Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-12-16 09:40:54

0001 // Copyright 2017 The Abseil Authors.
0002 //
0003 // Licensed under the Apache License, Version 2.0 (the "License");
0004 // you may not use this file except in compliance with the License.
0005 // You may obtain a copy of the License at
0006 //
0007 //      https://www.apache.org/licenses/LICENSE-2.0
0008 //
0009 // Unless required by applicable law or agreed to in writing, software
0010 // distributed under the License is distributed on an "AS IS" BASIS,
0011 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
0012 // See the License for the specific language governing permissions and
0013 // limitations under the License.
0014 //
0015 // -----------------------------------------------------------------------------
0016 // File: memory.h
0017 // -----------------------------------------------------------------------------
0018 //
0019 // This header file contains utility functions for managing the creation and
0020 // conversion of smart pointers. This file is an extension to the C++
0021 // standard <memory> library header file.
0022 
0023 #ifndef ABSL_MEMORY_MEMORY_H_
0024 #define ABSL_MEMORY_MEMORY_H_
0025 
0026 #include <cstddef>
0027 #include <limits>
0028 #include <memory>
0029 #include <new>
0030 #include <type_traits>
0031 #include <utility>
0032 
0033 #include "absl/base/macros.h"
0034 #include "absl/meta/type_traits.h"
0035 
0036 namespace absl {
0037 ABSL_NAMESPACE_BEGIN
0038 
0039 // -----------------------------------------------------------------------------
0040 // Function Template: WrapUnique()
0041 // -----------------------------------------------------------------------------
0042 //
0043 // Adopts ownership from a raw pointer and transfers it to the returned
0044 // `std::unique_ptr`, whose type is deduced. Because of this deduction, *do not*
0045 // specify the template type `T` when calling `WrapUnique`.
0046 //
0047 // Example:
0048 //   X* NewX(int, int);
0049 //   auto x = WrapUnique(NewX(1, 2));  // 'x' is std::unique_ptr<X>.
0050 //
0051 // Do not call WrapUnique with an explicit type, as in
0052 // `WrapUnique<X>(NewX(1, 2))`.  The purpose of WrapUnique is to automatically
0053 // deduce the pointer type. If you wish to make the type explicit, just use
0054 // `std::unique_ptr` directly.
0055 //
0056 //   auto x = std::unique_ptr<X>(NewX(1, 2));
0057 //                  - or -
0058 //   std::unique_ptr<X> x(NewX(1, 2));
0059 //
0060 // While `absl::WrapUnique` is useful for capturing the output of a raw
0061 // pointer factory, prefer 'absl::make_unique<T>(args...)' over
0062 // 'absl::WrapUnique(new T(args...))'.
0063 //
0064 //   auto x = WrapUnique(new X(1, 2));  // works, but nonideal.
0065 //   auto x = make_unique<X>(1, 2);     // safer, standard, avoids raw 'new'.
0066 //
0067 // Note that `absl::WrapUnique(p)` is valid only if `delete p` is a valid
0068 // expression. In particular, `absl::WrapUnique()` cannot wrap pointers to
0069 // arrays, functions or void, and it must not be used to capture pointers
0070 // obtained from array-new expressions (even though that would compile!).
0071 template <typename T>
0072 std::unique_ptr<T> WrapUnique(T* ptr) {
0073   static_assert(!std::is_array<T>::value, "array types are unsupported");
0074   static_assert(std::is_object<T>::value, "non-object types are unsupported");
0075   return std::unique_ptr<T>(ptr);
0076 }
0077 
0078 // -----------------------------------------------------------------------------
0079 // Function Template: make_unique<T>()
0080 // -----------------------------------------------------------------------------
0081 //
0082 // Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries
0083 // during the construction process. `absl::make_unique<>` also avoids redundant
0084 // type declarations, by avoiding the need to explicitly use the `new` operator.
0085 //
0086 // https://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
0087 //
0088 // For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic,
0089 // see Herb Sutter's explanation on
0090 // (Exception-Safe Function Calls)[https://herbsutter.com/gotw/_102/].
0091 // (In general, reviewers should treat `new T(a,b)` with scrutiny.)
0092 //
0093 // Historical note: Abseil once provided a C++11 compatible implementation of
0094 // the C++14's `std::make_unique`. Now that C++11 support has been sunsetted,
0095 // `absl::make_unique` simply uses the STL-provided implementation. New code
0096 // should use `std::make_unique`.
0097 using std::make_unique;
0098 
0099 // -----------------------------------------------------------------------------
0100 // Function Template: RawPtr()
0101 // -----------------------------------------------------------------------------
0102 //
0103 // Extracts the raw pointer from a pointer-like value `ptr`. `absl::RawPtr` is
0104 // useful within templates that need to handle a complement of raw pointers,
0105 // `std::nullptr_t`, and smart pointers.
0106 template <typename T>
0107 auto RawPtr(T&& ptr) -> decltype(std::addressof(*ptr)) {
0108   // ptr is a forwarding reference to support Ts with non-const operators.
0109   return (ptr != nullptr) ? std::addressof(*ptr) : nullptr;
0110 }
0111 inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; }
0112 
0113 // -----------------------------------------------------------------------------
0114 // Function Template: ShareUniquePtr()
0115 // -----------------------------------------------------------------------------
0116 //
0117 // Adopts a `std::unique_ptr` rvalue and returns a `std::shared_ptr` of deduced
0118 // type. Ownership (if any) of the held value is transferred to the returned
0119 // shared pointer.
0120 //
0121 // Example:
0122 //
0123 //     auto up = absl::make_unique<int>(10);
0124 //     auto sp = absl::ShareUniquePtr(std::move(up));  // shared_ptr<int>
0125 //     CHECK_EQ(*sp, 10);
0126 //     CHECK(up == nullptr);
0127 //
0128 // Note that this conversion is correct even when T is an array type, and more
0129 // generally it works for *any* deleter of the `unique_ptr` (single-object
0130 // deleter, array deleter, or any custom deleter), since the deleter is adopted
0131 // by the shared pointer as well. The deleter is copied (unless it is a
0132 // reference).
0133 //
0134 // Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a
0135 // null shared pointer does not attempt to call the deleter.
0136 template <typename T, typename D>
0137 std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) {
0138   return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>();
0139 }
0140 
0141 // -----------------------------------------------------------------------------
0142 // Function Template: WeakenPtr()
0143 // -----------------------------------------------------------------------------
0144 //
0145 // Creates a weak pointer associated with a given shared pointer. The returned
0146 // value is a `std::weak_ptr` of deduced type.
0147 //
0148 // Example:
0149 //
0150 //    auto sp = std::make_shared<int>(10);
0151 //    auto wp = absl::WeakenPtr(sp);
0152 //    CHECK_EQ(sp.get(), wp.lock().get());
0153 //    sp.reset();
0154 //    CHECK(wp.lock() == nullptr);
0155 //
0156 template <typename T>
0157 std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) {
0158   return std::weak_ptr<T>(ptr);
0159 }
0160 
0161 // -----------------------------------------------------------------------------
0162 // Class Template: pointer_traits
0163 // -----------------------------------------------------------------------------
0164 //
0165 // Historical note: Abseil once provided an implementation of
0166 // `std::pointer_traits` for platforms that had not yet provided it. Those
0167 // platforms are no longer supported. New code should simply use
0168 // `std::pointer_traits`.
0169 using std::pointer_traits;
0170 
0171 // -----------------------------------------------------------------------------
0172 // Class Template: allocator_traits
0173 // -----------------------------------------------------------------------------
0174 //
0175 // Historical note: Abseil once provided an implementation of
0176 // `std::allocator_traits` for platforms that had not yet provided it. Those
0177 // platforms are no longer supported. New code should simply use
0178 // `std::allocator_traits`.
0179 using std::allocator_traits;
0180 
0181 namespace memory_internal {
0182 
0183 // ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D.
0184 template <template <typename> class Extract, typename Obj, typename Default,
0185           typename>
0186 struct ExtractOr {
0187   using type = Default;
0188 };
0189 
0190 template <template <typename> class Extract, typename Obj, typename Default>
0191 struct ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>> {
0192   using type = Extract<Obj>;
0193 };
0194 
0195 template <template <typename> class Extract, typename Obj, typename Default>
0196 using ExtractOrT = typename ExtractOr<Extract, Obj, Default, void>::type;
0197 
0198 // This template alias transforms Alloc::is_nothrow into a metafunction with
0199 // Alloc as a parameter so it can be used with ExtractOrT<>.
0200 template <typename Alloc>
0201 using GetIsNothrow = typename Alloc::is_nothrow;
0202 
0203 }  // namespace memory_internal
0204 
0205 // ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to
0206 // specify whether the default allocation function can throw or never throws.
0207 // If the allocation function never throws, user should define it to a non-zero
0208 // value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`).
0209 // If the allocation function can throw, user should leave it undefined or
0210 // define it to zero.
0211 //
0212 // allocator_is_nothrow<Alloc> is a traits class that derives from
0213 // Alloc::is_nothrow if present, otherwise std::false_type. It's specialized
0214 // for Alloc = std::allocator<T> for any type T according to the state of
0215 // ABSL_ALLOCATOR_NOTHROW.
0216 //
0217 // default_allocator_is_nothrow is a class that derives from std::true_type
0218 // when the default allocator (global operator new) never throws, and
0219 // std::false_type when it can throw. It is a convenience shorthand for writing
0220 // allocator_is_nothrow<std::allocator<T>> (T can be any type).
0221 // NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from
0222 // the same type for all T, because users should specialize neither
0223 // allocator_is_nothrow nor std::allocator.
0224 template <typename Alloc>
0225 struct allocator_is_nothrow
0226     : memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc,
0227                                   std::false_type> {};
0228 
0229 #if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW
0230 template <typename T>
0231 struct allocator_is_nothrow<std::allocator<T>> : std::true_type {};
0232 struct default_allocator_is_nothrow : std::true_type {};
0233 #else
0234 struct default_allocator_is_nothrow : std::false_type {};
0235 #endif
0236 
0237 namespace memory_internal {
0238 template <typename Allocator, typename Iterator, typename... Args>
0239 void ConstructRange(Allocator& alloc, Iterator first, Iterator last,
0240                     const Args&... args) {
0241   for (Iterator cur = first; cur != last; ++cur) {
0242     ABSL_INTERNAL_TRY {
0243       std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),
0244                                                   args...);
0245     }
0246     ABSL_INTERNAL_CATCH_ANY {
0247       while (cur != first) {
0248         --cur;
0249         std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));
0250       }
0251       ABSL_INTERNAL_RETHROW;
0252     }
0253   }
0254 }
0255 
0256 template <typename Allocator, typename Iterator, typename InputIterator>
0257 void CopyRange(Allocator& alloc, Iterator destination, InputIterator first,
0258                InputIterator last) {
0259   for (Iterator cur = destination; first != last;
0260        static_cast<void>(++cur), static_cast<void>(++first)) {
0261     ABSL_INTERNAL_TRY {
0262       std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),
0263                                                   *first);
0264     }
0265     ABSL_INTERNAL_CATCH_ANY {
0266       while (cur != destination) {
0267         --cur;
0268         std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));
0269       }
0270       ABSL_INTERNAL_RETHROW;
0271     }
0272   }
0273 }
0274 }  // namespace memory_internal
0275 ABSL_NAMESPACE_END
0276 }  // namespace absl
0277 
0278 #endif  // ABSL_MEMORY_MEMORY_H_