File indexing completed on 2025-12-17 09:21:00
0001
0002
0003
0004
0005
0006
0007
0008
0009 #include "ActsExamples/EventData/NeuralCalibrator.hpp"
0010
0011 #include "Acts/Definitions/TrackParametrization.hpp"
0012 #include "Acts/EventData/MeasurementHelpers.hpp"
0013 #include "Acts/EventData/SourceLink.hpp"
0014 #include "Acts/Utilities/CalibrationContext.hpp"
0015 #include "Acts/Utilities/Helpers.hpp"
0016 #include "Acts/Utilities/UnitVectors.hpp"
0017 #include "Acts/Utilities/detail/EigenCompat.hpp"
0018 #include "ActsExamples/EventData/IndexSourceLink.hpp"
0019 #include "ActsExamples/EventData/Measurement.hpp"
0020
0021 #include <TFile.h>
0022
0023 using namespace Acts;
0024 using namespace ActsPlugins;
0025
0026 namespace detail {
0027
0028 template <typename Array>
0029 std::size_t fillChargeMatrix(Array& arr, const ActsExamples::Cluster& cluster,
0030 std::size_t size0 = 7u, std::size_t size1 = 7u) {
0031
0032
0033 double totalAct = 0;
0034 for (const ActsExamples::Cluster::Cell& cell : cluster.channels) {
0035 totalAct += cell.activation;
0036 }
0037 std::vector<double> weights;
0038 for (const ActsExamples::Cluster::Cell& cell : cluster.channels) {
0039 weights.push_back(cell.activation / totalAct);
0040 }
0041
0042 double acc0 = 0;
0043 double acc1 = 0;
0044 for (std::size_t i = 0; i < cluster.channels.size(); i++) {
0045 acc0 += cluster.channels.at(i).bin[0] * weights.at(i);
0046 acc1 += cluster.channels.at(i).bin[1] * weights.at(i);
0047 }
0048
0049
0050
0051 int offset0 = static_cast<int>(acc0) - size0 / 2;
0052 int offset1 = static_cast<int>(acc1) - size1 / 2;
0053
0054
0055 arr = Eigen::ArrayXXf::Zero(1, size0 * size1);
0056
0057 for (const ActsExamples::Cluster::Cell& cell : cluster.channels) {
0058
0059 int iMat = cell.bin[0] - offset0;
0060 int jMat = cell.bin[1] - offset1;
0061 if (iMat >= 0 && iMat < static_cast<int>(size0) && jMat >= 0 &&
0062 jMat < static_cast<int>(size1)) {
0063 typename Array::Index index = iMat * size0 + jMat;
0064 if (index < arr.size()) {
0065 arr(index) = cell.activation;
0066 }
0067 }
0068 }
0069 return size0 * size1;
0070 }
0071
0072 }
0073
0074 ActsExamples::NeuralCalibrator::NeuralCalibrator(
0075 const std::filesystem::path& modelPath, std::size_t nComponents,
0076 std::vector<std::size_t> volumeIds)
0077 : m_env(ORT_LOGGING_LEVEL_WARNING, "NeuralCalibrator"),
0078 m_model(m_env, modelPath.c_str()),
0079 m_nComponents{nComponents},
0080 m_volumeIds{std::move(volumeIds)} {}
0081
0082 void ActsExamples::NeuralCalibrator::calibrate(
0083 const MeasurementContainer& measurements, const ClusterContainer* clusters,
0084 const GeometryContext& gctx, const CalibrationContext& cctx,
0085 const SourceLink& sourceLink,
0086 MultiTrajectory<VectorMultiTrajectory>::TrackStateProxy& trackState) const {
0087 trackState.setUncalibratedSourceLink(SourceLink{sourceLink});
0088 const IndexSourceLink& idxSourceLink = sourceLink.get<IndexSourceLink>();
0089 assert((idxSourceLink.index() < measurements.size()) and
0090 "Source link index is outside the container bounds");
0091
0092 if (!rangeContainsValue(m_volumeIds, idxSourceLink.geometryId().volume())) {
0093 m_fallback.calibrate(measurements, clusters, gctx, cctx, sourceLink,
0094 trackState);
0095 return;
0096 }
0097
0098 NetworkBatchInput inputBatch(1, m_nInputs);
0099 auto input = inputBatch(0, Acts::detail::EigenCompat::all);
0100
0101
0102 std::size_t matSize0 = 7u;
0103 std::size_t matSize1 = 7u;
0104 std::size_t iInput = ::detail::fillChargeMatrix(
0105 input, (*clusters)[idxSourceLink.index()], matSize0, matSize1);
0106
0107 input[iInput++] = idxSourceLink.geometryId().volume();
0108 input[iInput++] = idxSourceLink.geometryId().layer();
0109
0110 const Surface& referenceSurface = trackState.referenceSurface();
0111 auto trackParameters = trackState.parameters();
0112
0113 const ConstVariableBoundMeasurementProxy measurement =
0114 measurements.getMeasurement(idxSourceLink.index());
0115
0116 assert(measurement.contains(eBoundLoc0) &&
0117 "Measurement does not contain the required bound loc0");
0118 assert(measurement.contains(eBoundLoc1) &&
0119 "Measurement does not contain the required bound loc1");
0120
0121 auto boundLoc0 = measurement.indexOf(eBoundLoc0);
0122 auto boundLoc1 = measurement.indexOf(eBoundLoc1);
0123
0124 Vector2 localPosition{measurement.parameters()[boundLoc0],
0125 measurement.parameters()[boundLoc1]};
0126 Vector2 localCovariance{measurement.covariance()(boundLoc0, boundLoc0),
0127 measurement.covariance()(boundLoc1, boundLoc1)};
0128
0129 Vector3 dir = makeDirectionFromPhiTheta(trackParameters[eBoundPhi],
0130 trackParameters[eBoundTheta]);
0131 Vector3 globalPosition =
0132 referenceSurface.localToGlobal(gctx, localPosition, dir);
0133
0134
0135
0136
0137
0138
0139 RotationMatrix3 rot =
0140 referenceSurface.referenceFrame(gctx, globalPosition, dir).inverse();
0141 std::pair<double, double> angles = VectorHelpers::incidentAngles(dir, rot);
0142
0143 input[iInput++] = angles.first;
0144 input[iInput++] = angles.second;
0145 input[iInput++] = localPosition[0];
0146 input[iInput++] = localPosition[1];
0147 input[iInput++] = localCovariance[0];
0148 input[iInput++] = localCovariance[1];
0149 if (iInput != m_nInputs) {
0150 throw std::runtime_error("Expected input size of " +
0151 std::to_string(m_nInputs) +
0152 ", got: " + std::to_string(iInput));
0153 }
0154
0155
0156 std::vector<float> output = m_model.runONNXInference(inputBatch).front();
0157
0158
0159
0160
0161 std::size_t nParams = 5 * m_nComponents;
0162 if (output.size() != nParams) {
0163 throw std::runtime_error("Got output vector of size " +
0164 std::to_string(output.size()) +
0165 ", expected size " + std::to_string(nParams));
0166 }
0167
0168
0169 std::size_t iMax = 0;
0170 if (m_nComponents > 1) {
0171 iMax = std::distance(
0172 output.begin(),
0173 std::max_element(output.begin(), output.begin() + m_nComponents));
0174 }
0175 std::size_t iLoc0 = m_nComponents + iMax * 2;
0176 std::size_t iVar0 = 3 * m_nComponents + iMax * 2;
0177
0178 visit_measurement(measurement.size(), [&](auto N) -> void {
0179 constexpr std::size_t kMeasurementSize = decltype(N)::value;
0180 const ConstFixedBoundMeasurementProxy<kMeasurementSize> fixedMeasurement =
0181 static_cast<ConstFixedBoundMeasurementProxy<kMeasurementSize>>(
0182 measurement);
0183
0184 ActsVector<kMeasurementSize> calibratedParameters =
0185 fixedMeasurement.parameters();
0186 ActsSquareMatrix<kMeasurementSize> calibratedCovariance =
0187 fixedMeasurement.covariance();
0188
0189 calibratedParameters[boundLoc0] = output[iLoc0];
0190 calibratedParameters[boundLoc1] = output[iLoc0 + 1];
0191 calibratedCovariance(boundLoc0, boundLoc0) = output[iVar0];
0192 calibratedCovariance(boundLoc1, boundLoc1) = output[iVar0 + 1];
0193
0194 trackState.allocateCalibrated(calibratedParameters, calibratedCovariance);
0195 trackState.setProjectorSubspaceIndices(fixedMeasurement.subspaceIndices());
0196 });
0197 }