|
|
|||
File indexing completed on 2025-12-15 10:09:21
0001 // (C) Copyright Gennadiy Rozental 2001. 0002 // (C) Copyright Beman Dawes 2001. 0003 // Distributed under the Boost Software License, Version 1.0. 0004 // (See accompanying file LICENSE_1_0.txt or copy at 0005 // http://www.boost.org/LICENSE_1_0.txt) 0006 0007 // See http://www.boost.org/libs/test for the library home page. 0008 // 0009 //!@file 0010 //!@brief Defines public interface of the Execution Monitor and related classes 0011 // *************************************************************************** 0012 0013 #ifndef BOOST_TEST_EXECUTION_MONITOR_HPP_071894GER 0014 #define BOOST_TEST_EXECUTION_MONITOR_HPP_071894GER 0015 0016 // Boost.Test 0017 #include <boost/test/detail/global_typedef.hpp> 0018 #include <boost/test/detail/fwd_decl.hpp> 0019 #include <boost/test/detail/throw_exception.hpp> 0020 0021 #include <boost/test/utils/class_properties.hpp> 0022 0023 // Boost 0024 #include <boost/shared_ptr.hpp> 0025 #include <boost/scoped_array.hpp> 0026 #include <boost/type.hpp> 0027 #include <boost/cstdlib.hpp> 0028 #include <boost/function/function0.hpp> 0029 0030 #include <boost/test/detail/suppress_warnings.hpp> 0031 0032 #ifdef BOOST_SEH_BASED_SIGNAL_HANDLING 0033 0034 // for the FP constants and control routines 0035 #include <float.h> 0036 0037 #ifndef EM_INVALID 0038 #define EM_INVALID _EM_INVALID 0039 #endif 0040 0041 #ifndef EM_DENORMAL 0042 #define EM_DENORMAL _EM_DENORMAL 0043 #endif 0044 0045 #ifndef EM_ZERODIVIDE 0046 #define EM_ZERODIVIDE _EM_ZERODIVIDE 0047 #endif 0048 0049 #ifndef EM_OVERFLOW 0050 #define EM_OVERFLOW _EM_OVERFLOW 0051 #endif 0052 0053 #ifndef EM_UNDERFLOW 0054 #define EM_UNDERFLOW _EM_UNDERFLOW 0055 #endif 0056 0057 #ifndef MCW_EM 0058 #define MCW_EM _MCW_EM 0059 #endif 0060 0061 #else // based on ISO C standard 0062 0063 #if !defined(BOOST_NO_FENV_H) 0064 #include <boost/detail/fenv.hpp> 0065 #endif 0066 0067 #endif 0068 0069 #if defined(BOOST_SEH_BASED_SIGNAL_HANDLING) && !defined(UNDER_CE) 0070 //! Indicates tha the floating point exception handling is supported 0071 //! through SEH 0072 #define BOOST_TEST_FPE_SUPPORT_WITH_SEH__ 0073 #elif !defined(BOOST_SEH_BASED_SIGNAL_HANDLING) && !defined(UNDER_CE) 0074 #if !defined(BOOST_NO_FENV_H) && !defined(BOOST_CLANG) && \ 0075 defined(__GLIBC__) && defined(__USE_GNU) && \ 0076 !(defined(__UCLIBC__) || defined(__nios2__) || defined(__microblaze__)) 0077 //! Indicates that floating point exception handling is supported for the 0078 //! non SEH version of it, for the GLIBC extensions only 0079 // see discussions on the related topic: https://svn.boost.org/trac/boost/ticket/11756 0080 #define BOOST_TEST_FPE_SUPPORT_WITH_GLIBC_EXTENSIONS__ 0081 #endif 0082 #endif 0083 0084 0085 // Additional macro documentations not being generated without this hack 0086 #ifdef BOOST_TEST_DOXYGEN_DOC__ 0087 0088 //! Disables the support of the alternative stack 0089 //! during the compilation of the Boost.test framework. This is especially useful 0090 //! in case it is not possible to detect the lack of alternative stack support for 0091 //! your compiler (for instance, ESXi). 0092 #define BOOST_TEST_DISABLE_ALT_STACK 0093 0094 #endif 0095 0096 //____________________________________________________________________________// 0097 0098 namespace boost { 0099 0100 /// @defgroup ExecutionMonitor Function Execution Monitor 0101 /// @{ 0102 /// @section Intro Introduction 0103 /// Sometimes we need to call a function and make sure that no user or system originated exceptions are being thrown by it. Uniform exception reporting 0104 /// is also may be convenient. That's the purpose of the Boost.Test's Execution Monitor. 0105 /// 0106 /// The Execution Monitor is a lower-level component of the Boost Test Library. It is the base for implementing all other Boost.Test components, but also 0107 /// can be used standalone to get controlled execution of error-prone functions with a uniform error notification. The Execution Monitor calls a user-supplied 0108 /// function in a controlled environment, relieving users from messy error detection. 0109 /// 0110 /// The Execution Monitor usage is demonstrated in the example exec_mon_example. 0111 /// 0112 /// @section DesignRationale Design Rationale 0113 /// 0114 /// The Execution Monitor design assumes that it can be used when no (or almost no) memory available. Also the Execution Monitor 0115 /// is intended to be portable to as many platforms as possible. 0116 /// 0117 /// @section UserGuide User's guide 0118 /// The Execution Monitor is designed to solve the problem of executing potentially dangerous function that may result in any number of error conditions, 0119 /// in monitored environment that should prevent any undesirable exceptions to propagate out of function call and produce consistent result report for all outcomes. 0120 /// The Execution Monitor is able to produce informative report for all standard C++ exceptions and intrinsic types. All other exceptions are reported as unknown. 0121 /// If you prefer different message for your exception type or need to perform any action, the Execution Monitor supports custom exception translators. 0122 /// There are several other parameters of the monitored environment can be configured by setting appropriate properties of the Execution Monitor. 0123 /// 0124 /// All symbols in the Execution Monitor implementation are located in the namespace boost. To use the Execution Monitor you need to: 0125 /// -# include @c boost/test/execution_monitor.hpp 0126 /// -# Make an instance of execution_monitor. 0127 /// -# Optionally register custom exception translators for exception classes which require special processing. 0128 /// 0129 /// @subsection FuncExec Monitored function execution 0130 /// 0131 /// The class execution_monitor can monitor functions with the following signatures: 0132 /// - int () 0133 /// - void () 0134 /// 0135 /// This function is expected to be self sufficient part of your application. You can't pass any arguments to this function directly. Instead you 0136 /// should bind them into executable nullary function using bind function (either standard or boost variant). Neither you can return any other value, 0137 /// but an integer result code. If necessary you can bind output parameters by reference or use some other more complicated nullary functor, which 0138 /// maintains state. This includes class methods, static class methods etc. 0139 /// 0140 /// To start the monitored function, invoke the method execution_monitor::execute and pass the monitored function as an argument. If the call succeeds, 0141 /// the method returns the result code produced by the monitored function. If any of the following conditions occur: 0142 /// - Uncaught C++ exception 0143 /// - Hardware or software signal, trap, or other exception 0144 /// - Timeout reached 0145 /// - Debug assert event occurred (under Microsoft Visual C++ or compatible compiler) 0146 /// 0147 /// then the method throws the execution_exception. The exception contains unique error_code value identifying the error condition and the detailed message 0148 /// that can be used to report the error. 0149 /// 0150 /// @subsection Reporting Errors reporting and translation 0151 /// 0152 /// If you need to report an error inside monitored function execution you have to throw an exception. Do not use the execution_exception - it's not intended 0153 /// to be used for this purpose. The simplest choice is to use one of the following C++ types as an exception: 0154 /// - C string 0155 /// - std:string 0156 /// - any exception class in std::exception hierarchy 0157 /// - boost::exception 0158 /// 0159 /// execution_monitor will catch and report these types of exceptions. If exception is thrown which is unknown to execution_monitor, it can only 0160 /// report the fact of the exception. So in case if you prefer to use your own exception types or can't govern what exceptions are generated by monitored 0161 /// function and would like to see proper error message in a report, execution_monitor can be configured with custom "translator" routine, which will have 0162 /// a chance to either record the fact of the exception itself or translate it into one of standard exceptions and rethrow (or both). The translator routine 0163 /// is registered per exception type and is invoked when exception of this class (or one inherited from it) is thrown inside monitored routine. You can 0164 /// register as many independent translators as you like. See execution_monitor::register_exception_translator specification for requirements on translator 0165 /// function. 0166 /// 0167 /// Finally, if you need to abort the monitored function execution without reporting any errors, you can throw an exception execution_aborted. As a result 0168 /// the execution is aborted and zero result code is produced by the method execution_monitor::execute. 0169 /// 0170 /// @subsection Parameters Supported parameters 0171 /// 0172 /// The Execution Monitor behavior is configurable through the set of parameters (properties) associated with the instance of the monitor. See execution_monitor 0173 /// specification for a list of supported parameters and their semantic. 0174 0175 // ************************************************************************** // 0176 // ************** detail::translator_holder_base ************** // 0177 // ************************************************************************** // 0178 0179 namespace detail { 0180 0181 class translator_holder_base; 0182 typedef boost::shared_ptr<translator_holder_base> translator_holder_base_ptr; 0183 0184 class BOOST_TEST_DECL translator_holder_base { 0185 protected: 0186 typedef boost::unit_test::const_string const_string; 0187 public: 0188 // Constructor 0189 translator_holder_base( translator_holder_base_ptr next, const_string tag ) 0190 : m_next( next ) 0191 , m_tag( std::string() + tag ) 0192 { 0193 } 0194 0195 // Destructor 0196 virtual ~translator_holder_base() {} 0197 0198 // translator holder interface 0199 // invokes the function F inside the try/catch guarding against specific exception 0200 virtual int operator()( boost::function<int ()> const& F ) = 0; 0201 0202 // erases specific translator holder from the chain 0203 translator_holder_base_ptr erase( translator_holder_base_ptr this_, const_string tag ) 0204 { 0205 if( m_next ) 0206 m_next = m_next->erase( m_next, tag ); 0207 0208 return m_tag == tag ? m_next : this_; 0209 } 0210 #ifndef BOOST_NO_RTTI 0211 virtual translator_holder_base_ptr erase( translator_holder_base_ptr this_, std::type_info const& ) = 0; 0212 template<typename ExceptionType> 0213 translator_holder_base_ptr erase( translator_holder_base_ptr this_, boost::type<ExceptionType>* = 0 ) 0214 { 0215 if( m_next ) 0216 m_next = m_next->erase<ExceptionType>( m_next ); 0217 0218 return erase( this_, typeid(ExceptionType) ); 0219 } 0220 #endif 0221 0222 protected: 0223 // Data members 0224 translator_holder_base_ptr m_next; 0225 std::string m_tag; 0226 }; 0227 0228 } // namespace detail 0229 0230 // ************************************************************************** // 0231 /// @class execution_exception 0232 /// @brief This class is used to report any kind of an failure during execution of a monitored function inside of execution_monitor 0233 /// 0234 /// The instance of this class is thrown out of execution_monitor::execute invocation when failure is detected. Regardless of a kind of failure occurred 0235 /// the instance will provide a uniform way to catch and report it. 0236 /// 0237 /// One important design rationale for this class is that we should be ready to work after fatal memory corruptions or out of memory conditions. To facilitate 0238 /// this class never allocates any memory and assumes that strings it refers to are either some constants or live in a some kind of persistent (preallocated) memory. 0239 // ************************************************************************** // 0240 0241 class BOOST_SYMBOL_VISIBLE execution_exception { 0242 typedef boost::unit_test::const_string const_string; 0243 public: 0244 /// These values are sometimes used as program return codes. 0245 /// The particular values have been chosen to avoid conflicts with 0246 /// commonly used program return codes: values < 100 are often user 0247 /// assigned, values > 255 are sometimes used to report system errors. 0248 /// Gaps in values allow for orderly expansion. 0249 /// 0250 /// @note(1) Only uncaught C++ exceptions are treated as errors. 0251 /// If a function catches a C++ exception, it never reaches 0252 /// the execution_monitor. 0253 /// 0254 /// The implementation decides what is a system_fatal_error and what is 0255 /// just a system_exception. Fatal errors are so likely to have corrupted 0256 /// machine state (like a stack overflow or addressing exception) that it 0257 /// is unreasonable to continue execution. 0258 /// 0259 /// @note(2) These errors include Unix signals and Windows structured 0260 /// exceptions. They are often initiated by hardware traps. 0261 enum error_code { 0262 no_error = 0, ///< for completeness only; never returned 0263 user_error = 200, ///< user reported non-fatal error 0264 cpp_exception_error = 205, ///< see note (1) above 0265 system_error = 210, ///< see note (2) above 0266 timeout_error = 215, ///< only detectable on certain platforms 0267 user_fatal_error = 220, ///< user reported fatal error 0268 system_fatal_error = 225 ///< see note (2) above 0269 }; 0270 0271 /// Simple model for the location of failure in a source code 0272 struct BOOST_TEST_DECL location { 0273 explicit location( char const* file_name = 0, size_t line_num = 0, char const* func = 0 ); 0274 explicit location( const_string file_name, size_t line_num = 0, char const* func = 0 ); 0275 0276 const_string m_file_name; ///< File name 0277 size_t m_line_num; ///< Line number 0278 const_string m_function; ///< Function name 0279 }; 0280 0281 /// @name Constructors 0282 0283 /// Constructs instance based on message, location and error code 0284 0285 /// @param[in] ec error code 0286 /// @param[in] what_msg error message 0287 /// @param[in] location error location 0288 execution_exception( error_code ec, const_string what_msg, location const& location ); 0289 0290 /// @name Access methods 0291 0292 /// Exception error code 0293 error_code code() const { return m_error_code; } 0294 /// Exception message 0295 const_string what() const { return m_what; } 0296 /// Exception location 0297 location const& where() const { return m_location; } 0298 ///@} 0299 0300 private: 0301 // Data members 0302 error_code m_error_code; 0303 const_string m_what; 0304 location m_location; 0305 }; // execution_exception 0306 0307 // ************************************************************************** // 0308 /// @brief Function execution monitor 0309 0310 /// This class is used to uniformly detect and report an occurrence of several types of signals and exceptions, reducing various 0311 /// errors to a uniform execution_exception that is returned to a caller. 0312 /// 0313 /// The execution_monitor behavior can be customized through a set of public parameters (properties) associated with the execution_monitor instance. 0314 /// All parameters are implemented as public unit_test::readwrite_property data members of the class execution_monitor. 0315 // ************************************************************************** // 0316 0317 class BOOST_TEST_DECL execution_monitor { 0318 typedef boost::unit_test::const_string const_string; 0319 public: 0320 0321 /// Default constructor initializes all execution monitor properties 0322 execution_monitor(); 0323 0324 /// Should monitor catch system errors. 0325 /// 0326 /// The @em p_catch_system_errors property is a boolean flag (default value is true) specifying whether or not execution_monitor should trap system 0327 /// errors/system level exceptions/signals, which would cause program to crash in a regular case (without execution_monitor). 0328 /// Set this property to false, for example, if you wish to force coredump file creation. The Unit Test Framework provides a 0329 /// runtime parameter @c \-\-catch_system_errors=yes to alter the behavior in monitored test cases. 0330 unit_test::readwrite_property<bool> p_catch_system_errors; 0331 0332 /// Should monitor try to attach debugger in case of caught system error. 0333 /// 0334 /// The @em p_auto_start_dbg property is a boolean flag (default value is false) specifying whether or not execution_monitor should try to attach debugger 0335 /// in case system error is caught. 0336 unit_test::readwrite_property<bool> p_auto_start_dbg; 0337 0338 0339 /// Specifies the seconds that elapse before a timer_error occurs. 0340 /// 0341 /// The @em p_timeout property is an integer timeout (in microseconds) for monitored function execution. Use this parameter to monitor code with possible deadlocks 0342 /// or infinite loops. This feature is only available for some operating systems (not yet Microsoft Windows). 0343 unit_test::readwrite_property<unsigned long int> p_timeout; 0344 0345 /// Should monitor use alternative stack for the signal catching. 0346 /// 0347 /// The @em p_use_alt_stack property is a boolean flag (default value is false) specifying whether or not execution_monitor should use an alternative stack 0348 /// for the sigaction based signal catching. When enabled the signals are delivered to the execution_monitor on a stack different from current execution 0349 /// stack, which is safer in case if it is corrupted by monitored function. For more details on alternative stack handling see appropriate manuals. 0350 unit_test::readwrite_property<bool> p_use_alt_stack; 0351 0352 /// Should monitor try to detect hardware floating point exceptions (!= 0), and which specific exception to catch. 0353 /// 0354 /// The @em p_detect_fp_exceptions property is a boolean flag (default value is false) specifying whether or not execution_monitor should install hardware 0355 /// traps for the floating point exception on platforms where it's supported. 0356 unit_test::readwrite_property<unsigned> p_detect_fp_exceptions; 0357 0358 0359 // @name Monitoring entry points 0360 0361 /// @brief Execution monitor entry point for functions returning integer value 0362 /// 0363 /// This method executes supplied function F inside a try/catch block and also may include other unspecified platform dependent error detection code. 0364 /// 0365 /// This method throws an execution_exception on an uncaught C++ exception, a hardware or software signal, trap, or other user exception. 0366 /// 0367 /// @note execute() doesn't consider it an error for F to return a non-zero value. 0368 /// @param[in] F Function to monitor 0369 /// @returns value returned by function call F(). 0370 /// @see vexecute 0371 int execute( boost::function<int ()> const& F ); 0372 0373 /// @brief Execution monitor entry point for functions returning void 0374 /// 0375 /// This method is semantically identical to execution_monitor::execute, but doesn't produce any result code. 0376 /// @param[in] F Function to monitor 0377 /// @see execute 0378 void vexecute( boost::function<void ()> const& F ); 0379 // @} 0380 0381 // @name Exception translator registration 0382 0383 /// @brief Registers custom (user supplied) exception translator 0384 0385 /// This method template registers a translator for an exception type specified as a first template argument. For example 0386 /// @code 0387 /// void myExceptTr( MyException const& ex ) { /*do something with the exception here*/} 0388 /// em.register_exception_translator<MyException>( myExceptTr ); 0389 /// @endcode 0390 /// The translator should be any unary function/functor object which accepts MyException const&. This can be free standing function 0391 /// or bound class method. The second argument is an optional string tag you can associate with this translator routine. The only reason 0392 /// to specify the tag is if you plan to erase the translator eventually. This can be useful in scenario when you reuse the same 0393 /// execution_monitor instance to monitor different routines and need to register a translator specific to the routine being monitored. 0394 /// While it is possible to erase the translator based on an exception type it was registered for, tag string provides simpler way of doing this. 0395 /// @tparam ExceptionType type of the exception we register a translator for 0396 /// @tparam ExceptionTranslator type of the translator we register for this exception 0397 /// @param[in] tr translator function object with the signature <em> void (ExceptionType const&)</em> 0398 /// @param[in] tag tag associated with this translator 0399 template<typename ExceptionType, typename ExceptionTranslator> 0400 void register_exception_translator( ExceptionTranslator const& tr, const_string tag = const_string(), boost::type<ExceptionType>* = 0 ); 0401 0402 /// @brief Erases custom exception translator based on a tag 0403 0404 /// Use the same tag as the one used during translator registration 0405 /// @param[in] tag tag associated with translator you wants to erase 0406 void erase_exception_translator( const_string tag ) 0407 { 0408 m_custom_translators = m_custom_translators->erase( m_custom_translators, tag ); 0409 } 0410 #ifndef BOOST_NO_RTTI 0411 /// @brief Erases custom exception translator based on an exception type 0412 /// 0413 /// tparam ExceptionType Exception type for which you want to erase the translator 0414 template<typename ExceptionType> 0415 void erase_exception_translator( boost::type<ExceptionType>* = 0 ) 0416 { 0417 m_custom_translators = m_custom_translators->erase<ExceptionType>( m_custom_translators ); 0418 } 0419 //@} 0420 #endif 0421 0422 private: 0423 // implementation helpers 0424 int catch_signals( boost::function<int ()> const& F ); 0425 0426 // Data members 0427 detail::translator_holder_base_ptr m_custom_translators; 0428 boost::scoped_array<char> m_alt_stack; 0429 }; // execution_monitor 0430 0431 // ************************************************************************** // 0432 // ************** detail::translator_holder ************** // 0433 // ************************************************************************** // 0434 0435 namespace detail { 0436 0437 template<typename ExceptionType, typename ExceptionTranslator> 0438 class translator_holder : public translator_holder_base 0439 { 0440 public: 0441 explicit translator_holder( ExceptionTranslator const& tr, translator_holder_base_ptr& next, const_string tag = const_string() ) 0442 : translator_holder_base( next, tag ), m_translator( tr ) {} 0443 0444 // translator holder interface 0445 int operator()( boost::function<int ()> const& F ) BOOST_OVERRIDE 0446 { 0447 BOOST_TEST_I_TRY { 0448 return m_next ? (*m_next)( F ) : F(); 0449 } 0450 BOOST_TEST_I_CATCH( ExceptionType, e ) { 0451 m_translator( e ); 0452 return boost::exit_exception_failure; 0453 } 0454 } 0455 #ifndef BOOST_NO_RTTI 0456 translator_holder_base_ptr erase( translator_holder_base_ptr this_, std::type_info const& ti ) BOOST_OVERRIDE 0457 { 0458 return ti == typeid(ExceptionType) ? m_next : this_; 0459 } 0460 #endif 0461 0462 private: 0463 // Data members 0464 ExceptionTranslator m_translator; 0465 }; 0466 0467 } // namespace detail 0468 0469 template<typename ExceptionType, typename ExceptionTranslator> 0470 void 0471 execution_monitor::register_exception_translator( ExceptionTranslator const& tr, const_string tag, boost::type<ExceptionType>* ) 0472 { 0473 m_custom_translators.reset( 0474 new detail::translator_holder<ExceptionType,ExceptionTranslator>( tr, m_custom_translators, tag ) ); 0475 } 0476 0477 // ************************************************************************** // 0478 /// @class execution_aborted 0479 /// @brief This is a trivial default constructible class. Use it to report graceful abortion of a monitored function execution. 0480 // ************************************************************************** // 0481 0482 struct BOOST_SYMBOL_VISIBLE execution_aborted {}; 0483 0484 // ************************************************************************** // 0485 // ************** system_error ************** // 0486 // ************************************************************************** // 0487 0488 class system_error { 0489 public: 0490 // Constructor 0491 explicit system_error( char const* exp ); 0492 0493 long const p_errno; 0494 char const* const p_failed_exp; 0495 }; 0496 0497 //!@internal 0498 #define BOOST_TEST_SYS_ASSERT( cond ) BOOST_TEST_I_ASSRT( cond, ::boost::system_error( BOOST_STRINGIZE( exp ) ) ) 0499 0500 // ************************************************************************** // 0501 // **************Floating point exception management interface ************** // 0502 // ************************************************************************** // 0503 0504 namespace fpe { 0505 0506 enum masks { 0507 BOOST_FPE_OFF = 0, 0508 0509 #if defined(BOOST_TEST_FPE_SUPPORT_WITH_SEH__) /* *** */ 0510 BOOST_FPE_DIVBYZERO = EM_ZERODIVIDE, 0511 BOOST_FPE_INEXACT = EM_INEXACT, 0512 BOOST_FPE_INVALID = EM_INVALID, 0513 BOOST_FPE_OVERFLOW = EM_OVERFLOW, 0514 BOOST_FPE_UNDERFLOW = EM_UNDERFLOW|EM_DENORMAL, 0515 0516 BOOST_FPE_ALL = MCW_EM, 0517 0518 #elif !defined(BOOST_TEST_FPE_SUPPORT_WITH_GLIBC_EXTENSIONS__)/* *** */ 0519 BOOST_FPE_DIVBYZERO = BOOST_FPE_OFF, 0520 BOOST_FPE_INEXACT = BOOST_FPE_OFF, 0521 BOOST_FPE_INVALID = BOOST_FPE_OFF, 0522 BOOST_FPE_OVERFLOW = BOOST_FPE_OFF, 0523 BOOST_FPE_UNDERFLOW = BOOST_FPE_OFF, 0524 BOOST_FPE_ALL = BOOST_FPE_OFF, 0525 #else /* *** */ 0526 0527 #if defined(FE_DIVBYZERO) 0528 BOOST_FPE_DIVBYZERO = FE_DIVBYZERO, 0529 #else 0530 BOOST_FPE_DIVBYZERO = BOOST_FPE_OFF, 0531 #endif 0532 0533 #if defined(FE_INEXACT) 0534 BOOST_FPE_INEXACT = FE_INEXACT, 0535 #else 0536 BOOST_FPE_INEXACT = BOOST_FPE_OFF, 0537 #endif 0538 0539 #if defined(FE_INVALID) 0540 BOOST_FPE_INVALID = FE_INVALID, 0541 #else 0542 BOOST_FPE_INVALID = BOOST_FPE_OFF, 0543 #endif 0544 0545 #if defined(FE_OVERFLOW) 0546 BOOST_FPE_OVERFLOW = FE_OVERFLOW, 0547 #else 0548 BOOST_FPE_OVERFLOW = BOOST_FPE_OFF, 0549 #endif 0550 0551 #if defined(FE_UNDERFLOW) 0552 BOOST_FPE_UNDERFLOW = FE_UNDERFLOW, 0553 #else 0554 BOOST_FPE_UNDERFLOW = BOOST_FPE_OFF, 0555 #endif 0556 0557 #if defined(FE_ALL_EXCEPT) 0558 BOOST_FPE_ALL = FE_ALL_EXCEPT, 0559 #else 0560 BOOST_FPE_ALL = BOOST_FPE_OFF, 0561 #endif 0562 0563 #endif /* *** */ 0564 BOOST_FPE_INV = BOOST_FPE_ALL+1 0565 }; 0566 0567 //____________________________________________________________________________// 0568 0569 // return the previous set of enabled exceptions when successful, and BOOST_FPE_INV otherwise 0570 unsigned BOOST_TEST_DECL enable( unsigned mask ); 0571 unsigned BOOST_TEST_DECL disable( unsigned mask ); 0572 0573 //____________________________________________________________________________// 0574 0575 } // namespace fpe 0576 0577 ///@} 0578 0579 } // namespace boost 0580 0581 0582 #include <boost/test/detail/enable_warnings.hpp> 0583 0584 #endif
| [ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
|
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |
|