Warning, /include/absl/debugging/symbolize_elf.inc is written in an unsupported language. File is not indexed.
0001 // Copyright 2018 The Abseil Authors.
0002 //
0003 // Licensed under the Apache License, Version 2.0 (the "License");
0004 // you may not use this file except in compliance with the License.
0005 // You may obtain a copy of the License at
0006 //
0007 // https://www.apache.org/licenses/LICENSE-2.0
0008 //
0009 // Unless required by applicable law or agreed to in writing, software
0010 // distributed under the License is distributed on an "AS IS" BASIS,
0011 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
0012 // See the License for the specific language governing permissions and
0013 // limitations under the License.
0014
0015 // This library provides Symbolize() function that symbolizes program
0016 // counters to their corresponding symbol names on linux platforms.
0017 // This library has a minimal implementation of an ELF symbol table
0018 // reader (i.e. it doesn't depend on libelf, etc.).
0019 //
0020 // The algorithm used in Symbolize() is as follows.
0021 //
0022 // 1. Go through a list of maps in /proc/self/maps and find the map
0023 // containing the program counter.
0024 //
0025 // 2. Open the mapped file and find a regular symbol table inside.
0026 // Iterate over symbols in the symbol table and look for the symbol
0027 // containing the program counter. If such a symbol is found,
0028 // obtain the symbol name, and demangle the symbol if possible.
0029 // If the symbol isn't found in the regular symbol table (binary is
0030 // stripped), try the same thing with a dynamic symbol table.
0031 //
0032 // Note that Symbolize() is originally implemented to be used in
0033 // signal handlers, hence it doesn't use malloc() and other unsafe
0034 // operations. It should be both thread-safe and async-signal-safe.
0035 //
0036 // Implementation note:
0037 //
0038 // We don't use heaps but only use stacks. We want to reduce the
0039 // stack consumption so that the symbolizer can run on small stacks.
0040 //
0041 // Here are some numbers collected with GCC 4.1.0 on x86:
0042 // - sizeof(Elf32_Sym) = 16
0043 // - sizeof(Elf32_Shdr) = 40
0044 // - sizeof(Elf64_Sym) = 24
0045 // - sizeof(Elf64_Shdr) = 64
0046 //
0047 // This implementation is intended to be async-signal-safe but uses some
0048 // functions which are not guaranteed to be so, such as memchr() and
0049 // memmove(). We assume they are async-signal-safe.
0050
0051 #include <dlfcn.h>
0052 #include <elf.h>
0053 #include <fcntl.h>
0054 #include <link.h> // For ElfW() macro.
0055 #include <sys/stat.h>
0056 #include <sys/types.h>
0057 #include <unistd.h>
0058
0059 #include <algorithm>
0060 #include <array>
0061 #include <atomic>
0062 #include <cerrno>
0063 #include <cinttypes>
0064 #include <climits>
0065 #include <cstdint>
0066 #include <cstdio>
0067 #include <cstdlib>
0068 #include <cstring>
0069
0070 #include "absl/base/casts.h"
0071 #include "absl/base/dynamic_annotations.h"
0072 #include "absl/base/internal/low_level_alloc.h"
0073 #include "absl/base/internal/raw_logging.h"
0074 #include "absl/base/internal/spinlock.h"
0075 #include "absl/base/port.h"
0076 #include "absl/debugging/internal/demangle.h"
0077 #include "absl/debugging/internal/vdso_support.h"
0078 #include "absl/strings/string_view.h"
0079
0080 #if defined(__FreeBSD__) && !defined(ElfW)
0081 #define ElfW(x) __ElfN(x)
0082 #endif
0083
0084 namespace absl {
0085 ABSL_NAMESPACE_BEGIN
0086
0087 // Value of argv[0]. Used by MaybeInitializeObjFile().
0088 static char *argv0_value = nullptr;
0089
0090 void InitializeSymbolizer(const char *argv0) {
0091 #ifdef ABSL_HAVE_VDSO_SUPPORT
0092 // We need to make sure VDSOSupport::Init() is called before any setuid or
0093 // chroot calls, so InitializeSymbolizer() should be called very early in the
0094 // life of a program.
0095 absl::debugging_internal::VDSOSupport::Init();
0096 #endif
0097 if (argv0_value != nullptr) {
0098 free(argv0_value);
0099 argv0_value = nullptr;
0100 }
0101 if (argv0 != nullptr && argv0[0] != '\0') {
0102 argv0_value = strdup(argv0);
0103 }
0104 }
0105
0106 namespace debugging_internal {
0107 namespace {
0108
0109 // Re-runs fn until it doesn't cause EINTR.
0110 #define NO_INTR(fn) \
0111 do { \
0112 } while ((fn) < 0 && errno == EINTR)
0113
0114 // On Linux, ELF_ST_* are defined in <linux/elf.h>. To make this portable
0115 // we define our own ELF_ST_BIND and ELF_ST_TYPE if not available.
0116 #ifndef ELF_ST_BIND
0117 #define ELF_ST_BIND(info) (((unsigned char)(info)) >> 4)
0118 #endif
0119
0120 #ifndef ELF_ST_TYPE
0121 #define ELF_ST_TYPE(info) (((unsigned char)(info)) & 0xF)
0122 #endif
0123
0124 // Some platforms use a special .opd section to store function pointers.
0125 const char kOpdSectionName[] = ".opd";
0126
0127 #if (defined(__powerpc__) && !(_CALL_ELF > 1)) || defined(__ia64)
0128 // Use opd section for function descriptors on these platforms, the function
0129 // address is the first word of the descriptor.
0130 enum { kPlatformUsesOPDSections = 1 };
0131 #else // not PPC or IA64
0132 enum { kPlatformUsesOPDSections = 0 };
0133 #endif
0134
0135 // This works for PowerPC & IA64 only. A function descriptor consist of two
0136 // pointers and the first one is the function's entry.
0137 const size_t kFunctionDescriptorSize = sizeof(void *) * 2;
0138
0139 const int kMaxDecorators = 10; // Seems like a reasonable upper limit.
0140
0141 struct InstalledSymbolDecorator {
0142 SymbolDecorator fn;
0143 void *arg;
0144 int ticket;
0145 };
0146
0147 int g_num_decorators;
0148 InstalledSymbolDecorator g_decorators[kMaxDecorators];
0149
0150 struct FileMappingHint {
0151 const void *start;
0152 const void *end;
0153 uint64_t offset;
0154 const char *filename;
0155 };
0156
0157 // Protects g_decorators.
0158 // We are using SpinLock and not a Mutex here, because we may be called
0159 // from inside Mutex::Lock itself, and it prohibits recursive calls.
0160 // This happens in e.g. base/stacktrace_syscall_unittest.
0161 // Moreover, we are using only TryLock(), if the decorator list
0162 // is being modified (is busy), we skip all decorators, and possibly
0163 // loose some info. Sorry, that's the best we could do.
0164 ABSL_CONST_INIT absl::base_internal::SpinLock g_decorators_mu(
0165 absl::kConstInit, absl::base_internal::SCHEDULE_KERNEL_ONLY);
0166
0167 const int kMaxFileMappingHints = 8;
0168 int g_num_file_mapping_hints;
0169 FileMappingHint g_file_mapping_hints[kMaxFileMappingHints];
0170 // Protects g_file_mapping_hints.
0171 ABSL_CONST_INIT absl::base_internal::SpinLock g_file_mapping_mu(
0172 absl::kConstInit, absl::base_internal::SCHEDULE_KERNEL_ONLY);
0173
0174 // Async-signal-safe function to zero a buffer.
0175 // memset() is not guaranteed to be async-signal-safe.
0176 static void SafeMemZero(void* p, size_t size) {
0177 unsigned char *c = static_cast<unsigned char *>(p);
0178 while (size--) {
0179 *c++ = 0;
0180 }
0181 }
0182
0183 struct ObjFile {
0184 ObjFile()
0185 : filename(nullptr),
0186 start_addr(nullptr),
0187 end_addr(nullptr),
0188 offset(0),
0189 fd(-1),
0190 elf_type(-1) {
0191 SafeMemZero(&elf_header, sizeof(elf_header));
0192 SafeMemZero(&phdr[0], sizeof(phdr));
0193 }
0194
0195 char *filename;
0196 const void *start_addr;
0197 const void *end_addr;
0198 uint64_t offset;
0199
0200 // The following fields are initialized on the first access to the
0201 // object file.
0202 int fd;
0203 int elf_type;
0204 ElfW(Ehdr) elf_header;
0205
0206 // PT_LOAD program header describing executable code.
0207 // Normally we expect just one, but SWIFT binaries have two.
0208 // CUDA binaries have 3 (see cr/473913254 description).
0209 std::array<ElfW(Phdr), 4> phdr;
0210 };
0211
0212 // Build 4-way associative cache for symbols. Within each cache line, symbols
0213 // are replaced in LRU order.
0214 enum {
0215 ASSOCIATIVITY = 4,
0216 };
0217 struct SymbolCacheLine {
0218 const void *pc[ASSOCIATIVITY];
0219 char *name[ASSOCIATIVITY];
0220
0221 // age[i] is incremented when a line is accessed. it's reset to zero if the
0222 // i'th entry is read.
0223 uint32_t age[ASSOCIATIVITY];
0224 };
0225
0226 // ---------------------------------------------------------------
0227 // An async-signal-safe arena for LowLevelAlloc
0228 static std::atomic<base_internal::LowLevelAlloc::Arena *> g_sig_safe_arena;
0229
0230 static base_internal::LowLevelAlloc::Arena *SigSafeArena() {
0231 return g_sig_safe_arena.load(std::memory_order_acquire);
0232 }
0233
0234 static void InitSigSafeArena() {
0235 if (SigSafeArena() == nullptr) {
0236 base_internal::LowLevelAlloc::Arena *new_arena =
0237 base_internal::LowLevelAlloc::NewArena(
0238 base_internal::LowLevelAlloc::kAsyncSignalSafe);
0239 base_internal::LowLevelAlloc::Arena *old_value = nullptr;
0240 if (!g_sig_safe_arena.compare_exchange_strong(old_value, new_arena,
0241 std::memory_order_release,
0242 std::memory_order_relaxed)) {
0243 // We lost a race to allocate an arena; deallocate.
0244 base_internal::LowLevelAlloc::DeleteArena(new_arena);
0245 }
0246 }
0247 }
0248
0249 // ---------------------------------------------------------------
0250 // An AddrMap is a vector of ObjFile, using SigSafeArena() for allocation.
0251
0252 class AddrMap {
0253 public:
0254 AddrMap() : size_(0), allocated_(0), obj_(nullptr) {}
0255 ~AddrMap() { base_internal::LowLevelAlloc::Free(obj_); }
0256 size_t Size() const { return size_; }
0257 ObjFile *At(size_t i) { return &obj_[i]; }
0258 ObjFile *Add();
0259 void Clear();
0260
0261 private:
0262 size_t size_; // count of valid elements (<= allocated_)
0263 size_t allocated_; // count of allocated elements
0264 ObjFile *obj_; // array of allocated_ elements
0265 AddrMap(const AddrMap &) = delete;
0266 AddrMap &operator=(const AddrMap &) = delete;
0267 };
0268
0269 void AddrMap::Clear() {
0270 for (size_t i = 0; i != size_; i++) {
0271 At(i)->~ObjFile();
0272 }
0273 size_ = 0;
0274 }
0275
0276 ObjFile *AddrMap::Add() {
0277 if (size_ == allocated_) {
0278 size_t new_allocated = allocated_ * 2 + 50;
0279 ObjFile *new_obj_ =
0280 static_cast<ObjFile *>(base_internal::LowLevelAlloc::AllocWithArena(
0281 new_allocated * sizeof(*new_obj_), SigSafeArena()));
0282 if (obj_) {
0283 memcpy(new_obj_, obj_, allocated_ * sizeof(*new_obj_));
0284 base_internal::LowLevelAlloc::Free(obj_);
0285 }
0286 obj_ = new_obj_;
0287 allocated_ = new_allocated;
0288 }
0289 return new (&obj_[size_++]) ObjFile;
0290 }
0291
0292 class CachingFile {
0293 public:
0294 // Setup reader for fd that uses buf[0, buf_size-1] as a cache.
0295 CachingFile(int fd, char *buf, size_t buf_size)
0296 : fd_(fd),
0297 cache_(buf),
0298 cache_size_(buf_size),
0299 cache_start_(0),
0300 cache_limit_(0) {}
0301
0302 int fd() const { return fd_; }
0303 ssize_t ReadFromOffset(void *buf, size_t count, off_t offset);
0304 bool ReadFromOffsetExact(void *buf, size_t count, off_t offset);
0305
0306 private:
0307 // Bytes [cache_start_, cache_limit_-1] from fd_ are stored in
0308 // a prefix of cache_[0, cache_size_-1].
0309 int fd_;
0310 char *cache_;
0311 size_t cache_size_;
0312 off_t cache_start_;
0313 off_t cache_limit_;
0314 };
0315
0316 // ---------------------------------------------------------------
0317
0318 enum FindSymbolResult { SYMBOL_NOT_FOUND = 1, SYMBOL_TRUNCATED, SYMBOL_FOUND };
0319
0320 class Symbolizer {
0321 public:
0322 Symbolizer();
0323 ~Symbolizer();
0324 const char *GetSymbol(const void *const pc);
0325
0326 private:
0327 char *CopyString(const char *s) {
0328 size_t len = strlen(s);
0329 char *dst = static_cast<char *>(
0330 base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena()));
0331 ABSL_RAW_CHECK(dst != nullptr, "out of memory");
0332 memcpy(dst, s, len + 1);
0333 return dst;
0334 }
0335 ObjFile *FindObjFile(const void *const start,
0336 size_t size) ABSL_ATTRIBUTE_NOINLINE;
0337 static bool RegisterObjFile(const char *filename,
0338 const void *const start_addr,
0339 const void *const end_addr, uint64_t offset,
0340 void *arg);
0341 SymbolCacheLine *GetCacheLine(const void *const pc);
0342 const char *FindSymbolInCache(const void *const pc);
0343 const char *InsertSymbolInCache(const void *const pc, const char *name);
0344 void AgeSymbols(SymbolCacheLine *line);
0345 void ClearAddrMap();
0346 FindSymbolResult GetSymbolFromObjectFile(const ObjFile &obj,
0347 const void *const pc,
0348 const ptrdiff_t relocation,
0349 char *out, size_t out_size,
0350 char *tmp_buf, size_t tmp_buf_size);
0351 const char *GetUncachedSymbol(const void *pc);
0352
0353 enum {
0354 SYMBOL_BUF_SIZE = 3072,
0355 TMP_BUF_SIZE = 1024,
0356 SYMBOL_CACHE_LINES = 128,
0357 FILE_CACHE_SIZE = 8192,
0358 };
0359
0360 AddrMap addr_map_;
0361
0362 bool ok_;
0363 bool addr_map_read_;
0364
0365 char symbol_buf_[SYMBOL_BUF_SIZE];
0366 char file_cache_[FILE_CACHE_SIZE];
0367
0368 // tmp_buf_ will be used to store arrays of ElfW(Shdr) and ElfW(Sym)
0369 // so we ensure that tmp_buf_ is properly aligned to store either.
0370 alignas(16) char tmp_buf_[TMP_BUF_SIZE];
0371 static_assert(alignof(ElfW(Shdr)) <= 16,
0372 "alignment of tmp buf too small for Shdr");
0373 static_assert(alignof(ElfW(Sym)) <= 16,
0374 "alignment of tmp buf too small for Sym");
0375
0376 SymbolCacheLine symbol_cache_[SYMBOL_CACHE_LINES];
0377 };
0378
0379 static std::atomic<Symbolizer *> g_cached_symbolizer;
0380
0381 } // namespace
0382
0383 static size_t SymbolizerSize() {
0384 #if defined(__wasm__) || defined(__asmjs__)
0385 auto pagesize = static_cast<size_t>(getpagesize());
0386 #else
0387 auto pagesize = static_cast<size_t>(sysconf(_SC_PAGESIZE));
0388 #endif
0389 return ((sizeof(Symbolizer) - 1) / pagesize + 1) * pagesize;
0390 }
0391
0392 // Return (and set null) g_cached_symbolized_state if it is not null.
0393 // Otherwise return a new symbolizer.
0394 static Symbolizer *AllocateSymbolizer() {
0395 InitSigSafeArena();
0396 Symbolizer *symbolizer =
0397 g_cached_symbolizer.exchange(nullptr, std::memory_order_acquire);
0398 if (symbolizer != nullptr) {
0399 return symbolizer;
0400 }
0401 return new (base_internal::LowLevelAlloc::AllocWithArena(
0402 SymbolizerSize(), SigSafeArena())) Symbolizer();
0403 }
0404
0405 // Set g_cached_symbolize_state to s if it is null, otherwise
0406 // delete s.
0407 static void FreeSymbolizer(Symbolizer *s) {
0408 Symbolizer *old_cached_symbolizer = nullptr;
0409 if (!g_cached_symbolizer.compare_exchange_strong(old_cached_symbolizer, s,
0410 std::memory_order_release,
0411 std::memory_order_relaxed)) {
0412 s->~Symbolizer();
0413 base_internal::LowLevelAlloc::Free(s);
0414 }
0415 }
0416
0417 Symbolizer::Symbolizer() : ok_(true), addr_map_read_(false) {
0418 for (SymbolCacheLine &symbol_cache_line : symbol_cache_) {
0419 for (size_t j = 0; j < ABSL_ARRAYSIZE(symbol_cache_line.name); ++j) {
0420 symbol_cache_line.pc[j] = nullptr;
0421 symbol_cache_line.name[j] = nullptr;
0422 symbol_cache_line.age[j] = 0;
0423 }
0424 }
0425 }
0426
0427 Symbolizer::~Symbolizer() {
0428 for (SymbolCacheLine &symbol_cache_line : symbol_cache_) {
0429 for (char *s : symbol_cache_line.name) {
0430 base_internal::LowLevelAlloc::Free(s);
0431 }
0432 }
0433 ClearAddrMap();
0434 }
0435
0436 // We don't use assert() since it's not guaranteed to be
0437 // async-signal-safe. Instead we define a minimal assertion
0438 // macro. So far, we don't need pretty printing for __FILE__, etc.
0439 #define SAFE_ASSERT(expr) ((expr) ? static_cast<void>(0) : abort())
0440
0441 // Read up to "count" bytes from file descriptor "fd" into the buffer
0442 // starting at "buf" while handling short reads and EINTR. On
0443 // success, return the number of bytes read. Otherwise, return -1.
0444 static ssize_t ReadPersistent(int fd, void *buf, size_t count) {
0445 SAFE_ASSERT(fd >= 0);
0446 SAFE_ASSERT(count <= SSIZE_MAX);
0447 char *buf0 = reinterpret_cast<char *>(buf);
0448 size_t num_bytes = 0;
0449 while (num_bytes < count) {
0450 ssize_t len;
0451 NO_INTR(len = read(fd, buf0 + num_bytes, count - num_bytes));
0452 if (len < 0) { // There was an error other than EINTR.
0453 ABSL_RAW_LOG(WARNING, "read failed: errno=%d", errno);
0454 return -1;
0455 }
0456 if (len == 0) { // Reached EOF.
0457 break;
0458 }
0459 num_bytes += static_cast<size_t>(len);
0460 }
0461 SAFE_ASSERT(num_bytes <= count);
0462 return static_cast<ssize_t>(num_bytes);
0463 }
0464
0465 // Read up to "count" bytes from "offset" into the buffer starting at "buf",
0466 // while handling short reads and EINTR. On success, return the number of bytes
0467 // read. Otherwise, return -1.
0468 ssize_t CachingFile::ReadFromOffset(void *buf, size_t count, off_t offset) {
0469 char *dst = static_cast<char *>(buf);
0470 size_t read = 0;
0471 while (read < count) {
0472 // Look in cache first.
0473 if (offset >= cache_start_ && offset < cache_limit_) {
0474 const char *hit_start = &cache_[offset - cache_start_];
0475 const size_t n =
0476 std::min(count - read, static_cast<size_t>(cache_limit_ - offset));
0477 memcpy(dst, hit_start, n);
0478 dst += n;
0479 read += static_cast<size_t>(n);
0480 offset += static_cast<off_t>(n);
0481 continue;
0482 }
0483
0484 cache_start_ = 0;
0485 cache_limit_ = 0;
0486 ssize_t n = pread(fd_, cache_, cache_size_, offset);
0487 if (n < 0) {
0488 if (errno == EINTR) {
0489 continue;
0490 }
0491 ABSL_RAW_LOG(WARNING, "read failed: errno=%d", errno);
0492 return -1;
0493 }
0494 if (n == 0) { // Reached EOF.
0495 break;
0496 }
0497
0498 cache_start_ = offset;
0499 cache_limit_ = offset + static_cast<off_t>(n);
0500 // Next iteration will copy from cache into dst.
0501 }
0502 return static_cast<ssize_t>(read);
0503 }
0504
0505 // Try reading exactly "count" bytes from "offset" bytes into the buffer
0506 // starting at "buf" while handling short reads and EINTR. On success, return
0507 // true. Otherwise, return false.
0508 bool CachingFile::ReadFromOffsetExact(void *buf, size_t count, off_t offset) {
0509 ssize_t len = ReadFromOffset(buf, count, offset);
0510 return len >= 0 && static_cast<size_t>(len) == count;
0511 }
0512
0513 // Returns elf_header.e_type if the file pointed by fd is an ELF binary.
0514 static int FileGetElfType(CachingFile *file) {
0515 ElfW(Ehdr) elf_header;
0516 if (!file->ReadFromOffsetExact(&elf_header, sizeof(elf_header), 0)) {
0517 return -1;
0518 }
0519 if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) {
0520 return -1;
0521 }
0522 return elf_header.e_type;
0523 }
0524
0525 // Read the section headers in the given ELF binary, and if a section
0526 // of the specified type is found, set the output to this section header
0527 // and return true. Otherwise, return false.
0528 // To keep stack consumption low, we would like this function to not get
0529 // inlined.
0530 static ABSL_ATTRIBUTE_NOINLINE bool GetSectionHeaderByType(
0531 CachingFile *file, ElfW(Half) sh_num, const off_t sh_offset,
0532 ElfW(Word) type, ElfW(Shdr) * out, char *tmp_buf, size_t tmp_buf_size) {
0533 ElfW(Shdr) *buf = reinterpret_cast<ElfW(Shdr) *>(tmp_buf);
0534 const size_t buf_entries = tmp_buf_size / sizeof(buf[0]);
0535 const size_t buf_bytes = buf_entries * sizeof(buf[0]);
0536
0537 for (size_t i = 0; static_cast<int>(i) < sh_num;) {
0538 const size_t num_bytes_left =
0539 (static_cast<size_t>(sh_num) - i) * sizeof(buf[0]);
0540 const size_t num_bytes_to_read =
0541 (buf_bytes > num_bytes_left) ? num_bytes_left : buf_bytes;
0542 const off_t offset = sh_offset + static_cast<off_t>(i * sizeof(buf[0]));
0543 const ssize_t len = file->ReadFromOffset(buf, num_bytes_to_read, offset);
0544 if (len < 0) {
0545 ABSL_RAW_LOG(
0546 WARNING,
0547 "Reading %zu bytes from offset %ju returned %zd which is negative.",
0548 num_bytes_to_read, static_cast<intmax_t>(offset), len);
0549 return false;
0550 }
0551 if (static_cast<size_t>(len) % sizeof(buf[0]) != 0) {
0552 ABSL_RAW_LOG(
0553 WARNING,
0554 "Reading %zu bytes from offset %jd returned %zd which is not a "
0555 "multiple of %zu.",
0556 num_bytes_to_read, static_cast<intmax_t>(offset), len,
0557 sizeof(buf[0]));
0558 return false;
0559 }
0560 const size_t num_headers_in_buf = static_cast<size_t>(len) / sizeof(buf[0]);
0561 SAFE_ASSERT(num_headers_in_buf <= buf_entries);
0562 for (size_t j = 0; j < num_headers_in_buf; ++j) {
0563 if (buf[j].sh_type == type) {
0564 *out = buf[j];
0565 return true;
0566 }
0567 }
0568 i += num_headers_in_buf;
0569 }
0570 return false;
0571 }
0572
0573 // There is no particular reason to limit section name to 63 characters,
0574 // but there has (as yet) been no need for anything longer either.
0575 const int kMaxSectionNameLen = 64;
0576
0577 // Small cache to use for miscellaneous file reads.
0578 const int kSmallFileCacheSize = 100;
0579
0580 bool ForEachSection(int fd,
0581 const std::function<bool(absl::string_view name,
0582 const ElfW(Shdr) &)> &callback) {
0583 char buf[kSmallFileCacheSize];
0584 CachingFile file(fd, buf, sizeof(buf));
0585
0586 ElfW(Ehdr) elf_header;
0587 if (!file.ReadFromOffsetExact(&elf_header, sizeof(elf_header), 0)) {
0588 return false;
0589 }
0590
0591 // Technically it can be larger, but in practice this never happens.
0592 if (elf_header.e_shentsize != sizeof(ElfW(Shdr))) {
0593 return false;
0594 }
0595
0596 ElfW(Shdr) shstrtab;
0597 off_t shstrtab_offset = static_cast<off_t>(elf_header.e_shoff) +
0598 elf_header.e_shentsize * elf_header.e_shstrndx;
0599 if (!file.ReadFromOffsetExact(&shstrtab, sizeof(shstrtab), shstrtab_offset)) {
0600 return false;
0601 }
0602
0603 for (int i = 0; i < elf_header.e_shnum; ++i) {
0604 ElfW(Shdr) out;
0605 off_t section_header_offset =
0606 static_cast<off_t>(elf_header.e_shoff) + elf_header.e_shentsize * i;
0607 if (!file.ReadFromOffsetExact(&out, sizeof(out), section_header_offset)) {
0608 return false;
0609 }
0610 off_t name_offset = static_cast<off_t>(shstrtab.sh_offset) + out.sh_name;
0611 char header_name[kMaxSectionNameLen];
0612 ssize_t n_read =
0613 file.ReadFromOffset(&header_name, kMaxSectionNameLen, name_offset);
0614 if (n_read < 0) {
0615 return false;
0616 } else if (n_read > kMaxSectionNameLen) {
0617 // Long read?
0618 return false;
0619 }
0620
0621 absl::string_view name(header_name,
0622 strnlen(header_name, static_cast<size_t>(n_read)));
0623 if (!callback(name, out)) {
0624 break;
0625 }
0626 }
0627 return true;
0628 }
0629
0630 // name_len should include terminating '\0'.
0631 bool GetSectionHeaderByName(int fd, const char *name, size_t name_len,
0632 ElfW(Shdr) * out) {
0633 char header_name[kMaxSectionNameLen];
0634 if (sizeof(header_name) < name_len) {
0635 ABSL_RAW_LOG(WARNING,
0636 "Section name '%s' is too long (%zu); "
0637 "section will not be found (even if present).",
0638 name, name_len);
0639 // No point in even trying.
0640 return false;
0641 }
0642
0643 char buf[kSmallFileCacheSize];
0644 CachingFile file(fd, buf, sizeof(buf));
0645 ElfW(Ehdr) elf_header;
0646 if (!file.ReadFromOffsetExact(&elf_header, sizeof(elf_header), 0)) {
0647 return false;
0648 }
0649
0650 // Technically it can be larger, but in practice this never happens.
0651 if (elf_header.e_shentsize != sizeof(ElfW(Shdr))) {
0652 return false;
0653 }
0654
0655 ElfW(Shdr) shstrtab;
0656 off_t shstrtab_offset = static_cast<off_t>(elf_header.e_shoff) +
0657 elf_header.e_shentsize * elf_header.e_shstrndx;
0658 if (!file.ReadFromOffsetExact(&shstrtab, sizeof(shstrtab), shstrtab_offset)) {
0659 return false;
0660 }
0661
0662 for (int i = 0; i < elf_header.e_shnum; ++i) {
0663 off_t section_header_offset =
0664 static_cast<off_t>(elf_header.e_shoff) + elf_header.e_shentsize * i;
0665 if (!file.ReadFromOffsetExact(out, sizeof(*out), section_header_offset)) {
0666 return false;
0667 }
0668 off_t name_offset = static_cast<off_t>(shstrtab.sh_offset) + out->sh_name;
0669 ssize_t n_read = file.ReadFromOffset(&header_name, name_len, name_offset);
0670 if (n_read < 0) {
0671 return false;
0672 } else if (static_cast<size_t>(n_read) != name_len) {
0673 // Short read -- name could be at end of file.
0674 continue;
0675 }
0676 if (memcmp(header_name, name, name_len) == 0) {
0677 return true;
0678 }
0679 }
0680 return false;
0681 }
0682
0683 // Compare symbols at in the same address.
0684 // Return true if we should pick symbol1.
0685 static bool ShouldPickFirstSymbol(const ElfW(Sym) & symbol1,
0686 const ElfW(Sym) & symbol2) {
0687 // If one of the symbols is weak and the other is not, pick the one
0688 // this is not a weak symbol.
0689 char bind1 = ELF_ST_BIND(symbol1.st_info);
0690 char bind2 = ELF_ST_BIND(symbol1.st_info);
0691 if (bind1 == STB_WEAK && bind2 != STB_WEAK) return false;
0692 if (bind2 == STB_WEAK && bind1 != STB_WEAK) return true;
0693
0694 // If one of the symbols has zero size and the other is not, pick the
0695 // one that has non-zero size.
0696 if (symbol1.st_size != 0 && symbol2.st_size == 0) {
0697 return true;
0698 }
0699 if (symbol1.st_size == 0 && symbol2.st_size != 0) {
0700 return false;
0701 }
0702
0703 // If one of the symbols has no type and the other is not, pick the
0704 // one that has a type.
0705 char type1 = ELF_ST_TYPE(symbol1.st_info);
0706 char type2 = ELF_ST_TYPE(symbol1.st_info);
0707 if (type1 != STT_NOTYPE && type2 == STT_NOTYPE) {
0708 return true;
0709 }
0710 if (type1 == STT_NOTYPE && type2 != STT_NOTYPE) {
0711 return false;
0712 }
0713
0714 // Pick the first one, if we still cannot decide.
0715 return true;
0716 }
0717
0718 // Return true if an address is inside a section.
0719 static bool InSection(const void *address, ptrdiff_t relocation,
0720 const ElfW(Shdr) * section) {
0721 const char *start = reinterpret_cast<const char *>(
0722 section->sh_addr + static_cast<ElfW(Addr)>(relocation));
0723 size_t size = static_cast<size_t>(section->sh_size);
0724 return start <= address && address < (start + size);
0725 }
0726
0727 static const char *ComputeOffset(const char *base, ptrdiff_t offset) {
0728 // Note: cast to intptr_t to avoid undefined behavior when base evaluates to
0729 // zero and offset is non-zero.
0730 return reinterpret_cast<const char *>(reinterpret_cast<intptr_t>(base) +
0731 offset);
0732 }
0733
0734 // Read a symbol table and look for the symbol containing the
0735 // pc. Iterate over symbols in a symbol table and look for the symbol
0736 // containing "pc". If the symbol is found, and its name fits in
0737 // out_size, the name is written into out and SYMBOL_FOUND is returned.
0738 // If the name does not fit, truncated name is written into out,
0739 // and SYMBOL_TRUNCATED is returned. Out is NUL-terminated.
0740 // If the symbol is not found, SYMBOL_NOT_FOUND is returned;
0741 // To keep stack consumption low, we would like this function to not get
0742 // inlined.
0743 static ABSL_ATTRIBUTE_NOINLINE FindSymbolResult FindSymbol(
0744 const void *const pc, CachingFile *file, char *out, size_t out_size,
0745 ptrdiff_t relocation, const ElfW(Shdr) * strtab, const ElfW(Shdr) * symtab,
0746 const ElfW(Shdr) * opd, char *tmp_buf, size_t tmp_buf_size) {
0747 if (symtab == nullptr) {
0748 return SYMBOL_NOT_FOUND;
0749 }
0750
0751 // Read multiple symbols at once to save read() calls.
0752 ElfW(Sym) *buf = reinterpret_cast<ElfW(Sym) *>(tmp_buf);
0753 const size_t buf_entries = tmp_buf_size / sizeof(buf[0]);
0754
0755 const size_t num_symbols = symtab->sh_size / symtab->sh_entsize;
0756
0757 // On platforms using an .opd section (PowerPC & IA64), a function symbol
0758 // has the address of a function descriptor, which contains the real
0759 // starting address. However, we do not always want to use the real
0760 // starting address because we sometimes want to symbolize a function
0761 // pointer into the .opd section, e.g. FindSymbol(&foo,...).
0762 const bool pc_in_opd = kPlatformUsesOPDSections && opd != nullptr &&
0763 InSection(pc, relocation, opd);
0764 const bool deref_function_descriptor_pointer =
0765 kPlatformUsesOPDSections && opd != nullptr && !pc_in_opd;
0766
0767 ElfW(Sym) best_match;
0768 SafeMemZero(&best_match, sizeof(best_match));
0769 bool found_match = false;
0770 for (size_t i = 0; i < num_symbols;) {
0771 off_t offset =
0772 static_cast<off_t>(symtab->sh_offset + i * symtab->sh_entsize);
0773 const size_t num_remaining_symbols = num_symbols - i;
0774 const size_t entries_in_chunk =
0775 std::min(num_remaining_symbols, buf_entries);
0776 const size_t bytes_in_chunk = entries_in_chunk * sizeof(buf[0]);
0777 const ssize_t len = file->ReadFromOffset(buf, bytes_in_chunk, offset);
0778 SAFE_ASSERT(len >= 0);
0779 SAFE_ASSERT(static_cast<size_t>(len) % sizeof(buf[0]) == 0);
0780 const size_t num_symbols_in_buf = static_cast<size_t>(len) / sizeof(buf[0]);
0781 SAFE_ASSERT(num_symbols_in_buf <= entries_in_chunk);
0782 for (size_t j = 0; j < num_symbols_in_buf; ++j) {
0783 const ElfW(Sym) &symbol = buf[j];
0784
0785 // For a DSO, a symbol address is relocated by the loading address.
0786 // We keep the original address for opd redirection below.
0787 const char *const original_start_address =
0788 reinterpret_cast<const char *>(symbol.st_value);
0789 const char *start_address =
0790 ComputeOffset(original_start_address, relocation);
0791
0792 #ifdef __arm__
0793 // ARM functions are always aligned to multiples of two bytes; the
0794 // lowest-order bit in start_address is ignored by the CPU and indicates
0795 // whether the function contains ARM (0) or Thumb (1) code. We don't care
0796 // about what encoding is being used; we just want the real start address
0797 // of the function.
0798 start_address = reinterpret_cast<const char *>(
0799 reinterpret_cast<uintptr_t>(start_address) & ~1u);
0800 #endif
0801
0802 if (deref_function_descriptor_pointer &&
0803 InSection(original_start_address, /*relocation=*/0, opd)) {
0804 // The opd section is mapped into memory. Just dereference
0805 // start_address to get the first double word, which points to the
0806 // function entry.
0807 start_address = *reinterpret_cast<const char *const *>(start_address);
0808 }
0809
0810 // If pc is inside the .opd section, it points to a function descriptor.
0811 const size_t size = pc_in_opd ? kFunctionDescriptorSize : symbol.st_size;
0812 const void *const end_address =
0813 ComputeOffset(start_address, static_cast<ptrdiff_t>(size));
0814 if (symbol.st_value != 0 && // Skip null value symbols.
0815 symbol.st_shndx != 0 && // Skip undefined symbols.
0816 #ifdef STT_TLS
0817 ELF_ST_TYPE(symbol.st_info) != STT_TLS && // Skip thread-local data.
0818 #endif // STT_TLS
0819 ((start_address <= pc && pc < end_address) ||
0820 (start_address == pc && pc == end_address))) {
0821 if (!found_match || ShouldPickFirstSymbol(symbol, best_match)) {
0822 found_match = true;
0823 best_match = symbol;
0824 }
0825 }
0826 }
0827 i += num_symbols_in_buf;
0828 }
0829
0830 if (found_match) {
0831 const off_t off =
0832 static_cast<off_t>(strtab->sh_offset) + best_match.st_name;
0833 const ssize_t n_read = file->ReadFromOffset(out, out_size, off);
0834 if (n_read <= 0) {
0835 // This should never happen.
0836 ABSL_RAW_LOG(WARNING,
0837 "Unable to read from fd %d at offset %lld: n_read = %zd",
0838 file->fd(), static_cast<long long>(off), n_read);
0839 return SYMBOL_NOT_FOUND;
0840 }
0841 ABSL_RAW_CHECK(static_cast<size_t>(n_read) <= out_size,
0842 "ReadFromOffset read too much data.");
0843
0844 // strtab->sh_offset points into .strtab-like section that contains
0845 // NUL-terminated strings: '\0foo\0barbaz\0...".
0846 //
0847 // sh_offset+st_name points to the start of symbol name, but we don't know
0848 // how long the symbol is, so we try to read as much as we have space for,
0849 // and usually over-read (i.e. there is a NUL somewhere before n_read).
0850 if (memchr(out, '\0', static_cast<size_t>(n_read)) == nullptr) {
0851 // Either out_size was too small (n_read == out_size and no NUL), or
0852 // we tried to read past the EOF (n_read < out_size) and .strtab is
0853 // corrupt (missing terminating NUL; should never happen for valid ELF).
0854 out[n_read - 1] = '\0';
0855 return SYMBOL_TRUNCATED;
0856 }
0857 return SYMBOL_FOUND;
0858 }
0859
0860 return SYMBOL_NOT_FOUND;
0861 }
0862
0863 // Get the symbol name of "pc" from the file pointed by "fd". Process
0864 // both regular and dynamic symbol tables if necessary.
0865 // See FindSymbol() comment for description of return value.
0866 FindSymbolResult Symbolizer::GetSymbolFromObjectFile(
0867 const ObjFile &obj, const void *const pc, const ptrdiff_t relocation,
0868 char *out, size_t out_size, char *tmp_buf, size_t tmp_buf_size) {
0869 ElfW(Shdr) symtab;
0870 ElfW(Shdr) strtab;
0871 ElfW(Shdr) opd;
0872 ElfW(Shdr) *opd_ptr = nullptr;
0873
0874 // On platforms using an .opd sections for function descriptor, read
0875 // the section header. The .opd section is in data segment and should be
0876 // loaded but we check that it is mapped just to be extra careful.
0877 if (kPlatformUsesOPDSections) {
0878 if (GetSectionHeaderByName(obj.fd, kOpdSectionName,
0879 sizeof(kOpdSectionName) - 1, &opd) &&
0880 FindObjFile(reinterpret_cast<const char *>(opd.sh_addr) + relocation,
0881 opd.sh_size) != nullptr) {
0882 opd_ptr = &opd;
0883 } else {
0884 return SYMBOL_NOT_FOUND;
0885 }
0886 }
0887
0888 CachingFile file(obj.fd, file_cache_, sizeof(file_cache_));
0889
0890 // Consult a regular symbol table, then fall back to the dynamic symbol table.
0891 for (const auto symbol_table_type : {SHT_SYMTAB, SHT_DYNSYM}) {
0892 if (!GetSectionHeaderByType(&file, obj.elf_header.e_shnum,
0893 static_cast<off_t>(obj.elf_header.e_shoff),
0894 static_cast<ElfW(Word)>(symbol_table_type),
0895 &symtab, tmp_buf, tmp_buf_size)) {
0896 continue;
0897 }
0898 if (!file.ReadFromOffsetExact(
0899 &strtab, sizeof(strtab),
0900 static_cast<off_t>(obj.elf_header.e_shoff +
0901 symtab.sh_link * sizeof(symtab)))) {
0902 continue;
0903 }
0904 const FindSymbolResult rc =
0905 FindSymbol(pc, &file, out, out_size, relocation, &strtab, &symtab,
0906 opd_ptr, tmp_buf, tmp_buf_size);
0907 if (rc != SYMBOL_NOT_FOUND) {
0908 return rc;
0909 }
0910 }
0911
0912 return SYMBOL_NOT_FOUND;
0913 }
0914
0915 namespace {
0916 // Thin wrapper around a file descriptor so that the file descriptor
0917 // gets closed for sure.
0918 class FileDescriptor {
0919 public:
0920 explicit FileDescriptor(int fd) : fd_(fd) {}
0921 FileDescriptor(const FileDescriptor &) = delete;
0922 FileDescriptor &operator=(const FileDescriptor &) = delete;
0923
0924 ~FileDescriptor() {
0925 if (fd_ >= 0) {
0926 close(fd_);
0927 }
0928 }
0929
0930 int get() const { return fd_; }
0931
0932 private:
0933 const int fd_;
0934 };
0935
0936 // Helper class for reading lines from file.
0937 //
0938 // Note: we don't use ProcMapsIterator since the object is big (it has
0939 // a 5k array member) and uses async-unsafe functions such as sscanf()
0940 // and snprintf().
0941 class LineReader {
0942 public:
0943 explicit LineReader(int fd, char *buf, size_t buf_len)
0944 : fd_(fd),
0945 buf_len_(buf_len),
0946 buf_(buf),
0947 bol_(buf),
0948 eol_(buf),
0949 eod_(buf) {}
0950
0951 LineReader(const LineReader &) = delete;
0952 LineReader &operator=(const LineReader &) = delete;
0953
0954 // Read '\n'-terminated line from file. On success, modify "bol"
0955 // and "eol", then return true. Otherwise, return false.
0956 //
0957 // Note: if the last line doesn't end with '\n', the line will be
0958 // dropped. It's an intentional behavior to make the code simple.
0959 bool ReadLine(const char **bol, const char **eol) {
0960 if (BufferIsEmpty()) { // First time.
0961 const ssize_t num_bytes = ReadPersistent(fd_, buf_, buf_len_);
0962 if (num_bytes <= 0) { // EOF or error.
0963 return false;
0964 }
0965 eod_ = buf_ + num_bytes;
0966 bol_ = buf_;
0967 } else {
0968 bol_ = eol_ + 1; // Advance to the next line in the buffer.
0969 SAFE_ASSERT(bol_ <= eod_); // "bol_" can point to "eod_".
0970 if (!HasCompleteLine()) {
0971 const auto incomplete_line_length = static_cast<size_t>(eod_ - bol_);
0972 // Move the trailing incomplete line to the beginning.
0973 memmove(buf_, bol_, incomplete_line_length);
0974 // Read text from file and append it.
0975 char *const append_pos = buf_ + incomplete_line_length;
0976 const size_t capacity_left = buf_len_ - incomplete_line_length;
0977 const ssize_t num_bytes =
0978 ReadPersistent(fd_, append_pos, capacity_left);
0979 if (num_bytes <= 0) { // EOF or error.
0980 return false;
0981 }
0982 eod_ = append_pos + num_bytes;
0983 bol_ = buf_;
0984 }
0985 }
0986 eol_ = FindLineFeed();
0987 if (eol_ == nullptr) { // '\n' not found. Malformed line.
0988 return false;
0989 }
0990 *eol_ = '\0'; // Replace '\n' with '\0'.
0991
0992 *bol = bol_;
0993 *eol = eol_;
0994 return true;
0995 }
0996
0997 private:
0998 char *FindLineFeed() const {
0999 return reinterpret_cast<char *>(
1000 memchr(bol_, '\n', static_cast<size_t>(eod_ - bol_)));
1001 }
1002
1003 bool BufferIsEmpty() const { return buf_ == eod_; }
1004
1005 bool HasCompleteLine() const {
1006 return !BufferIsEmpty() && FindLineFeed() != nullptr;
1007 }
1008
1009 const int fd_;
1010 const size_t buf_len_;
1011 char *const buf_;
1012 char *bol_;
1013 char *eol_;
1014 const char *eod_; // End of data in "buf_".
1015 };
1016 } // namespace
1017
1018 // Place the hex number read from "start" into "*hex". The pointer to
1019 // the first non-hex character or "end" is returned.
1020 static const char *GetHex(const char *start, const char *end,
1021 uint64_t *const value) {
1022 uint64_t hex = 0;
1023 const char *p;
1024 for (p = start; p < end; ++p) {
1025 int ch = *p;
1026 if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'F') ||
1027 (ch >= 'a' && ch <= 'f')) {
1028 hex = (hex << 4) |
1029 static_cast<uint64_t>(ch < 'A' ? ch - '0' : (ch & 0xF) + 9);
1030 } else { // Encountered the first non-hex character.
1031 break;
1032 }
1033 }
1034 SAFE_ASSERT(p <= end);
1035 *value = hex;
1036 return p;
1037 }
1038
1039 static const char *GetHex(const char *start, const char *end,
1040 const void **const addr) {
1041 uint64_t hex = 0;
1042 const char *p = GetHex(start, end, &hex);
1043 *addr = reinterpret_cast<void *>(hex);
1044 return p;
1045 }
1046
1047 // Normally we are only interested in "r?x" maps.
1048 // On the PowerPC, function pointers point to descriptors in the .opd
1049 // section. The descriptors themselves are not executable code, so
1050 // we need to relax the check below to "r??".
1051 static bool ShouldUseMapping(const char *const flags) {
1052 return flags[0] == 'r' && (kPlatformUsesOPDSections || flags[2] == 'x');
1053 }
1054
1055 // Read /proc/self/maps and run "callback" for each mmapped file found. If
1056 // "callback" returns false, stop scanning and return true. Else continue
1057 // scanning /proc/self/maps. Return true if no parse error is found.
1058 static ABSL_ATTRIBUTE_NOINLINE bool ReadAddrMap(
1059 bool (*callback)(const char *filename, const void *const start_addr,
1060 const void *const end_addr, uint64_t offset, void *arg),
1061 void *arg, void *tmp_buf, size_t tmp_buf_size) {
1062 // Use /proc/self/task/<pid>/maps instead of /proc/self/maps. The latter
1063 // requires kernel to stop all threads, and is significantly slower when there
1064 // are 1000s of threads.
1065 char maps_path[80];
1066 snprintf(maps_path, sizeof(maps_path), "/proc/self/task/%d/maps", getpid());
1067
1068 int maps_fd;
1069 NO_INTR(maps_fd = open(maps_path, O_RDONLY));
1070 FileDescriptor wrapped_maps_fd(maps_fd);
1071 if (wrapped_maps_fd.get() < 0) {
1072 ABSL_RAW_LOG(WARNING, "%s: errno=%d", maps_path, errno);
1073 return false;
1074 }
1075
1076 // Iterate over maps and look for the map containing the pc. Then
1077 // look into the symbol tables inside.
1078 LineReader reader(wrapped_maps_fd.get(), static_cast<char *>(tmp_buf),
1079 tmp_buf_size);
1080 while (true) {
1081 const char *cursor;
1082 const char *eol;
1083 if (!reader.ReadLine(&cursor, &eol)) { // EOF or malformed line.
1084 break;
1085 }
1086
1087 const char *line = cursor;
1088 const void *start_address;
1089 // Start parsing line in /proc/self/maps. Here is an example:
1090 //
1091 // 08048000-0804c000 r-xp 00000000 08:01 2142121 /bin/cat
1092 //
1093 // We want start address (08048000), end address (0804c000), flags
1094 // (r-xp) and file name (/bin/cat).
1095
1096 // Read start address.
1097 cursor = GetHex(cursor, eol, &start_address);
1098 if (cursor == eol || *cursor != '-') {
1099 ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line);
1100 return false;
1101 }
1102 ++cursor; // Skip '-'.
1103
1104 // Read end address.
1105 const void *end_address;
1106 cursor = GetHex(cursor, eol, &end_address);
1107 if (cursor == eol || *cursor != ' ') {
1108 ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line);
1109 return false;
1110 }
1111 ++cursor; // Skip ' '.
1112
1113 // Read flags. Skip flags until we encounter a space or eol.
1114 const char *const flags_start = cursor;
1115 while (cursor < eol && *cursor != ' ') {
1116 ++cursor;
1117 }
1118 // We expect at least four letters for flags (ex. "r-xp").
1119 if (cursor == eol || cursor < flags_start + 4) {
1120 ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps: %s", line);
1121 return false;
1122 }
1123
1124 // Check flags.
1125 if (!ShouldUseMapping(flags_start)) {
1126 continue; // We skip this map.
1127 }
1128 ++cursor; // Skip ' '.
1129
1130 // Read file offset.
1131 uint64_t offset;
1132 cursor = GetHex(cursor, eol, &offset);
1133 ++cursor; // Skip ' '.
1134
1135 // Skip to file name. "cursor" now points to dev. We need to skip at least
1136 // two spaces for dev and inode.
1137 int num_spaces = 0;
1138 while (cursor < eol) {
1139 if (*cursor == ' ') {
1140 ++num_spaces;
1141 } else if (num_spaces >= 2) {
1142 // The first non-space character after skipping two spaces
1143 // is the beginning of the file name.
1144 break;
1145 }
1146 ++cursor;
1147 }
1148
1149 // Check whether this entry corresponds to our hint table for the true
1150 // filename.
1151 bool hinted =
1152 GetFileMappingHint(&start_address, &end_address, &offset, &cursor);
1153 if (!hinted && (cursor == eol || cursor[0] == '[')) {
1154 // not an object file, typically [vdso] or [vsyscall]
1155 continue;
1156 }
1157 if (!callback(cursor, start_address, end_address, offset, arg)) break;
1158 }
1159 return true;
1160 }
1161
1162 // Find the objfile mapped in address region containing [addr, addr + len).
1163 ObjFile *Symbolizer::FindObjFile(const void *const addr, size_t len) {
1164 for (int i = 0; i < 2; ++i) {
1165 if (!ok_) return nullptr;
1166
1167 // Read /proc/self/maps if necessary
1168 if (!addr_map_read_) {
1169 addr_map_read_ = true;
1170 if (!ReadAddrMap(RegisterObjFile, this, tmp_buf_, TMP_BUF_SIZE)) {
1171 ok_ = false;
1172 return nullptr;
1173 }
1174 }
1175
1176 size_t lo = 0;
1177 size_t hi = addr_map_.Size();
1178 while (lo < hi) {
1179 size_t mid = (lo + hi) / 2;
1180 if (addr < addr_map_.At(mid)->end_addr) {
1181 hi = mid;
1182 } else {
1183 lo = mid + 1;
1184 }
1185 }
1186 if (lo != addr_map_.Size()) {
1187 ObjFile *obj = addr_map_.At(lo);
1188 SAFE_ASSERT(obj->end_addr > addr);
1189 if (addr >= obj->start_addr &&
1190 reinterpret_cast<const char *>(addr) + len <= obj->end_addr)
1191 return obj;
1192 }
1193
1194 // The address mapping may have changed since it was last read. Retry.
1195 ClearAddrMap();
1196 }
1197 return nullptr;
1198 }
1199
1200 void Symbolizer::ClearAddrMap() {
1201 for (size_t i = 0; i != addr_map_.Size(); i++) {
1202 ObjFile *o = addr_map_.At(i);
1203 base_internal::LowLevelAlloc::Free(o->filename);
1204 if (o->fd >= 0) {
1205 close(o->fd);
1206 }
1207 }
1208 addr_map_.Clear();
1209 addr_map_read_ = false;
1210 }
1211
1212 // Callback for ReadAddrMap to register objfiles in an in-memory table.
1213 bool Symbolizer::RegisterObjFile(const char *filename,
1214 const void *const start_addr,
1215 const void *const end_addr, uint64_t offset,
1216 void *arg) {
1217 Symbolizer *impl = static_cast<Symbolizer *>(arg);
1218
1219 // Files are supposed to be added in the increasing address order. Make
1220 // sure that's the case.
1221 size_t addr_map_size = impl->addr_map_.Size();
1222 if (addr_map_size != 0) {
1223 ObjFile *old = impl->addr_map_.At(addr_map_size - 1);
1224 if (old->end_addr > end_addr) {
1225 ABSL_RAW_LOG(ERROR,
1226 "Unsorted addr map entry: 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR
1227 ": %s",
1228 reinterpret_cast<uintptr_t>(end_addr), filename,
1229 reinterpret_cast<uintptr_t>(old->end_addr), old->filename);
1230 return true;
1231 } else if (old->end_addr == end_addr) {
1232 // The same entry appears twice. This sometimes happens for [vdso].
1233 if (old->start_addr != start_addr ||
1234 strcmp(old->filename, filename) != 0) {
1235 ABSL_RAW_LOG(ERROR,
1236 "Duplicate addr 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR ": %s",
1237 reinterpret_cast<uintptr_t>(end_addr), filename,
1238 reinterpret_cast<uintptr_t>(old->end_addr), old->filename);
1239 }
1240 return true;
1241 } else if (old->end_addr == start_addr &&
1242 reinterpret_cast<uintptr_t>(old->start_addr) - old->offset ==
1243 reinterpret_cast<uintptr_t>(start_addr) - offset &&
1244 strcmp(old->filename, filename) == 0) {
1245 // Two contiguous map entries that span a contiguous region of the file,
1246 // perhaps because some part of the file was mlock()ed. Combine them.
1247 old->end_addr = end_addr;
1248 return true;
1249 }
1250 }
1251 ObjFile *obj = impl->addr_map_.Add();
1252 obj->filename = impl->CopyString(filename);
1253 obj->start_addr = start_addr;
1254 obj->end_addr = end_addr;
1255 obj->offset = offset;
1256 obj->elf_type = -1; // filled on demand
1257 obj->fd = -1; // opened on demand
1258 return true;
1259 }
1260
1261 // This function wraps the Demangle function to provide an interface
1262 // where the input symbol is demangled in-place.
1263 // To keep stack consumption low, we would like this function to not
1264 // get inlined.
1265 static ABSL_ATTRIBUTE_NOINLINE void DemangleInplace(char *out, size_t out_size,
1266 char *tmp_buf,
1267 size_t tmp_buf_size) {
1268 if (Demangle(out, tmp_buf, tmp_buf_size)) {
1269 // Demangling succeeded. Copy to out if the space allows.
1270 size_t len = strlen(tmp_buf);
1271 if (len + 1 <= out_size) { // +1 for '\0'.
1272 SAFE_ASSERT(len < tmp_buf_size);
1273 memmove(out, tmp_buf, len + 1);
1274 }
1275 }
1276 }
1277
1278 SymbolCacheLine *Symbolizer::GetCacheLine(const void *const pc) {
1279 uintptr_t pc0 = reinterpret_cast<uintptr_t>(pc);
1280 pc0 >>= 3; // drop the low 3 bits
1281
1282 // Shuffle bits.
1283 pc0 ^= (pc0 >> 6) ^ (pc0 >> 12) ^ (pc0 >> 18);
1284 return &symbol_cache_[pc0 % SYMBOL_CACHE_LINES];
1285 }
1286
1287 void Symbolizer::AgeSymbols(SymbolCacheLine *line) {
1288 for (uint32_t &age : line->age) {
1289 ++age;
1290 }
1291 }
1292
1293 const char *Symbolizer::FindSymbolInCache(const void *const pc) {
1294 if (pc == nullptr) return nullptr;
1295
1296 SymbolCacheLine *line = GetCacheLine(pc);
1297 for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) {
1298 if (line->pc[i] == pc) {
1299 AgeSymbols(line);
1300 line->age[i] = 0;
1301 return line->name[i];
1302 }
1303 }
1304 return nullptr;
1305 }
1306
1307 const char *Symbolizer::InsertSymbolInCache(const void *const pc,
1308 const char *name) {
1309 SAFE_ASSERT(pc != nullptr);
1310
1311 SymbolCacheLine *line = GetCacheLine(pc);
1312 uint32_t max_age = 0;
1313 size_t oldest_index = 0;
1314 bool found_oldest_index = false;
1315 for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) {
1316 if (line->pc[i] == nullptr) {
1317 AgeSymbols(line);
1318 line->pc[i] = pc;
1319 line->name[i] = CopyString(name);
1320 line->age[i] = 0;
1321 return line->name[i];
1322 }
1323 if (line->age[i] >= max_age) {
1324 max_age = line->age[i];
1325 oldest_index = i;
1326 found_oldest_index = true;
1327 }
1328 }
1329
1330 AgeSymbols(line);
1331 ABSL_RAW_CHECK(found_oldest_index, "Corrupt cache");
1332 base_internal::LowLevelAlloc::Free(line->name[oldest_index]);
1333 line->pc[oldest_index] = pc;
1334 line->name[oldest_index] = CopyString(name);
1335 line->age[oldest_index] = 0;
1336 return line->name[oldest_index];
1337 }
1338
1339 static void MaybeOpenFdFromSelfExe(ObjFile *obj) {
1340 if (memcmp(obj->start_addr, ELFMAG, SELFMAG) != 0) {
1341 return;
1342 }
1343 int fd = open("/proc/self/exe", O_RDONLY);
1344 if (fd == -1) {
1345 return;
1346 }
1347 // Verify that contents of /proc/self/exe matches in-memory image of
1348 // the binary. This can fail if the "deleted" binary is in fact not
1349 // the main executable, or for binaries that have the first PT_LOAD
1350 // segment smaller than 4K. We do it in four steps so that the
1351 // buffer is smaller and we don't consume too much stack space.
1352 const char *mem = reinterpret_cast<const char *>(obj->start_addr);
1353 for (int i = 0; i < 4; ++i) {
1354 char buf[1024];
1355 ssize_t n = read(fd, buf, sizeof(buf));
1356 if (n != sizeof(buf) || memcmp(buf, mem, sizeof(buf)) != 0) {
1357 close(fd);
1358 return;
1359 }
1360 mem += sizeof(buf);
1361 }
1362 obj->fd = fd;
1363 }
1364
1365 static bool MaybeInitializeObjFile(ObjFile *obj) {
1366 if (obj->fd < 0) {
1367 obj->fd = open(obj->filename, O_RDONLY);
1368
1369 if (obj->fd < 0) {
1370 // Getting /proc/self/exe here means that we were hinted.
1371 if (strcmp(obj->filename, "/proc/self/exe") == 0) {
1372 // /proc/self/exe may be inaccessible (due to setuid, etc.), so try
1373 // accessing the binary via argv0.
1374 if (argv0_value != nullptr) {
1375 obj->fd = open(argv0_value, O_RDONLY);
1376 }
1377 } else {
1378 MaybeOpenFdFromSelfExe(obj);
1379 }
1380 }
1381
1382 if (obj->fd < 0) {
1383 ABSL_RAW_LOG(WARNING, "%s: open failed: errno=%d", obj->filename, errno);
1384 return false;
1385 }
1386
1387 char buf[kSmallFileCacheSize];
1388 CachingFile file(obj->fd, buf, sizeof(buf));
1389
1390 obj->elf_type = FileGetElfType(&file);
1391 if (obj->elf_type < 0) {
1392 ABSL_RAW_LOG(WARNING, "%s: wrong elf type: %d", obj->filename,
1393 obj->elf_type);
1394 return false;
1395 }
1396
1397 if (!file.ReadFromOffsetExact(&obj->elf_header, sizeof(obj->elf_header),
1398 0)) {
1399 ABSL_RAW_LOG(WARNING, "%s: failed to read elf header", obj->filename);
1400 return false;
1401 }
1402 const int phnum = obj->elf_header.e_phnum;
1403 const int phentsize = obj->elf_header.e_phentsize;
1404 auto phoff = static_cast<off_t>(obj->elf_header.e_phoff);
1405 size_t num_interesting_load_segments = 0;
1406 for (int j = 0; j < phnum; j++) {
1407 ElfW(Phdr) phdr;
1408 if (!file.ReadFromOffsetExact(&phdr, sizeof(phdr), phoff)) {
1409 ABSL_RAW_LOG(WARNING, "%s: failed to read program header %d",
1410 obj->filename, j);
1411 return false;
1412 }
1413 phoff += phentsize;
1414
1415 #if defined(__powerpc__) && !(_CALL_ELF > 1)
1416 // On the PowerPC ELF v1 ABI, function pointers actually point to function
1417 // descriptors. These descriptors are stored in an .opd section, which is
1418 // mapped read-only. We thus need to look at all readable segments, not
1419 // just the executable ones.
1420 constexpr int interesting = PF_R;
1421 #else
1422 constexpr int interesting = PF_X | PF_R;
1423 #endif
1424
1425 if (phdr.p_type != PT_LOAD
1426 || (phdr.p_flags & interesting) != interesting) {
1427 // Not a LOAD segment, not executable code, and not a function
1428 // descriptor.
1429 continue;
1430 }
1431 if (num_interesting_load_segments < obj->phdr.size()) {
1432 memcpy(&obj->phdr[num_interesting_load_segments++], &phdr, sizeof(phdr));
1433 } else {
1434 ABSL_RAW_LOG(
1435 WARNING, "%s: too many interesting LOAD segments: %zu >= %zu",
1436 obj->filename, num_interesting_load_segments, obj->phdr.size());
1437 break;
1438 }
1439 }
1440 if (num_interesting_load_segments == 0) {
1441 // This object has no interesting LOAD segments. That's unexpected.
1442 ABSL_RAW_LOG(WARNING, "%s: no interesting LOAD segments", obj->filename);
1443 return false;
1444 }
1445 }
1446 return true;
1447 }
1448
1449 // The implementation of our symbolization routine. If it
1450 // successfully finds the symbol containing "pc" and obtains the
1451 // symbol name, returns pointer to that symbol. Otherwise, returns nullptr.
1452 // If any symbol decorators have been installed via InstallSymbolDecorator(),
1453 // they are called here as well.
1454 // To keep stack consumption low, we would like this function to not
1455 // get inlined.
1456 const char *Symbolizer::GetUncachedSymbol(const void *pc) {
1457 ObjFile *const obj = FindObjFile(pc, 1);
1458 ptrdiff_t relocation = 0;
1459 int fd = -1;
1460 if (obj != nullptr) {
1461 if (MaybeInitializeObjFile(obj)) {
1462 const size_t start_addr = reinterpret_cast<size_t>(obj->start_addr);
1463 if (obj->elf_type == ET_DYN && start_addr >= obj->offset) {
1464 // This object was relocated.
1465 //
1466 // For obj->offset > 0, adjust the relocation since a mapping at offset
1467 // X in the file will have a start address of [true relocation]+X.
1468 relocation = static_cast<ptrdiff_t>(start_addr - obj->offset);
1469
1470 // Note: some binaries have multiple LOAD segments that can contain
1471 // function pointers. We must find the right one.
1472 ElfW(Phdr) *phdr = nullptr;
1473 for (size_t j = 0; j < obj->phdr.size(); j++) {
1474 ElfW(Phdr) &p = obj->phdr[j];
1475 if (p.p_type != PT_LOAD) {
1476 // We only expect PT_LOADs. This must be PT_NULL that we didn't
1477 // write over (i.e. we exhausted all interesting PT_LOADs).
1478 ABSL_RAW_CHECK(p.p_type == PT_NULL, "unexpected p_type");
1479 break;
1480 }
1481 if (pc < reinterpret_cast<void *>(start_addr + p.p_vaddr + p.p_memsz)) {
1482 phdr = &p;
1483 break;
1484 }
1485 }
1486 if (phdr == nullptr) {
1487 // That's unexpected. Hope for the best.
1488 ABSL_RAW_LOG(
1489 WARNING,
1490 "%s: unable to find LOAD segment for pc: %p, start_addr: %zx",
1491 obj->filename, pc, start_addr);
1492 } else {
1493 // Adjust relocation in case phdr.p_vaddr != 0.
1494 // This happens for binaries linked with `lld --rosegment`, and for
1495 // binaries linked with BFD `ld -z separate-code`.
1496 relocation -= phdr->p_vaddr - phdr->p_offset;
1497 }
1498 }
1499
1500 fd = obj->fd;
1501 if (GetSymbolFromObjectFile(*obj, pc, relocation, symbol_buf_,
1502 sizeof(symbol_buf_), tmp_buf_,
1503 sizeof(tmp_buf_)) == SYMBOL_FOUND) {
1504 // Only try to demangle the symbol name if it fit into symbol_buf_.
1505 DemangleInplace(symbol_buf_, sizeof(symbol_buf_), tmp_buf_,
1506 sizeof(tmp_buf_));
1507 }
1508 }
1509 } else {
1510 #if ABSL_HAVE_VDSO_SUPPORT
1511 VDSOSupport vdso;
1512 if (vdso.IsPresent()) {
1513 VDSOSupport::SymbolInfo symbol_info;
1514 if (vdso.LookupSymbolByAddress(pc, &symbol_info)) {
1515 // All VDSO symbols are known to be short.
1516 size_t len = strlen(symbol_info.name);
1517 ABSL_RAW_CHECK(len + 1 < sizeof(symbol_buf_),
1518 "VDSO symbol unexpectedly long");
1519 memcpy(symbol_buf_, symbol_info.name, len + 1);
1520 }
1521 }
1522 #endif
1523 }
1524
1525 if (g_decorators_mu.TryLock()) {
1526 if (g_num_decorators > 0) {
1527 SymbolDecoratorArgs decorator_args = {
1528 pc, relocation, fd, symbol_buf_, sizeof(symbol_buf_),
1529 tmp_buf_, sizeof(tmp_buf_), nullptr};
1530 for (int i = 0; i < g_num_decorators; ++i) {
1531 decorator_args.arg = g_decorators[i].arg;
1532 g_decorators[i].fn(&decorator_args);
1533 }
1534 }
1535 g_decorators_mu.Unlock();
1536 }
1537 if (symbol_buf_[0] == '\0') {
1538 return nullptr;
1539 }
1540 symbol_buf_[sizeof(symbol_buf_) - 1] = '\0'; // Paranoia.
1541 return InsertSymbolInCache(pc, symbol_buf_);
1542 }
1543
1544 const char *Symbolizer::GetSymbol(const void *pc) {
1545 const char *entry = FindSymbolInCache(pc);
1546 if (entry != nullptr) {
1547 return entry;
1548 }
1549 symbol_buf_[0] = '\0';
1550
1551 #ifdef __hppa__
1552 {
1553 // In some contexts (e.g., return addresses), PA-RISC uses the lowest two
1554 // bits of the address to indicate the privilege level. Clear those bits
1555 // before trying to symbolize.
1556 const auto pc_bits = reinterpret_cast<uintptr_t>(pc);
1557 const auto address = pc_bits & ~0x3;
1558 entry = GetUncachedSymbol(reinterpret_cast<const void *>(address));
1559 if (entry != nullptr) {
1560 return entry;
1561 }
1562
1563 // In some contexts, PA-RISC also uses bit 1 of the address to indicate that
1564 // this is a cross-DSO function pointer. Such function pointers actually
1565 // point to a procedure label, a struct whose first 32-bit (pointer) element
1566 // actually points to the function text. With no symbol found for this
1567 // address so far, try interpreting it as a cross-DSO function pointer and
1568 // see how that goes.
1569 if (pc_bits & 0x2) {
1570 return GetUncachedSymbol(*reinterpret_cast<const void *const *>(address));
1571 }
1572
1573 return nullptr;
1574 }
1575 #else
1576 return GetUncachedSymbol(pc);
1577 #endif
1578 }
1579
1580 bool RemoveAllSymbolDecorators(void) {
1581 if (!g_decorators_mu.TryLock()) {
1582 // Someone else is using decorators. Get out.
1583 return false;
1584 }
1585 g_num_decorators = 0;
1586 g_decorators_mu.Unlock();
1587 return true;
1588 }
1589
1590 bool RemoveSymbolDecorator(int ticket) {
1591 if (!g_decorators_mu.TryLock()) {
1592 // Someone else is using decorators. Get out.
1593 return false;
1594 }
1595 for (int i = 0; i < g_num_decorators; ++i) {
1596 if (g_decorators[i].ticket == ticket) {
1597 while (i < g_num_decorators - 1) {
1598 g_decorators[i] = g_decorators[i + 1];
1599 ++i;
1600 }
1601 g_num_decorators = i;
1602 break;
1603 }
1604 }
1605 g_decorators_mu.Unlock();
1606 return true; // Decorator is known to be removed.
1607 }
1608
1609 int InstallSymbolDecorator(SymbolDecorator decorator, void *arg) {
1610 static int ticket = 0;
1611
1612 if (!g_decorators_mu.TryLock()) {
1613 // Someone else is using decorators. Get out.
1614 return -2;
1615 }
1616 int ret = ticket;
1617 if (g_num_decorators >= kMaxDecorators) {
1618 ret = -1;
1619 } else {
1620 g_decorators[g_num_decorators] = {decorator, arg, ticket++};
1621 ++g_num_decorators;
1622 }
1623 g_decorators_mu.Unlock();
1624 return ret;
1625 }
1626
1627 bool RegisterFileMappingHint(const void *start, const void *end, uint64_t offset,
1628 const char *filename) {
1629 SAFE_ASSERT(start <= end);
1630 SAFE_ASSERT(filename != nullptr);
1631
1632 InitSigSafeArena();
1633
1634 if (!g_file_mapping_mu.TryLock()) {
1635 return false;
1636 }
1637
1638 bool ret = true;
1639 if (g_num_file_mapping_hints >= kMaxFileMappingHints) {
1640 ret = false;
1641 } else {
1642 // TODO(ckennelly): Move this into a string copy routine.
1643 size_t len = strlen(filename);
1644 char *dst = static_cast<char *>(
1645 base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena()));
1646 ABSL_RAW_CHECK(dst != nullptr, "out of memory");
1647 memcpy(dst, filename, len + 1);
1648
1649 auto &hint = g_file_mapping_hints[g_num_file_mapping_hints++];
1650 hint.start = start;
1651 hint.end = end;
1652 hint.offset = offset;
1653 hint.filename = dst;
1654 }
1655
1656 g_file_mapping_mu.Unlock();
1657 return ret;
1658 }
1659
1660 bool GetFileMappingHint(const void **start, const void **end, uint64_t *offset,
1661 const char **filename) {
1662 if (!g_file_mapping_mu.TryLock()) {
1663 return false;
1664 }
1665 bool found = false;
1666 for (int i = 0; i < g_num_file_mapping_hints; i++) {
1667 if (g_file_mapping_hints[i].start <= *start &&
1668 *end <= g_file_mapping_hints[i].end) {
1669 // We assume that the start_address for the mapping is the base
1670 // address of the ELF section, but when [start_address,end_address) is
1671 // not strictly equal to [hint.start, hint.end), that assumption is
1672 // invalid.
1673 //
1674 // This uses the hint's start address (even though hint.start is not
1675 // necessarily equal to start_address) to ensure the correct
1676 // relocation is computed later.
1677 *start = g_file_mapping_hints[i].start;
1678 *end = g_file_mapping_hints[i].end;
1679 *offset = g_file_mapping_hints[i].offset;
1680 *filename = g_file_mapping_hints[i].filename;
1681 found = true;
1682 break;
1683 }
1684 }
1685 g_file_mapping_mu.Unlock();
1686 return found;
1687 }
1688
1689 } // namespace debugging_internal
1690
1691 bool Symbolize(const void *pc, char *out, int out_size) {
1692 // Symbolization is very slow under tsan.
1693 ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
1694 SAFE_ASSERT(out_size >= 0);
1695 debugging_internal::Symbolizer *s = debugging_internal::AllocateSymbolizer();
1696 const char *name = s->GetSymbol(pc);
1697 bool ok = false;
1698 if (name != nullptr && out_size > 0) {
1699 strncpy(out, name, static_cast<size_t>(out_size));
1700 ok = true;
1701 if (out[static_cast<size_t>(out_size) - 1] != '\0') {
1702 // strncpy() does not '\0' terminate when it truncates. Do so, with
1703 // trailing ellipsis.
1704 static constexpr char kEllipsis[] = "...";
1705 size_t ellipsis_size =
1706 std::min(strlen(kEllipsis), static_cast<size_t>(out_size) - 1);
1707 memcpy(out + static_cast<size_t>(out_size) - ellipsis_size - 1, kEllipsis,
1708 ellipsis_size);
1709 out[static_cast<size_t>(out_size) - 1] = '\0';
1710 }
1711 }
1712 debugging_internal::FreeSymbolizer(s);
1713 ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END();
1714 return ok;
1715 }
1716
1717 ABSL_NAMESPACE_END
1718 } // namespace absl
1719
1720 extern "C" bool AbslInternalGetFileMappingHint(const void **start,
1721 const void **end, uint64_t *offset,
1722 const char **filename) {
1723 return absl::debugging_internal::GetFileMappingHint(start, end, offset,
1724 filename);
1725 }