2 = svld1_u64(mask, xacc + 4);
5635             svuint64_t acc3 = svld1_u64(mask, xacc + 6);
5636             do {
5637                 svprfd(mask, xinput + 128, SV_PLDL1STRM);
5638                 ACCRND(acc0, 0);
5639                 ACCRND(acc1, 2);
5640                 ACCRND(acc2, 4);
5641                 ACCRND(acc3, 6);
5642                 xinput += 8;
5643                 xsecret += 1;
5644                 nbStripes--;
5645            } while (nbStripes != 0);
5646 
5647            svst1_u64(mask, xacc + 0, acc0);
5648            svst1_u64(mask, xacc + 2, acc1);
5649            svst1_u64(mask, xacc + 4, acc2);
5650            svst1_u64(mask, xacc + 6, acc3);
5651         } else {
5652             svbool_t mask = svptrue_pat_b64(SV_VL4);
5653             svuint64_t acc0 = svld1_u64(mask, xacc + 0);
5654             svuint64_t acc1 = svld1_u64(mask, xacc + 4);
5655             do {
5656                 svprfd(mask, xinput + 128, SV_PLDL1STRM);
5657                 ACCRND(acc0, 0);
5658                 ACCRND(acc1, 4);
5659                 xinput += 8;
5660                 xsecret += 1;
5661                 nbStripes--;
5662            } while (nbStripes != 0);
5663 
5664            svst1_u64(mask, xacc + 0, acc0);
5665            svst1_u64(mask, xacc + 4, acc1);
5666        }
5667     }
5668 }
5669 
5670 #endif
5671 
5672 #if (XXH_VECTOR == XXH_LSX)
5673 #define _LSX_SHUFFLE(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
5674 
5675 XXH_FORCE_INLINE void
5676 XXH3_accumulate_512_lsx( void* XXH_RESTRICT acc,
5677                     const void* XXH_RESTRICT input,
5678                     const void* XXH_RESTRICT secret)
5679 {
5680     XXH_ASSERT((((size_t)acc) & 15) == 0);
5681     {
5682         __m128i* const xacc    =       (__m128i *) acc;
5683         const __m128i* const xinput  = (const __m128i *) input;
5684         const __m128i* const xsecret = (const __m128i *) secret;
5685 
5686         for (size_t i = 0; i < XXH_STRIPE_LEN / sizeof(__m128i); i++) {
5687             /* data_vec = xinput[i]; */
5688             __m128i const data_vec = __lsx_vld(xinput + i, 0);
5689             /* key_vec = xsecret[i]; */
5690             __m128i const key_vec = __lsx_vld(xsecret + i, 0);
5691             /* data_key = data_vec ^ key_vec; */
5692             __m128i const data_key = __lsx_vxor_v(data_vec, key_vec);
5693             /* data_key_lo = data_key >> 32; */
5694             __m128i const data_key_lo = __lsx_vsrli_d(data_key, 32);
5695             // __m128i const data_key_lo = __lsx_vsrli_d(data_key, 32);
5696             /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
5697             __m128i const product = __lsx_vmulwev_d_wu(data_key, data_key_lo);
5698             /* xacc[i] += swap(data_vec); */
5699             __m128i const data_swap = __lsx_vshuf4i_w(data_vec, _LSX_SHUFFLE(1, 0, 3, 2));
5700             __m128i const sum = __lsx_vadd_d(xacc[i], data_swap);
5701             /* xacc[i] += product; */
5702             xacc[i] = __lsx_vadd_d(product, sum);
5703         }
5704     }
5705 }
5706 XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(lsx)
5707 
5708 XXH_FORCE_INLINE void
5709 XXH3_scrambleAcc_lsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
5710 {
5711     XXH_ASSERT((((size_t)acc) & 15) == 0);
5712     {
5713         __m128i* const xacc = (__m128i*) acc;
5714         const __m128i* const xsecret = (const __m128i *) secret;
5715         const __m128i prime32 = __lsx_vreplgr2vr_w((int)XXH_PRIME32_1);
5716 
5717         for (size_t i = 0; i < XXH_STRIPE_LEN / sizeof(__m128i); i++) {
5718             /* xacc[i] ^= (xacc[i] >> 47) */
5719             __m128i const acc_vec = xacc[i];
5720             __m128i const shifted = __lsx_vsrli_d(acc_vec, 47);
5721             __m128i const data_vec = __lsx_vxor_v(acc_vec, shifted);
5722             /* xacc[i] ^= xsecret[i]; */
5723             __m128i const key_vec = __lsx_vld(xsecret + i, 0);
5724             __m128i const data_key = __lsx_vxor_v(data_vec, key_vec);
5725 
5726             /* xacc[i] *= XXH_PRIME32_1; */
5727             __m128i const data_key_hi = __lsx_vsrli_d(data_key, 32);
5728             __m128i const prod_lo = __lsx_vmulwev_d_wu(data_key, prime32);
5729             __m128i const prod_hi = __lsx_vmulwev_d_wu(data_key_hi, prime32);
5730             xacc[i] = __lsx_vadd_d(prod_lo, __lsx_vslli_d(prod_hi, 32));
5731         }
5732     }
5733 }
5734 
5735 #endif
5736 
5737 /* scalar variants - universal */
5738 
5739 #if defined(__aarch64__) && (defined(__GNUC__) || defined(__clang__))
5740 /*
5741  * In XXH3_scalarRound(), GCC and Clang have a similar codegen issue, where they
5742  * emit an excess mask and a full 64-bit multiply-add (MADD X-form).
5743  *
5744  * While this might not seem like much, as AArch64 is a 64-bit architecture, only
5745  * big Cortex designs have a full 64-bit multiplier.
5746  *
5747  * On the little cores, the smaller 32-bit multiplier is used, and full 64-bit
5748  * multiplies expand to 2-3 multiplies in microcode. This has a major penalty
5749  * of up to 4 latency cycles and 2 stall cycles in the multiply pipeline.
5750  *
5751  * Thankfully, AArch64 still provides the 32-bit long multiply-add (UMADDL) which does
5752  * not have this penalty and does the mask automatically.
5753  */
5754 XXH_FORCE_INLINE xxh_u64
5755 XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
5756 {
5757     xxh_u64 ret;
5758     /* note: %x = 64-bit register, %w = 32-bit register */
5759     __asm__("umaddl %x0, %w1, %w2, %x3" : "=r" (ret) : "r" (lhs), "r" (rhs), "r" (acc));
5760     return ret;
5761 }
5762 #else
5763 XXH_FORCE_INLINE xxh_u64
5764 XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
5765 {
5766     return XXH_mult32to64((xxh_u32)lhs, (xxh_u32)rhs) + acc;
5767 }
5768 #endif
5769 
5770 /*!
5771  * @internal
5772  * @brief Scalar round for @ref XXH3_accumulate_512_scalar().
5773  *
5774  * This is extracted to its own function because the NEON path uses a combination
5775  * of NEON and scalar.
5776  */
5777 XXH_FORCE_INLINE void
5778 XXH3_scalarRound(void* XXH_RESTRICT acc,
5779                  void const* XXH_RESTRICT input,
5780                  void const* XXH_RESTRICT secret,
5781                  size_t lane)
5782 {
5783     xxh_u64* xacc = (xxh_u64*) acc;
5784     xxh_u8 const* xinput  = (xxh_u8 const*) input;
5785     xxh_u8 const* xsecret = (xxh_u8 const*) secret;
5786     XXH_ASSERT(lane < XXH_ACC_NB);
5787     XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
5788     {
5789         xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8);
5790         xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8);
5791         xacc[lane ^ 1] += data_val; /* swap adjacent lanes */
5792         xacc[lane] = XXH_mult32to64_add64(data_key /* & 0xFFFFFFFF */, data_key >> 32, xacc[lane]);
5793     }
5794 }
5795 
5796 /*!
5797  * @internal
5798  * @brief Processes a 64 byte block of data using the scalar path.
5799  */
5800 XXH_FORCE_INLINE void
5801 XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
5802                      const void* XXH_RESTRICT input,
5803                      const void* XXH_RESTRICT secret)
5804 {
5805     size_t i;
5806     /* ARM GCC refuses to unroll this loop, resulting in a 24% slowdown on ARMv6. */
5807 #if defined(__GNUC__) && !defined(__clang__) \
5808   && (defined(__arm__) || defined(__thumb2__)) \
5809   && defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \
5810   && XXH_SIZE_OPT <= 0
5811 #  pragma GCC unroll 8
5812 #endif
5813     for (i=0; i < XXH_ACC_NB; i++) {
5814         XXH3_scalarRound(acc, input, secret, i);
5815     }
5816 }
5817 XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar)
5818 
5819 /*!
5820  * @internal
5821  * @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar().
5822  *
5823  * This is extracted to its own function because the NEON path uses a combination
5824  * of NEON and scalar.
5825  */
5826 XXH_FORCE_INLINE void
5827 XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
5828                          void const* XXH_RESTRICT secret,
5829                          size_t lane)
5830 {
5831     xxh_u64* const xacc = (xxh_u64*) acc;   /* presumed aligned */
5832     const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
5833     XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
5834     XXH_ASSERT(lane < XXH_ACC_NB);
5835     {
5836         xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8);
5837         xxh_u64 acc64 = xacc[lane];
5838         acc64 = XXH_xorshift64(acc64, 47);
5839         acc64 ^= key64;
5840         acc64 *= XXH_PRIME32_1;
5841         xacc[lane] = acc64;
5842     }
5843 }
5844 
5845 /*!
5846  * @internal
5847  * @brief Scrambles the accumulators after a large chunk has been read
5848  */
5849 XXH_FORCE_INLINE void
5850 XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
5851 {
5852     size_t i;
5853     for (i=0; i < XXH_ACC_NB; i++) {
5854         XXH3_scalarScrambleRound(acc, secret, i);
5855     }
5856 }
5857 
5858 XXH_FORCE_INLINE void
5859 XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
5860 {
5861     /*
5862      * We need a separate pointer for the hack below,
5863      * which requires a non-const pointer.
5864      * Any decent compiler will optimize this out otherwise.
5865      */
5866     const xxh_u8* kSecretPtr = XXH3_kSecret;
5867     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
5868 
5869 #if defined(__GNUC__) && defined(__aarch64__)
5870     /*
5871      * UGLY HACK:
5872      * GCC and Clang generate a bunch of MOV/MOVK pairs for aarch64, and they are
5873      * placed sequentially, in order, at the top of the unrolled loop.
5874      *
5875      * While MOVK is great for generating constants (2 cycles for a 64-bit
5876      * constant compared to 4 cycles for LDR), it fights for bandwidth with
5877      * the arithmetic instructions.
5878      *
5879      *   I   L   S
5880      * MOVK
5881      * MOVK
5882      * MOVK
5883      * MOVK
5884      * ADD
5885      * SUB      STR
5886      *          STR
5887      * By forcing loads from memory (as the asm line causes the compiler to assume
5888      * that XXH3_kSecretPtr has been changed), the pipelines are used more
5889      * efficiently:
5890      *   I   L   S
5891      *      LDR
5892      *  ADD LDR
5893      *  SUB     STR
5894      *          STR
5895      *
5896      * See XXH3_NEON_LANES for details on the pipsline.
5897      *
5898      * XXH3_64bits_withSeed, len == 256, Snapdragon 835
5899      *   without hack: 2654.4 MB/s
5900      *   with hack:    3202.9 MB/s
5901      */
5902     XXH_COMPILER_GUARD(kSecretPtr);
5903 #endif
5904     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
5905         int i;
5906         for (i=0; i < nbRounds; i++) {
5907             /*
5908              * The asm hack causes the compiler to assume that kSecretPtr aliases with
5909              * customSecret, and on aarch64, this prevented LDP from merging two
5910              * loads together for free. Putting the loads together before the stores
5911              * properly generates LDP.
5912              */
5913             xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i)     + seed64;
5914             xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
5915             XXH_writeLE64((xxh_u8*)customSecret + 16*i,     lo);
5916             XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
5917     }   }
5918 }
5919 
5920 
5921 typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t);
5922 typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
5923 typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
5924 
5925 
5926 #if (XXH_VECTOR == XXH_AVX512)
5927 
5928 #define XXH3_accumulate_512 XXH3_accumulate_512_avx512
5929 #define XXH3_accumulate     XXH3_accumulate_avx512
5930 #define XXH3_scrambleAcc    XXH3_scrambleAcc_avx512
5931 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
5932 
5933 #elif (XXH_VECTOR == XXH_AVX2)
5934 
5935 #define XXH3_accumulate_512 XXH3_accumulate_512_avx2
5936 #define XXH3_accumulate     XXH3_accumulate_avx2
5937 #define XXH3_scrambleAcc    XXH3_scrambleAcc_avx2
5938 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
5939 
5940 #elif (XXH_VECTOR == XXH_SSE2)
5941 
5942 #define XXH3_accumulate_512 XXH3_accumulate_512_sse2
5943 #define XXH3_accumulate     XXH3_accumulate_sse2
5944 #define XXH3_scrambleAcc    XXH3_scrambleAcc_sse2
5945 #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
5946 
5947 #elif (XXH_VECTOR == XXH_NEON)
5948 
5949 #define XXH3_accumulate_512 XXH3_accumulate_512_neon
5950 #define XXH3_accumulate     XXH3_accumulate_neon
5951 #define XXH3_scrambleAcc    XXH3_scrambleAcc_neon
5952 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
5953 
5954 #elif (XXH_VECTOR == XXH_VSX)
5955 
5956 #define XXH3_accumulate_512 XXH3_accumulate_512_vsx
5957 #define XXH3_accumulate     XXH3_accumulate_vsx
5958 #define XXH3_scrambleAcc    XXH3_scrambleAcc_vsx
5959 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
5960 
5961 #elif (XXH_VECTOR == XXH_SVE)
5962 #define XXH3_accumulate_512 XXH3_accumulate_512_sve
5963 #define XXH3_accumulate     XXH3_accumulate_sve
5964 #define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar
5965 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
5966 
5967 #elif (XXH_VECTOR == XXH_LSX)
5968 #define XXH3_accumulate_512 XXH3_accumulate_512_lsx
5969 #define XXH3_accumulate     XXH3_accumulate_lsx
5970 #define XXH3_scrambleAcc    XXH3_scrambleAcc_lsx
5971 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
5972 
5973 #else /* scalar */
5974 
5975 #define XXH3_accumulate_512 XXH3_accumulate_512_scalar
5976 #define XXH3_accumulate     XXH3_accumulate_scalar
5977 #define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar
5978 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
5979 
5980 #endif
5981 
5982 #if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */
5983 #  undef XXH3_initCustomSecret
5984 #  define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
5985 #endif
5986 
5987 XXH_FORCE_INLINE void
5988 XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
5989                       const xxh_u8* XXH_RESTRICT input, size_t len,
5990                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5991                             XXH3_f_accumulate f_acc,
5992                             XXH3_f_scrambleAcc f_scramble)
5993 {
5994     size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
5995     size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
5996     size_t const nb_blocks = (len - 1) / block_len;
5997 
5998     size_t n;
5999 
6000     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
6001 
6002     for (n = 0; n < nb_blocks; n++) {
6003         f_acc(acc, input + n*block_len, secret, nbStripesPerBlock);
6004         f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
6005     }
6006 
6007     /* last partial block */
6008     XXH_ASSERT(len > XXH_STRIPE_LEN);
6009     {   size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
6010         XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
6011         f_acc(acc, input + nb_blocks*block_len, secret, nbStripes);
6012 
6013         /* last stripe */
6014         {   const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
6015 #define XXH_SECRET_LASTACC_START 7  /* not aligned on 8, last secret is different from acc & scrambler */
6016             XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
6017     }   }
6018 }
6019 
6020 XXH_FORCE_INLINE xxh_u64
6021 XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
6022 {
6023     return XXH3_mul128_fold64(
6024                acc[0] ^ XXH_readLE64(secret),
6025                acc[1] ^ XXH_readLE64(secret+8) );
6026 }
6027 
6028 static XXH_PUREF XXH64_hash_t
6029 XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
6030 {
6031     xxh_u64 result64 = start;
6032     size_t i = 0;
6033 
6034     for (i = 0; i < 4; i++) {
6035         result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
6036 #if defined(__clang__)                                /* Clang */ \
6037     && (defined(__arm__) || defined(__thumb__))       /* ARMv7 */ \
6038     && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \
6039     && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
6040         /*
6041          * UGLY HACK:
6042          * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
6043          * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
6044          * XXH3_64bits, len == 256, Snapdragon 835:
6045          *   without hack: 2063.7 MB/s
6046          *   with hack:    2560.7 MB/s
6047          */
6048         XXH_COMPILER_GUARD(result64);
6049 #endif
6050     }
6051 
6052     return XXH3_avalanche(result64);
6053 }
6054 
6055 /* do not align on 8, so that the secret is different from the accumulator */
6056 #define XXH_SECRET_MERGEACCS_START 11
6057 
6058 static XXH_PUREF XXH64_hash_t
6059 XXH3_finalizeLong_64b(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 len)
6060 {
6061     return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, len * XXH_PRIME64_1);
6062 }
6063 
6064 #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
6065                         XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
6066 
6067 XXH_FORCE_INLINE XXH64_hash_t
6068 XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
6069                            const void* XXH_RESTRICT secret, size_t secretSize,
6070                            XXH3_f_accumulate f_acc,
6071                            XXH3_f_scrambleAcc f_scramble)
6072 {
6073     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
6074 
6075     XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble);
6076 
6077     /* converge into final hash */
6078     XXH_STATIC_ASSERT(sizeof(acc) == 64);
6079     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
6080     return XXH3_finalizeLong_64b(acc, (const xxh_u8*)secret, (xxh_u64)len);
6081 }
6082 
6083 /*
6084  * It's important for performance to transmit secret's size (when it's static)
6085  * so that the compiler can properly optimize the vectorized loop.
6086  * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
6087  * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
6088  * breaks -Og, this is XXH_NO_INLINE.
6089  */
6090 XXH3_WITH_SECRET_INLINE XXH64_hash_t
6091 XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
6092                              XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
6093 {
6094     (void)seed64;
6095     return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc);
6096 }
6097 
6098 /*
6099  * It's preferable for performance that XXH3_hashLong is not inlined,
6100  * as it results in a smaller function for small data, easier to the instruction cache.
6101  * Note that inside this no_inline function, we do inline the internal loop,
6102  * and provide a statically defined secret size to allow optimization of vector loop.
6103  */
6104 XXH_NO_INLINE XXH_PUREF XXH64_hash_t
6105 XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
6106                           XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
6107 {
6108     (void)seed64; (void)secret; (void)secretLen;
6109     return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc);
6110 }
6111 
6112 /*
6113  * XXH3_hashLong_64b_withSeed():
6114  * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
6115  * and then use this key for long mode hashing.
6116  *
6117  * This operation is decently fast but nonetheless costs a little bit of time.
6118  * Try to avoid it whenever possible (typically when seed==0).
6119  *
6120  * It's important for performance that XXH3_hashLong is not inlined. Not sure
6121  * why (uop cache maybe?), but the difference is large and easily measurable.
6122  */
6123 XXH_FORCE_INLINE XXH64_hash_t
6124 XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
6125                                     XXH64_hash_t seed,
6126                                     XXH3_f_accumulate f_acc,
6127                                     XXH3_f_scrambleAcc f_scramble,
6128                                     XXH3_f_initCustomSecret f_initSec)
6129 {
6130 #if XXH_SIZE_OPT <= 0
6131     if (seed == 0)
6132         return XXH3_hashLong_64b_internal(input, len,
6133                                           XXH3_kSecret, sizeof(XXH3_kSecret),
6134                                           f_acc, f_scramble);
6135 #endif
6136     {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
6137         f_initSec(secret, seed);
6138         return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
6139                                           f_acc, f_scramble);
6140     }
6141 }
6142 
6143 /*
6144  * It's important for performance that XXH3_hashLong is not inlined.
6145  */
6146 XXH_NO_INLINE XXH64_hash_t
6147 XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len,
6148                            XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
6149 {
6150     (void)secret; (void)secretLen;
6151     return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
6152                 XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
6153 }
6154 
6155 
6156 typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
6157                                           XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
6158 
6159 XXH_FORCE_INLINE XXH64_hash_t
6160 XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
6161                      XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
6162                      XXH3_hashLong64_f f_hashLong)
6163 {
6164     XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
6165     /*
6166      * If an action is to be taken if `secretLen` condition is not respected,
6167      * it should be done here.
6168      * For now, it's a contract pre-condition.
6169      * Adding a check and a branch here would cost performance at every hash.
6170      * Also, note that function signature doesn't offer room to return an error.
6171      */
6172     if (len <= 16)
6173         return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
6174     if (len <= 128)
6175         return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
6176     if (len <= XXH3_MIDSIZE_MAX)
6177         return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
6178     return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
6179 }
6180 
6181 
6182 /* ===   Public entry point   === */
6183 
6184 /*! @ingroup XXH3_family */
6185 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length)
6186 {
6187     return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
6188 }
6189 
6190 /*! @ingroup XXH3_family */
6191 XXH_PUBLIC_API XXH64_hash_t
6192 XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize)
6193 {
6194     return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
6195 }
6196 
6197 /*! @ingroup XXH3_family */
6198 XXH_PUBLIC_API XXH64_hash_t
6199 XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed)
6200 {
6201     return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
6202 }
6203 
6204 XXH_PUBLIC_API XXH64_hash_t
6205 XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
6206 {
6207     if (length <= XXH3_MIDSIZE_MAX)
6208         return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
6209     return XXH3_hashLong_64b_withSecret(input, length, seed, (const xxh_u8*)secret, secretSize);
6210 }
6211 
6212 
6213 /* ===   XXH3 streaming   === */
6214 #ifndef XXH_NO_STREAM
6215 /*
6216  * Malloc's a pointer that is always aligned to @align.
6217  *
6218  * This must be freed with `XXH_alignedFree()`.
6219  *
6220  * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
6221  * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
6222  * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
6223  *
6224  * This underalignment previously caused a rather obvious crash which went
6225  * completely unnoticed due to XXH3_createState() not actually being tested.
6226  * Credit to RedSpah for noticing this bug.
6227  *
6228  * The alignment is done manually: Functions like posix_memalign or _mm_malloc
6229  * are avoided: To maintain portability, we would have to write a fallback
6230  * like this anyways, and besides, testing for the existence of library
6231  * functions without relying on external build tools is impossible.
6232  *
6233  * The method is simple: Overallocate, manually align, and store the offset
6234  * to the original behind the returned pointer.
6235  *
6236  * Align must be a power of 2 and 8 <= align <= 128.
6237  */
6238 static XXH_MALLOCF void* XXH_alignedMalloc(size_t s, size_t align)
6239 {
6240     XXH_ASSERT(align <= 128 && align >= 8); /* range check */
6241     XXH_ASSERT((align & (align-1)) == 0);   /* power of 2 */
6242     XXH_ASSERT(s != 0 && s < (s + align));  /* empty/overflow */
6243     {   /* Overallocate to make room for manual realignment and an offset byte */
6244         xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
6245         if (base != NULL) {
6246             /*
6247              * Get the offset needed to align this pointer.
6248              *
6249              * Even if the returned pointer is aligned, there will always be
6250              * at least one byte to store the offset to the original pointer.
6251              */
6252             size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
6253             /* Add the offset for the now-aligned pointer */
6254             xxh_u8* ptr = base + offset;
6255 
6256             XXH_ASSERT((size_t)ptr % align == 0);
6257 
6258             /* Store the offset immediately before the returned pointer. */
6259             ptr[-1] = (xxh_u8)offset;
6260             return ptr;
6261         }
6262         return NULL;
6263     }
6264 }
6265 /*
6266  * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
6267  * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
6268  */
6269 static void XXH_alignedFree(void* p)
6270 {
6271     if (p != NULL) {
6272         xxh_u8* ptr = (xxh_u8*)p;
6273         /* Get the offset byte we added in XXH_malloc. */
6274         xxh_u8 offset = ptr[-1];
6275         /* Free the original malloc'd pointer */
6276         xxh_u8* base = ptr - offset;
6277         XXH_free(base);
6278     }
6279 }
6280 /*! @ingroup XXH3_family */
6281 /*!
6282  * @brief Allocate an @ref XXH3_state_t.
6283  *
6284  * @return An allocated pointer of @ref XXH3_state_t on success.
6285  * @return `NULL` on failure.
6286  *
6287  * @note Must be freed with XXH3_freeState().
6288  *
6289  * @see @ref streaming_example "Streaming Example"
6290  */
6291 XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
6292 {
6293     XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
6294     if (state==NULL) return NULL;
6295     XXH3_INITSTATE(state);
6296     return state;
6297 }
6298 
6299 /*! @ingroup XXH3_family */
6300 /*!
6301  * @brief Frees an @ref XXH3_state_t.
6302  *
6303  * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
6304  *
6305  * @return @ref XXH_OK.
6306  *
6307  * @note Must be allocated with XXH3_createState().
6308  *
6309  * @see @ref streaming_example "Streaming Example"
6310  */
6311 XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
6312 {
6313     XXH_alignedFree(statePtr);
6314     return XXH_OK;
6315 }
6316 
6317 /*! @ingroup XXH3_family */
6318 XXH_PUBLIC_API void
6319 XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state)
6320 {
6321     XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
6322 }
6323 
6324 static void
6325 XXH3_reset_internal(XXH3_state_t* statePtr,
6326                     XXH64_hash_t seed,
6327                     const void* secret, size_t secretSize)
6328 {
6329     size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
6330     size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
6331     XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
6332     XXH_ASSERT(statePtr != NULL);
6333     /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
6334     memset((char*)statePtr + initStart, 0, initLength);
6335     statePtr->acc[0] = XXH_PRIME32_3;
6336     statePtr->acc[1] = XXH_PRIME64_1;
6337     statePtr->acc[2] = XXH_PRIME64_2;
6338     statePtr->acc[3] = XXH_PRIME64_3;
6339     statePtr->acc[4] = XXH_PRIME64_4;
6340     statePtr->acc[5] = XXH_PRIME32_2;
6341     statePtr->acc[6] = XXH_PRIME64_5;
6342     statePtr->acc[7] = XXH_PRIME32_1;
6343     statePtr->seed = seed;
6344     statePtr->useSeed = (seed != 0);
6345     statePtr->extSecret = (const unsigned char*)secret;
6346     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
6347     statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
6348     statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
6349 }
6350 
6351 /*! @ingroup XXH3_family */
6352 XXH_PUBLIC_API XXH_errorcode
6353 XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
6354 {
6355     if (statePtr == NULL) return XXH_ERROR;
6356     XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
6357     return XXH_OK;
6358 }
6359 
6360 /*! @ingroup XXH3_family */
6361 XXH_PUBLIC_API XXH_errorcode
6362 XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
6363 {
6364     if (statePtr == NULL) return XXH_ERROR;
6365     XXH3_reset_internal(statePtr, 0, secret, secretSize);
6366     if (secret == NULL) return XXH_ERROR;
6367     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
6368     return XXH_OK;
6369 }
6370 
6371 /*! @ingroup XXH3_family */
6372 XXH_PUBLIC_API XXH_errorcode
6373 XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
6374 {
6375     if (statePtr == NULL) return XXH_ERROR;
6376     if (seed==0) return XXH3_64bits_reset(statePtr);
6377     if ((seed != statePtr->seed) || (statePtr->extSecret != NULL))
6378         XXH3_initCustomSecret(statePtr->customSecret, seed);
6379     XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
6380     return XXH_OK;
6381 }
6382 
6383 /*! @ingroup XXH3_family */
6384 XXH_PUBLIC_API XXH_errorcode
6385 XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64)
6386 {
6387     if (statePtr == NULL) return XXH_ERROR;
6388     if (secret == NULL) return XXH_ERROR;
6389     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
6390     XXH3_reset_internal(statePtr, seed64, secret, secretSize);
6391     statePtr->useSeed = 1; /* always, even if seed64==0 */
6392     return XXH_OK;
6393 }
6394 
6395 /*!
6396  * @internal
6397  * @brief Processes a large input for XXH3_update() and XXH3_digest_long().
6398  *
6399  * Unlike XXH3_hashLong_internal_loop(), this can process data that overlaps a block.
6400  *
6401  * @param acc                Pointer to the 8 accumulator lanes
6402  * @param nbStripesSoFarPtr  In/out pointer to the number of leftover stripes in the block*
6403  * @param nbStripesPerBlock  Number of stripes in a block
6404  * @param input              Input pointer
6405  * @param nbStripes          Number of stripes to process
6406  * @param secret             Secret pointer
6407  * @param secretLimit        Offset of the last block in @p secret
6408  * @param f_acc              Pointer to an XXH3_accumulate implementation
6409  * @param f_scramble         Pointer to an XXH3_scrambleAcc implementation
6410  * @return                   Pointer past the end of @p input after processing
6411  */
6412 XXH_FORCE_INLINE const xxh_u8 *
6413 XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
6414                     size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
6415                     const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
6416                     const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
6417                     XXH3_f_accumulate f_acc,
6418                     XXH3_f_scrambleAcc f_scramble)
6419 {
6420     const xxh_u8* initialSecret = secret + *nbStripesSoFarPtr * XXH_SECRET_CONSUME_RATE;
6421     /* Process full blocks */
6422     if (nbStripes >= (nbStripesPerBlock - *nbStripesSoFarPtr)) {
6423         /* Process the initial partial block... */
6424         size_t nbStripesThisIter = nbStripesPerBlock - *nbStripesSoFarPtr;
6425 
6426         do {
6427             /* Accumulate and scramble */
6428             f_acc(acc, input, initialSecret, nbStripesThisIter);
6429             f_scramble(acc, secret + secretLimit);
6430             input += nbStripesThisIter * XXH_STRIPE_LEN;
6431             nbStripes -= nbStripesThisIter;
6432             /* Then continue the loop with the full block size */
6433             nbStripesThisIter = nbStripesPerBlock;
6434             initialSecret = secret;
6435         } while (nbStripes >= nbStripesPerBlock);
6436         *nbStripesSoFarPtr = 0;
6437     }
6438     /* Process a partial block */
6439     if (nbStripes > 0) {
6440         f_acc(acc, input, initialSecret, nbStripes);
6441         input += nbStripes * XXH_STRIPE_LEN;
6442         *nbStripesSoFarPtr += nbStripes;
6443     }
6444     /* Return end pointer */
6445     return input;
6446 }
6447 
6448 #ifndef XXH3_STREAM_USE_STACK
6449 # if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */
6450 #   define XXH3_STREAM_USE_STACK 1
6451 # endif
6452 #endif
6453 /*
6454  * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
6455  */
6456 XXH_FORCE_INLINE XXH_errorcode
6457 XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
6458             const xxh_u8* XXH_RESTRICT input, size_t len,
6459             XXH3_f_accumulate f_acc,
6460             XXH3_f_scrambleAcc f_scramble)
6461 {
6462     if (input==NULL) {
6463         XXH_ASSERT(len == 0);
6464         return XXH_OK;
6465     }
6466 
6467     XXH_ASSERT(state != NULL);
6468     {   const xxh_u8* const bEnd = input + len;
6469         const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
6470 #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
6471         /* For some reason, gcc and MSVC seem to suffer greatly
6472          * when operating accumulators directly into state.
6473          * Operating into stack space seems to enable proper optimization.
6474          * clang, on the other hand, doesn't seem to need this trick */
6475         XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8];
6476         XXH_memcpy(acc, state->acc, sizeof(acc));
6477 #else
6478         xxh_u64* XXH_RESTRICT const acc = state->acc;
6479 #endif
6480         state->totalLen += len;
6481         XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
6482 
6483         /* small input : just fill in tmp buffer */
6484         if (len <= XXH3_INTERNALBUFFER_SIZE - state->bufferedSize) {
6485             XXH_memcpy(state->buffer + state->bufferedSize, input, len);
6486             state->bufferedSize += (XXH32_hash_t)len;
6487             return XXH_OK;
6488         }
6489 
6490         /* total input is now > XXH3_INTERNALBUFFER_SIZE */
6491         #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
6492         XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0);   /* clean multiple */
6493 
6494         /*
6495          * Internal buffer is partially filled (always, except at beginning)
6496          * Complete it, then consume it.
6497          */
6498         if (state->bufferedSize) {
6499             size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
6500             XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
6501             input += loadSize;
6502             XXH3_consumeStripes(acc,
6503                                &state->nbStripesSoFar, state->nbStripesPerBlock,
6504                                 state->buffer, XXH3_INTERNALBUFFER_STRIPES,
6505                                 secret, state->secretLimit,
6506                                 f_acc, f_scramble);
6507             state->bufferedSize = 0;
6508         }
6509         XXH_ASSERT(input < bEnd);
6510         if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
6511             size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
6512             input = XXH3_consumeStripes(acc,
6513                                        &state->nbStripesSoFar, state->nbStripesPerBlock,
6514                                        input, nbStripes,
6515                                        secret, state->secretLimit,
6516                                        f_acc, f_scramble);
6517             XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
6518 
6519         }
6520         /* Some remaining input (always) : buffer it */
6521         XXH_ASSERT(input < bEnd);
6522         XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
6523         XXH_ASSERT(state->bufferedSize == 0);
6524         XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
6525         state->bufferedSize = (XXH32_hash_t)(bEnd-input);
6526 #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
6527         /* save stack accumulators into state */
6528         XXH_memcpy(state->acc, acc, sizeof(acc));
6529 #endif
6530     }
6531 
6532     return XXH_OK;
6533 }
6534 
6535 /*! @ingroup XXH3_family */
6536 XXH_PUBLIC_API XXH_errorcode
6537 XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
6538 {
6539     return XXH3_update(state, (const xxh_u8*)input, len,
6540                        XXH3_accumulate, XXH3_scrambleAcc);
6541 }
6542 
6543 
6544 XXH_FORCE_INLINE void
6545 XXH3_digest_long (XXH64_hash_t* acc,
6546                   const XXH3_state_t* state,
6547                   const unsigned char* secret)
6548 {
6549     xxh_u8 lastStripe[XXH_STRIPE_LEN];
6550     const xxh_u8* lastStripePtr;
6551 
6552     /*
6553      * Digest on a local copy. This way, the state remains unaltered, and it can
6554      * continue ingesting more input afterwards.
6555      */
6556     XXH_memcpy(acc, state->acc, sizeof(state->acc));
6557     if (state->bufferedSize >= XXH_STRIPE_LEN) {
6558         /* Consume remaining stripes then point to remaining data in buffer */
6559         size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
6560         size_t nbStripesSoFar = state->nbStripesSoFar;
6561         XXH3_consumeStripes(acc,
6562                            &nbStripesSoFar, state->nbStripesPerBlock,
6563                             state->buffer, nbStripes,
6564                             secret, state->secretLimit,
6565                             XXH3_accumulate, XXH3_scrambleAcc);
6566         lastStripePtr = state->buffer + state->bufferedSize - XXH_STRIPE_LEN;
6567     } else {  /* bufferedSize < XXH_STRIPE_LEN */
6568         /* Copy to temp buffer */
6569         size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
6570         XXH_ASSERT(state->bufferedSize > 0);  /* there is always some input buffered */
6571         XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
6572         XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
6573         lastStripePtr = lastStripe;
6574     }
6575     /* Last stripe */
6576     XXH3_accumulate_512(acc,
6577                         lastStripePtr,
6578                         secret + state->secretLimit - XXH_SECRET_LASTACC_START);
6579 }
6580 
6581 /*! @ingroup XXH3_family */
6582 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
6583 {
6584     const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
6585     if (state->totalLen > XXH3_MIDSIZE_MAX) {
6586         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
6587         XXH3_digest_long(acc, state, secret);
6588         return XXH3_finalizeLong_64b(acc, secret, (xxh_u64)state->totalLen);
6589     }
6590     /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
6591     if (state->useSeed)
6592         return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
6593     return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
6594                                   secret, state->secretLimit + XXH_STRIPE_LEN);
6595 }
6596 #endif /* !XXH_NO_STREAM */
6597 
6598 
6599 /* ==========================================
6600  * XXH3 128 bits (a.k.a XXH128)
6601  * ==========================================
6602  * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
6603  * even without counting the significantly larger output size.
6604  *
6605  * For example, extra steps are taken to avoid the seed-dependent collisions
6606  * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
6607  *
6608  * This strength naturally comes at the cost of some speed, especially on short
6609  * lengths. Note that longer hashes are about as fast as the 64-bit version
6610  * due to it using only a slight modification of the 64-bit loop.
6611  *
6612  * XXH128 is also more oriented towards 64-bit machines. It is still extremely
6613  * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
6614  */
6615 
6616 XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
6617 XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
6618 {
6619     /* A doubled version of 1to3_64b with different constants. */
6620     XXH_ASSERT(input != NULL);
6621     XXH_ASSERT(1 <= len && len <= 3);
6622     XXH_ASSERT(secret != NULL);
6623     /*
6624      * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
6625      * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
6626      * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
6627      */
6628     {   xxh_u8 const c1 = input[0];
6629         xxh_u8 const c2 = input[len >> 1];
6630         xxh_u8 const c3 = input[len - 1];
6631         xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
6632                                 | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
6633         xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
6634         xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
6635         xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
6636         xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
6637         xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
6638         XXH128_hash_t h128;
6639         h128.low64  = XXH64_avalanche(keyed_lo);
6640         h128.high64 = XXH64_avalanche(keyed_hi);
6641         return h128;
6642     }
6643 }
6644 
6645 XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
6646 XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
6647 {
6648     XXH_ASSERT(input != NULL);
6649     XXH_ASSERT(secret != NULL);
6650     XXH_ASSERT(4 <= len && len <= 8);
6651     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
6652     {   xxh_u32 const input_lo = XXH_readLE32(input);
6653         xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
6654         xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
6655         xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
6656         xxh_u64 const keyed = input_64 ^ bitflip;
6657 
6658         /* Shift len to the left to ensure it is even, this avoids even multiplies. */
6659         XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
6660 
6661         m128.high64 += (m128.low64 << 1);
6662         m128.low64  ^= (m128.high64 >> 3);
6663 
6664         m128.low64   = XXH_xorshift64(m128.low64, 35);
6665         m128.low64  *= PRIME_MX2;
6666         m128.low64   = XXH_xorshift64(m128.low64, 28);
6667         m128.high64  = XXH3_avalanche(m128.high64);
6668         return m128;
6669     }
6670 }
6671 
6672 XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
6673 XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
6674 {
6675     XXH_ASSERT(input != NULL);
6676     XXH_ASSERT(secret != NULL);
6677     XXH_ASSERT(9 <= len && len <= 16);
6678     {   xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
6679         xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
6680         xxh_u64 const input_lo = XXH_readLE64(input);
6681         xxh_u64       input_hi = XXH_readLE64(input + len - 8);
6682         XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
6683         /*
6684          * Put len in the middle of m128 to ensure that the length gets mixed to
6685          * both the low and high bits in the 128x64 multiply below.
6686          */
6687         m128.low64 += (xxh_u64)(len - 1) << 54;
6688         input_hi   ^= bitfliph;
6689         /*
6690          * Add the high 32 bits of input_hi to the high 32 bits of m128, then
6691          * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
6692          * the high 64 bits of m128.
6693          *
6694          * The best approach to this operation is different on 32-bit and 64-bit.
6695          */
6696         if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
6697             /*
6698              * 32-bit optimized version, which is more readable.
6699              *
6700              * On 32-bit, it removes an ADC and delays a dependency between the two
6701              * halves of m128.high64, but it generates an extra mask on 64-bit.
6702              */
6703             m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
6704         } else {
6705             /*
6706              * 64-bit optimized (albeit more confusing) version.
6707              *
6708              * Uses some properties of addition and multiplication to remove the mask:
6709              *
6710              * Let:
6711              *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
6712              *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
6713              *    c = XXH_PRIME32_2
6714              *
6715              *    a + (b * c)
6716              * Inverse Property: x + y - x == y
6717              *    a + (b * (1 + c - 1))
6718              * Distributive Property: x * (y + z) == (x * y) + (x * z)
6719              *    a + (b * 1) + (b * (c - 1))
6720              * Identity Property: x * 1 == x
6721              *    a + b + (b * (c - 1))
6722              *
6723              * Substitute a, b, and c:
6724              *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
6725              *
6726              * Since input_hi.hi + input_hi.lo == input_hi, we get this:
6727              *    input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
6728              */
6729             m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
6730         }
6731         /* m128 ^= XXH_swap64(m128 >> 64); */
6732         m128.low64  ^= XXH_swap64(m128.high64);
6733 
6734         {   /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
6735             XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
6736             h128.high64 += m128.high64 * XXH_PRIME64_2;
6737 
6738             h128.low64   = XXH3_avalanche(h128.low64);
6739             h128.high64  = XXH3_avalanche(h128.high64);
6740             return h128;
6741     }   }
6742 }
6743 
6744 /*
6745  * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
6746  */
6747 XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
6748 XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
6749 {
6750     XXH_ASSERT(len <= 16);
6751     {   if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
6752         if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
6753         if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
6754         {   XXH128_hash_t h128;
6755             xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
6756             xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
6757             h128.low64 = XXH64_avalanche(seed ^ bitflipl);
6758             h128.high64 = XXH64_avalanche( seed ^ bitfliph);
6759             return h128;
6760     }   }
6761 }
6762 
6763 /*
6764  * A bit slower than XXH3_mix16B, but handles multiply by zero better.
6765  */
6766 XXH_FORCE_INLINE XXH128_hash_t
6767 XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
6768               const xxh_u8* secret, XXH64_hash_t seed)
6769 {
6770     acc.low64  += XXH3_mix16B (input_1, secret+0, seed);
6771     acc.low64  ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
6772     acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
6773     acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
6774     return acc;
6775 }
6776 
6777 
6778 XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
6779 XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
6780                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
6781                       XXH64_hash_t seed)
6782 {
6783     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
6784     XXH_ASSERT(16 < len && len <= 128);
6785 
6786     {   XXH128_hash_t acc;
6787         acc.low64 = len * XXH_PRIME64_1;
6788         acc.high64 = 0;
6789 
6790 #if XXH_SIZE_OPT >= 1
6791         {
6792             /* Smaller, but slightly slower. */
6793             unsigned int i = (unsigned int)(len - 1) / 32;
6794             do {
6795                 acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed);
6796             } while (i-- != 0);
6797         }
6798 #else
6799         if (len > 32) {
6800             if (len > 64) {
6801                 if (len > 96) {
6802                     acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
6803                 }
6804                 acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
6805             }
6806             acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
6807         }
6808         acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
6809 #endif
6810         {   XXH128_hash_t h128;
6811             h128.low64  = acc.low64 + acc.high64;
6812             h128.high64 = (acc.low64    * XXH_PRIME64_1)
6813                         + (acc.high64   * XXH_PRIME64_4)
6814                         + ((len - seed) * XXH_PRIME64_2);
6815             h128.low64  = XXH3_avalanche(h128.low64);
6816             h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
6817             return h128;
6818         }
6819     }
6820 }
6821 
6822 XXH_NO_INLINE XXH_PUREF XXH128_hash_t
6823 XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
6824                        const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
6825                        XXH64_hash_t seed)
6826 {
6827     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
6828     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
6829 
6830     {   XXH128_hash_t acc;
6831         unsigned i;
6832         acc.low64 = len * XXH_PRIME64_1;
6833         acc.high64 = 0;
6834         /*
6835          *  We set as `i` as offset + 32. We do this so that unchanged
6836          * `len` can be used as upper bound. This reaches a sweet spot
6837          * where both x86 and aarch64 get simple agen and good codegen
6838          * for the loop.
6839          */
6840         for (i = 32; i < 160; i += 32) {
6841             acc = XXH128_mix32B(acc,
6842                                 input  + i - 32,
6843                                 input  + i - 16,
6844                                 secret + i - 32,
6845                                 seed);
6846         }
6847         acc.low64 = XXH3_avalanche(acc.low64);
6848         acc.high64 = XXH3_avalanche(acc.high64);
6849         /*
6850          * NB: `i <= len` will duplicate the last 32-bytes if
6851          * len % 32 was zero. This is an unfortunate necessity to keep
6852          * the hash result stable.
6853          */
6854         for (i=160; i <= len; i += 32) {
6855             acc = XXH128_mix32B(acc,
6856                                 input + i - 32,
6857                                 input + i - 16,
6858                                 secret + XXH3_MIDSIZE_STARTOFFSET + i - 160,
6859                                 seed);
6860         }
6861         /* last bytes */
6862         acc = XXH128_mix32B(acc,
6863                             input + len - 16,
6864                             input + len - 32,
6865                             secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
6866                             (XXH64_hash_t)0 - seed);
6867 
6868         {   XXH128_hash_t h128;
6869             h128.low64  = acc.low64 + acc.high64;
6870             h128.high64 = (acc.low64    * XXH_PRIME64_1)
6871                         + (acc.high64   * XXH_PRIME64_4)
6872                         + ((len - seed) * XXH_PRIME64_2);
6873             h128.low64  = XXH3_avalanche(h128.low64);
6874             h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
6875             return h128;
6876         }
6877     }
6878 }
6879 
6880 static XXH_PUREF XXH128_hash_t
6881 XXH3_finalizeLong_128b(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, xxh_u64 len)
6882 {
6883     XXH128_hash_t h128;
6884     h128.low64 = XXH3_finalizeLong_64b(acc, secret, len);
6885     h128.high64 = XXH3_mergeAccs(acc, secret + secretSize
6886                                              - XXH_STRIPE_LEN - XXH_SECRET_MERGEACCS_START,
6887                                              ~(len * XXH_PRIME64_2));
6888     return h128;
6889 }
6890 
6891 XXH_FORCE_INLINE XXH128_hash_t
6892 XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
6893                             const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
6894                             XXH3_f_accumulate f_acc,
6895                             XXH3_f_scrambleAcc f_scramble)
6896 {
6897     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
6898 
6899     XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble);
6900 
6901     /* converge into final hash */
6902     XXH_STATIC_ASSERT(sizeof(acc) == 64);
6903     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
6904     return XXH3_finalizeLong_128b(acc, secret, secretSize, (xxh_u64)len);
6905 }
6906 
6907 /*
6908  * It's important for performance that XXH3_hashLong() is not inlined.
6909  */
6910 XXH_NO_INLINE XXH_PUREF XXH128_hash_t
6911 XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
6912                            XXH64_hash_t seed64,
6913                            const void* XXH_RESTRICT secret, size_t secretLen)
6914 {
6915     (void)seed64; (void)secret; (void)secretLen;
6916     return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
6917                                        XXH3_accumulate, XXH3_scrambleAcc);
6918 }
6919 
6920 /*
6921  * It's important for performance to pass @p secretLen (when it's static)
6922  * to the compiler, so that it can properly optimize the vectorized loop.
6923  *
6924  * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
6925  * breaks -Og, this is XXH_NO_INLINE.
6926  */
6927 XXH3_WITH_SECRET_INLINE XXH128_hash_t
6928 XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
6929                               XXH64_hash_t seed64,
6930                               const void* XXH_RESTRICT secret, size_t secretLen)
6931 {
6932     (void)seed64;
6933     return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
6934                                        XXH3_accumulate, XXH3_scrambleAcc);
6935 }
6936 
6937 XXH_FORCE_INLINE XXH128_hash_t
6938 XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
6939                                 XXH64_hash_t seed64,
6940                                 XXH3_f_accumulate f_acc,
6941                                 XXH3_f_scrambleAcc f_scramble,
6942                                 XXH3_f_initCustomSecret f_initSec)
6943 {
6944     if (seed64 == 0)
6945         return XXH3_hashLong_128b_internal(input, len,
6946                                            XXH3_kSecret, sizeof(XXH3_kSecret),
6947                                            f_acc, f_scramble);
6948     {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
6949         f_initSec(secret, seed64);
6950         return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
6951                                            f_acc, f_scramble);
6952     }
6953 }
6954 
6955 /*
6956  * It's important for performance that XXH3_hashLong is not inlined.
6957  */
6958 XXH_NO_INLINE XXH128_hash_t
6959 XXH3_hashLong_128b_withSeed(const void* input, size_t len,
6960                             XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
6961 {
6962     (void)secret; (void)secretLen;
6963     return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
6964                 XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
6965 }
6966 
6967 typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
6968                                             XXH64_hash_t, const void* XXH_RESTRICT, size_t);
6969 
6970 XXH_FORCE_INLINE XXH128_hash_t
6971 XXH3_128bits_internal(const void* input, size_t len,
6972                       XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
6973                       XXH3_hashLong128_f f_hl128)
6974 {
6975     XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
6976     /*
6977      * If an action is to be taken if `secret` conditions are not respected,
6978      * it should be done here.
6979      * For now, it's a contract pre-condition.
6980      * Adding a check and a branch here would cost performance at every hash.
6981      */
6982     if (len <= 16)
6983         return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
6984     if (len <= 128)
6985         return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
6986     if (len <= XXH3_MIDSIZE_MAX)
6987         return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
6988     return f_hl128(input, len, seed64, secret, secretLen);
6989 }
6990 
6991 
6992 /* ===   Public XXH128 API   === */
6993 
6994 /*! @ingroup XXH3_family */
6995 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len)
6996 {
6997     return XXH3_128bits_internal(input, len, 0,
6998                                  XXH3_kSecret, sizeof(XXH3_kSecret),
6999                                  XXH3_hashLong_128b_default);
7000 }
7001 
7002 /*! @ingroup XXH3_family */
7003 XXH_PUBLIC_API XXH128_hash_t
7004 XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize)
7005 {
7006     return XXH3_128bits_internal(input, len, 0,
7007                                  (const xxh_u8*)secret, secretSize,
7008                                  XXH3_hashLong_128b_withSecret);
7009 }
7010 
7011 /*! @ingroup XXH3_family */
7012 XXH_PUBLIC_API XXH128_hash_t
7013 XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
7014 {
7015     return XXH3_128bits_internal(input, len, seed,
7016                                  XXH3_kSecret, sizeof(XXH3_kSecret),
7017                                  XXH3_hashLong_128b_withSeed);
7018 }
7019 
7020 /*! @ingroup XXH3_family */
7021 XXH_PUBLIC_API XXH128_hash_t
7022 XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
7023 {
7024     if (len <= XXH3_MIDSIZE_MAX)
7025         return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
7026     return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
7027 }
7028 
7029 /*! @ingroup XXH3_family */
7030 XXH_PUBLIC_API XXH128_hash_t
7031 XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
7032 {
7033     return XXH3_128bits_withSeed(input, len, seed);
7034 }
7035 
7036 
7037 /* ===   XXH3 128-bit streaming   === */
7038 #ifndef XXH_NO_STREAM
7039 /*
7040  * All initialization and update functions are identical to 64-bit streaming variant.
7041  * The only difference is the finalization routine.
7042  */
7043 
7044 /*! @ingroup XXH3_family */
7045 XXH_PUBLIC_API XXH_errorcode
7046 XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
7047 {
7048     return XXH3_64bits_reset(statePtr);
7049 }
7050 
7051 /*! @ingroup XXH3_family */
7052 XXH_PUBLIC_API XXH_errorcode
7053 XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
7054 {
7055     return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
7056 }
7057 
7058 /*! @ingroup XXH3_family */
7059 XXH_PUBLIC_API XXH_errorcode
7060 XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
7061 {
7062     return XXH3_64bits_reset_withSeed(statePtr, seed);
7063 }
7064 
7065 /*! @ingroup XXH3_family */
7066 XXH_PUBLIC_API XXH_errorcode
7067 XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
7068 {
7069     return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
7070 }
7071 
7072 /*! @ingroup XXH3_family */
7073 XXH_PUBLIC_API XXH_errorcode
7074 XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
7075 {
7076     return XXH3_64bits_update(state, input, len);
7077 }
7078 
7079 /*! @ingroup XXH3_family */
7080 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
7081 {
7082     const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
7083     if (state->totalLen > XXH3_MIDSIZE_MAX) {
7084         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
7085         XXH3_digest_long(acc, state, secret);
7086         XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
7087         return XXH3_finalizeLong_128b(acc, secret, state->secretLimit + XXH_STRIPE_LEN,  (xxh_u64)state->totalLen);
7088     }
7089     /* len <= XXH3_MIDSIZE_MAX : short code */
7090     if (state->useSeed)
7091         return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
7092     return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
7093                                    secret, state->secretLimit + XXH_STRIPE_LEN);
7094 }
7095 #endif /* !XXH_NO_STREAM */
7096 /* 128-bit utility functions */
7097 
7098 #include <string.h>   /* memcmp, memcpy */
7099 
7100 /* return : 1 is equal, 0 if different */
7101 /*! @ingroup XXH3_family */
7102 XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
7103 {
7104     /* note : XXH128_hash_t is compact, it has no padding byte */
7105     return !(memcmp(&h1, &h2, sizeof(h1)));
7106 }
7107 
7108 /* This prototype is compatible with stdlib's qsort().
7109  * @return : >0 if *h128_1  > *h128_2
7110  *           <0 if *h128_1  < *h128_2
7111  *           =0 if *h128_1 == *h128_2  */
7112 /*! @ingroup XXH3_family */
7113 XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2)
7114 {
7115     XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
7116     XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
7117     int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
7118     /* note : bets that, in most cases, hash values are different */
7119     if (hcmp) return hcmp;
7120     return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
7121 }
7122 
7123 
7124 /*======   Canonical representation   ======*/
7125 /*! @ingroup XXH3_family */
7126 XXH_PUBLIC_API void
7127 XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash)
7128 {
7129     XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
7130     if (XXH_CPU_LITTLE_ENDIAN) {
7131         hash.high64 = XXH_swap64(hash.high64);
7132         hash.low64  = XXH_swap64(hash.low64);
7133     }
7134     XXH_memcpy(dst, &hash.high64, sizeof(hash.high64));
7135     XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
7136 }
7137 
7138 /*! @ingroup XXH3_family */
7139 XXH_PUBLIC_API XXH128_hash_t
7140 XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src)
7141 {
7142     XXH128_hash_t h;
7143     h.high64 = XXH_readBE64(src);
7144     h.low64  = XXH_readBE64(src->digest + 8);
7145     return h;
7146 }
7147 
7148 
7149 
7150 /* ==========================================
7151  * Secret generators
7152  * ==========================================
7153  */
7154 #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
7155 
7156 XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128)
7157 {
7158     XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 );
7159     XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
7160 }
7161 
7162 /*! @ingroup XXH3_family */
7163 XXH_PUBLIC_API XXH_errorcode
7164 XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize)
7165 {
7166 #if (XXH_DEBUGLEVEL >= 1)
7167     XXH_ASSERT(secretBuffer != NULL);
7168     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
7169 #else
7170     /* production mode, assert() are disabled */
7171     if (secretBuffer == NULL) return XXH_ERROR;
7172     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
7173 #endif
7174 
7175     if (customSeedSize == 0) {
7176         customSeed = XXH3_kSecret;
7177         customSeedSize = XXH_SECRET_DEFAULT_SIZE;
7178     }
7179 #if (XXH_DEBUGLEVEL >= 1)
7180     XXH_ASSERT(customSeed != NULL);
7181 #else
7182     if (customSeed == NULL) return XXH_ERROR;
7183 #endif
7184 
7185     /* Fill secretBuffer with a copy of customSeed - repeat as needed */
7186     {   size_t pos = 0;
7187         while (pos < secretSize) {
7188             size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize);
7189             memcpy((char*)secretBuffer + pos, customSeed, toCopy);
7190             pos += toCopy;
7191     }   }
7192 
7193     {   size_t const nbSeg16 = secretSize / 16;
7194         size_t n;
7195         XXH128_canonical_t scrambler;
7196         XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
7197         for (n=0; n<nbSeg16; n++) {
7198             XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n);
7199             XXH3_combine16((char*)secretBuffer + n*16, h128);
7200         }
7201         /* last segment */
7202         XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler));
7203     }
7204     return XXH_OK;
7205 }
7206 
7207 /*! @ingroup XXH3_family */
7208 XXH_PUBLIC_API void
7209 XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed)
7210 {
7211     XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
7212     XXH3_initCustomSecret(secret, seed);
7213     XXH_ASSERT(secretBuffer != NULL);
7214     memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE);
7215 }
7216 
7217 
7218 
7219 /* Pop our optimization override from above */
7220 #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
7221   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
7222   && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
7223 #  pragma GCC pop_options
7224 #endif
7225 
7226 #endif  /* XXH_NO_LONG_LONG */
7227 
7228 #endif  /* XXH_NO_XXH3 */
7229 
7230 /*!
7231  * @}
7232  */
7233 #endif  /* XXH_IMPLEMENTATION */
7234 
7235 
7236 #if defined (__cplusplus)
7237 } /* extern "C" */
7238 #endif