Warning, /jana2/src/python/externals/pybind11-2.10.3/docs/advanced/classes.rst is written in an unsupported language. File is not indexed.
0001 Classes
0002 #######
0003
0004 This section presents advanced binding code for classes and it is assumed
0005 that you are already familiar with the basics from :doc:`/classes`.
0006
0007 .. _overriding_virtuals:
0008
0009 Overriding virtual functions in Python
0010 ======================================
0011
0012 Suppose that a C++ class or interface has a virtual function that we'd like
0013 to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
0014 given as a specific example of how one would do this with traditional C++
0015 code).
0016
0017 .. code-block:: cpp
0018
0019 class Animal {
0020 public:
0021 virtual ~Animal() { }
0022 virtual std::string go(int n_times) = 0;
0023 };
0024
0025 class Dog : public Animal {
0026 public:
0027 std::string go(int n_times) override {
0028 std::string result;
0029 for (int i=0; i<n_times; ++i)
0030 result += "woof! ";
0031 return result;
0032 }
0033 };
0034
0035 Let's also suppose that we are given a plain function which calls the
0036 function ``go()`` on an arbitrary ``Animal`` instance.
0037
0038 .. code-block:: cpp
0039
0040 std::string call_go(Animal *animal) {
0041 return animal->go(3);
0042 }
0043
0044 Normally, the binding code for these classes would look as follows:
0045
0046 .. code-block:: cpp
0047
0048 PYBIND11_MODULE(example, m) {
0049 py::class_<Animal>(m, "Animal")
0050 .def("go", &Animal::go);
0051
0052 py::class_<Dog, Animal>(m, "Dog")
0053 .def(py::init<>());
0054
0055 m.def("call_go", &call_go);
0056 }
0057
0058 However, these bindings are impossible to extend: ``Animal`` is not
0059 constructible, and we clearly require some kind of "trampoline" that
0060 redirects virtual calls back to Python.
0061
0062 Defining a new type of ``Animal`` from within Python is possible but requires a
0063 helper class that is defined as follows:
0064
0065 .. code-block:: cpp
0066
0067 class PyAnimal : public Animal {
0068 public:
0069 /* Inherit the constructors */
0070 using Animal::Animal;
0071
0072 /* Trampoline (need one for each virtual function) */
0073 std::string go(int n_times) override {
0074 PYBIND11_OVERRIDE_PURE(
0075 std::string, /* Return type */
0076 Animal, /* Parent class */
0077 go, /* Name of function in C++ (must match Python name) */
0078 n_times /* Argument(s) */
0079 );
0080 }
0081 };
0082
0083 The macro :c:macro:`PYBIND11_OVERRIDE_PURE` should be used for pure virtual
0084 functions, and :c:macro:`PYBIND11_OVERRIDE` should be used for functions which have
0085 a default implementation. There are also two alternate macros
0086 :c:macro:`PYBIND11_OVERRIDE_PURE_NAME` and :c:macro:`PYBIND11_OVERRIDE_NAME` which
0087 take a string-valued name argument between the *Parent class* and *Name of the
0088 function* slots, which defines the name of function in Python. This is required
0089 when the C++ and Python versions of the
0090 function have different names, e.g. ``operator()`` vs ``__call__``.
0091
0092 The binding code also needs a few minor adaptations (highlighted):
0093
0094 .. code-block:: cpp
0095 :emphasize-lines: 2,3
0096
0097 PYBIND11_MODULE(example, m) {
0098 py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal")
0099 .def(py::init<>())
0100 .def("go", &Animal::go);
0101
0102 py::class_<Dog, Animal>(m, "Dog")
0103 .def(py::init<>());
0104
0105 m.def("call_go", &call_go);
0106 }
0107
0108 Importantly, pybind11 is made aware of the trampoline helper class by
0109 specifying it as an extra template argument to :class:`class_`. (This can also
0110 be combined with other template arguments such as a custom holder type; the
0111 order of template types does not matter). Following this, we are able to
0112 define a constructor as usual.
0113
0114 Bindings should be made against the actual class, not the trampoline helper class.
0115
0116 .. code-block:: cpp
0117 :emphasize-lines: 3
0118
0119 py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal");
0120 .def(py::init<>())
0121 .def("go", &PyAnimal::go); /* <--- THIS IS WRONG, use &Animal::go */
0122
0123 Note, however, that the above is sufficient for allowing python classes to
0124 extend ``Animal``, but not ``Dog``: see :ref:`virtual_and_inheritance` for the
0125 necessary steps required to providing proper overriding support for inherited
0126 classes.
0127
0128 The Python session below shows how to override ``Animal::go`` and invoke it via
0129 a virtual method call.
0130
0131 .. code-block:: pycon
0132
0133 >>> from example import *
0134 >>> d = Dog()
0135 >>> call_go(d)
0136 'woof! woof! woof! '
0137 >>> class Cat(Animal):
0138 ... def go(self, n_times):
0139 ... return "meow! " * n_times
0140 ...
0141 >>> c = Cat()
0142 >>> call_go(c)
0143 'meow! meow! meow! '
0144
0145 If you are defining a custom constructor in a derived Python class, you *must*
0146 ensure that you explicitly call the bound C++ constructor using ``__init__``,
0147 *regardless* of whether it is a default constructor or not. Otherwise, the
0148 memory for the C++ portion of the instance will be left uninitialized, which
0149 will generally leave the C++ instance in an invalid state and cause undefined
0150 behavior if the C++ instance is subsequently used.
0151
0152 .. versionchanged:: 2.6
0153 The default pybind11 metaclass will throw a ``TypeError`` when it detects
0154 that ``__init__`` was not called by a derived class.
0155
0156 Here is an example:
0157
0158 .. code-block:: python
0159
0160 class Dachshund(Dog):
0161 def __init__(self, name):
0162 Dog.__init__(self) # Without this, a TypeError is raised.
0163 self.name = name
0164
0165 def bark(self):
0166 return "yap!"
0167
0168 Note that a direct ``__init__`` constructor *should be called*, and ``super()``
0169 should not be used. For simple cases of linear inheritance, ``super()``
0170 may work, but once you begin mixing Python and C++ multiple inheritance,
0171 things will fall apart due to differences between Python's MRO and C++'s
0172 mechanisms.
0173
0174 Please take a look at the :ref:`macro_notes` before using this feature.
0175
0176 .. note::
0177
0178 When the overridden type returns a reference or pointer to a type that
0179 pybind11 converts from Python (for example, numeric values, std::string,
0180 and other built-in value-converting types), there are some limitations to
0181 be aware of:
0182
0183 - because in these cases there is no C++ variable to reference (the value
0184 is stored in the referenced Python variable), pybind11 provides one in
0185 the PYBIND11_OVERRIDE macros (when needed) with static storage duration.
0186 Note that this means that invoking the overridden method on *any*
0187 instance will change the referenced value stored in *all* instances of
0188 that type.
0189
0190 - Attempts to modify a non-const reference will not have the desired
0191 effect: it will change only the static cache variable, but this change
0192 will not propagate to underlying Python instance, and the change will be
0193 replaced the next time the override is invoked.
0194
0195 .. warning::
0196
0197 The :c:macro:`PYBIND11_OVERRIDE` and accompanying macros used to be called
0198 ``PYBIND11_OVERLOAD`` up until pybind11 v2.5.0, and :func:`get_override`
0199 used to be called ``get_overload``. This naming was corrected and the older
0200 macro and function names may soon be deprecated, in order to reduce
0201 confusion with overloaded functions and methods and ``py::overload_cast``
0202 (see :ref:`classes`).
0203
0204 .. seealso::
0205
0206 The file :file:`tests/test_virtual_functions.cpp` contains a complete
0207 example that demonstrates how to override virtual functions using pybind11
0208 in more detail.
0209
0210 .. _virtual_and_inheritance:
0211
0212 Combining virtual functions and inheritance
0213 ===========================================
0214
0215 When combining virtual methods with inheritance, you need to be sure to provide
0216 an override for each method for which you want to allow overrides from derived
0217 python classes. For example, suppose we extend the above ``Animal``/``Dog``
0218 example as follows:
0219
0220 .. code-block:: cpp
0221
0222 class Animal {
0223 public:
0224 virtual std::string go(int n_times) = 0;
0225 virtual std::string name() { return "unknown"; }
0226 };
0227 class Dog : public Animal {
0228 public:
0229 std::string go(int n_times) override {
0230 std::string result;
0231 for (int i=0; i<n_times; ++i)
0232 result += bark() + " ";
0233 return result;
0234 }
0235 virtual std::string bark() { return "woof!"; }
0236 };
0237
0238 then the trampoline class for ``Animal`` must, as described in the previous
0239 section, override ``go()`` and ``name()``, but in order to allow python code to
0240 inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
0241 overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
0242 methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
0243 override the ``name()`` method):
0244
0245 .. code-block:: cpp
0246
0247 class PyAnimal : public Animal {
0248 public:
0249 using Animal::Animal; // Inherit constructors
0250 std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Animal, go, n_times); }
0251 std::string name() override { PYBIND11_OVERRIDE(std::string, Animal, name, ); }
0252 };
0253 class PyDog : public Dog {
0254 public:
0255 using Dog::Dog; // Inherit constructors
0256 std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, Dog, go, n_times); }
0257 std::string name() override { PYBIND11_OVERRIDE(std::string, Dog, name, ); }
0258 std::string bark() override { PYBIND11_OVERRIDE(std::string, Dog, bark, ); }
0259 };
0260
0261 .. note::
0262
0263 Note the trailing commas in the ``PYBIND11_OVERRIDE`` calls to ``name()``
0264 and ``bark()``. These are needed to portably implement a trampoline for a
0265 function that does not take any arguments. For functions that take
0266 a nonzero number of arguments, the trailing comma must be omitted.
0267
0268 A registered class derived from a pybind11-registered class with virtual
0269 methods requires a similar trampoline class, *even if* it doesn't explicitly
0270 declare or override any virtual methods itself:
0271
0272 .. code-block:: cpp
0273
0274 class Husky : public Dog {};
0275 class PyHusky : public Husky {
0276 public:
0277 using Husky::Husky; // Inherit constructors
0278 std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Husky, go, n_times); }
0279 std::string name() override { PYBIND11_OVERRIDE(std::string, Husky, name, ); }
0280 std::string bark() override { PYBIND11_OVERRIDE(std::string, Husky, bark, ); }
0281 };
0282
0283 There is, however, a technique that can be used to avoid this duplication
0284 (which can be especially helpful for a base class with several virtual
0285 methods). The technique involves using template trampoline classes, as
0286 follows:
0287
0288 .. code-block:: cpp
0289
0290 template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
0291 public:
0292 using AnimalBase::AnimalBase; // Inherit constructors
0293 std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, AnimalBase, go, n_times); }
0294 std::string name() override { PYBIND11_OVERRIDE(std::string, AnimalBase, name, ); }
0295 };
0296 template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
0297 public:
0298 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
0299 // Override PyAnimal's pure virtual go() with a non-pure one:
0300 std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, DogBase, go, n_times); }
0301 std::string bark() override { PYBIND11_OVERRIDE(std::string, DogBase, bark, ); }
0302 };
0303
0304 This technique has the advantage of requiring just one trampoline method to be
0305 declared per virtual method and pure virtual method override. It does,
0306 however, require the compiler to generate at least as many methods (and
0307 possibly more, if both pure virtual and overridden pure virtual methods are
0308 exposed, as above).
0309
0310 The classes are then registered with pybind11 using:
0311
0312 .. code-block:: cpp
0313
0314 py::class_<Animal, PyAnimal<>> animal(m, "Animal");
0315 py::class_<Dog, Animal, PyDog<>> dog(m, "Dog");
0316 py::class_<Husky, Dog, PyDog<Husky>> husky(m, "Husky");
0317 // ... add animal, dog, husky definitions
0318
0319 Note that ``Husky`` did not require a dedicated trampoline template class at
0320 all, since it neither declares any new virtual methods nor provides any pure
0321 virtual method implementations.
0322
0323 With either the repeated-virtuals or templated trampoline methods in place, you
0324 can now create a python class that inherits from ``Dog``:
0325
0326 .. code-block:: python
0327
0328 class ShihTzu(Dog):
0329 def bark(self):
0330 return "yip!"
0331
0332 .. seealso::
0333
0334 See the file :file:`tests/test_virtual_functions.cpp` for complete examples
0335 using both the duplication and templated trampoline approaches.
0336
0337 .. _extended_aliases:
0338
0339 Extended trampoline class functionality
0340 =======================================
0341
0342 .. _extended_class_functionality_forced_trampoline:
0343
0344 Forced trampoline class initialisation
0345 --------------------------------------
0346 The trampoline classes described in the previous sections are, by default, only
0347 initialized when needed. More specifically, they are initialized when a python
0348 class actually inherits from a registered type (instead of merely creating an
0349 instance of the registered type), or when a registered constructor is only
0350 valid for the trampoline class but not the registered class. This is primarily
0351 for performance reasons: when the trampoline class is not needed for anything
0352 except virtual method dispatching, not initializing the trampoline class
0353 improves performance by avoiding needing to do a run-time check to see if the
0354 inheriting python instance has an overridden method.
0355
0356 Sometimes, however, it is useful to always initialize a trampoline class as an
0357 intermediate class that does more than just handle virtual method dispatching.
0358 For example, such a class might perform extra class initialization, extra
0359 destruction operations, and might define new members and methods to enable a
0360 more python-like interface to a class.
0361
0362 In order to tell pybind11 that it should *always* initialize the trampoline
0363 class when creating new instances of a type, the class constructors should be
0364 declared using ``py::init_alias<Args, ...>()`` instead of the usual
0365 ``py::init<Args, ...>()``. This forces construction via the trampoline class,
0366 ensuring member initialization and (eventual) destruction.
0367
0368 .. seealso::
0369
0370 See the file :file:`tests/test_virtual_functions.cpp` for complete examples
0371 showing both normal and forced trampoline instantiation.
0372
0373 Different method signatures
0374 ---------------------------
0375 The macro's introduced in :ref:`overriding_virtuals` cover most of the standard
0376 use cases when exposing C++ classes to Python. Sometimes it is hard or unwieldy
0377 to create a direct one-on-one mapping between the arguments and method return
0378 type.
0379
0380 An example would be when the C++ signature contains output arguments using
0381 references (See also :ref:`faq_reference_arguments`). Another way of solving
0382 this is to use the method body of the trampoline class to do conversions to the
0383 input and return of the Python method.
0384
0385 The main building block to do so is the :func:`get_override`, this function
0386 allows retrieving a method implemented in Python from within the trampoline's
0387 methods. Consider for example a C++ method which has the signature
0388 ``bool myMethod(int32_t& value)``, where the return indicates whether
0389 something should be done with the ``value``. This can be made convenient on the
0390 Python side by allowing the Python function to return ``None`` or an ``int``:
0391
0392 .. code-block:: cpp
0393
0394 bool MyClass::myMethod(int32_t& value)
0395 {
0396 pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope.
0397 // Try to look up the overridden method on the Python side.
0398 pybind11::function override = pybind11::get_override(this, "myMethod");
0399 if (override) { // method is found
0400 auto obj = override(value); // Call the Python function.
0401 if (py::isinstance<py::int_>(obj)) { // check if it returned a Python integer type
0402 value = obj.cast<int32_t>(); // Cast it and assign it to the value.
0403 return true; // Return true; value should be used.
0404 } else {
0405 return false; // Python returned none, return false.
0406 }
0407 }
0408 return false; // Alternatively return MyClass::myMethod(value);
0409 }
0410
0411
0412 .. _custom_constructors:
0413
0414 Custom constructors
0415 ===================
0416
0417 The syntax for binding constructors was previously introduced, but it only
0418 works when a constructor of the appropriate arguments actually exists on the
0419 C++ side. To extend this to more general cases, pybind11 makes it possible
0420 to bind factory functions as constructors. For example, suppose you have a
0421 class like this:
0422
0423 .. code-block:: cpp
0424
0425 class Example {
0426 private:
0427 Example(int); // private constructor
0428 public:
0429 // Factory function:
0430 static Example create(int a) { return Example(a); }
0431 };
0432
0433 py::class_<Example>(m, "Example")
0434 .def(py::init(&Example::create));
0435
0436 While it is possible to create a straightforward binding of the static
0437 ``create`` method, it may sometimes be preferable to expose it as a constructor
0438 on the Python side. This can be accomplished by calling ``.def(py::init(...))``
0439 with the function reference returning the new instance passed as an argument.
0440 It is also possible to use this approach to bind a function returning a new
0441 instance by raw pointer or by the holder (e.g. ``std::unique_ptr``).
0442
0443 The following example shows the different approaches:
0444
0445 .. code-block:: cpp
0446
0447 class Example {
0448 private:
0449 Example(int); // private constructor
0450 public:
0451 // Factory function - returned by value:
0452 static Example create(int a) { return Example(a); }
0453
0454 // These constructors are publicly callable:
0455 Example(double);
0456 Example(int, int);
0457 Example(std::string);
0458 };
0459
0460 py::class_<Example>(m, "Example")
0461 // Bind the factory function as a constructor:
0462 .def(py::init(&Example::create))
0463 // Bind a lambda function returning a pointer wrapped in a holder:
0464 .def(py::init([](std::string arg) {
0465 return std::unique_ptr<Example>(new Example(arg));
0466 }))
0467 // Return a raw pointer:
0468 .def(py::init([](int a, int b) { return new Example(a, b); }))
0469 // You can mix the above with regular C++ constructor bindings as well:
0470 .def(py::init<double>())
0471 ;
0472
0473 When the constructor is invoked from Python, pybind11 will call the factory
0474 function and store the resulting C++ instance in the Python instance.
0475
0476 When combining factory functions constructors with :ref:`virtual function
0477 trampolines <overriding_virtuals>` there are two approaches. The first is to
0478 add a constructor to the alias class that takes a base value by
0479 rvalue-reference. If such a constructor is available, it will be used to
0480 construct an alias instance from the value returned by the factory function.
0481 The second option is to provide two factory functions to ``py::init()``: the
0482 first will be invoked when no alias class is required (i.e. when the class is
0483 being used but not inherited from in Python), and the second will be invoked
0484 when an alias is required.
0485
0486 You can also specify a single factory function that always returns an alias
0487 instance: this will result in behaviour similar to ``py::init_alias<...>()``,
0488 as described in the :ref:`extended trampoline class documentation
0489 <extended_aliases>`.
0490
0491 The following example shows the different factory approaches for a class with
0492 an alias:
0493
0494 .. code-block:: cpp
0495
0496 #include <pybind11/factory.h>
0497 class Example {
0498 public:
0499 // ...
0500 virtual ~Example() = default;
0501 };
0502 class PyExample : public Example {
0503 public:
0504 using Example::Example;
0505 PyExample(Example &&base) : Example(std::move(base)) {}
0506 };
0507 py::class_<Example, PyExample>(m, "Example")
0508 // Returns an Example pointer. If a PyExample is needed, the Example
0509 // instance will be moved via the extra constructor in PyExample, above.
0510 .def(py::init([]() { return new Example(); }))
0511 // Two callbacks:
0512 .def(py::init([]() { return new Example(); } /* no alias needed */,
0513 []() { return new PyExample(); } /* alias needed */))
0514 // *Always* returns an alias instance (like py::init_alias<>())
0515 .def(py::init([]() { return new PyExample(); }))
0516 ;
0517
0518 Brace initialization
0519 --------------------
0520
0521 ``pybind11::init<>`` internally uses C++11 brace initialization to call the
0522 constructor of the target class. This means that it can be used to bind
0523 *implicit* constructors as well:
0524
0525 .. code-block:: cpp
0526
0527 struct Aggregate {
0528 int a;
0529 std::string b;
0530 };
0531
0532 py::class_<Aggregate>(m, "Aggregate")
0533 .def(py::init<int, const std::string &>());
0534
0535 .. note::
0536
0537 Note that brace initialization preferentially invokes constructor overloads
0538 taking a ``std::initializer_list``. In the rare event that this causes an
0539 issue, you can work around it by using ``py::init(...)`` with a lambda
0540 function that constructs the new object as desired.
0541
0542 .. _classes_with_non_public_destructors:
0543
0544 Non-public destructors
0545 ======================
0546
0547 If a class has a private or protected destructor (as might e.g. be the case in
0548 a singleton pattern), a compile error will occur when creating bindings via
0549 pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that
0550 is responsible for managing the lifetime of instances will reference the
0551 destructor even if no deallocations ever take place. In order to expose classes
0552 with private or protected destructors, it is possible to override the holder
0553 type via a holder type argument to ``class_``. Pybind11 provides a helper class
0554 ``py::nodelete`` that disables any destructor invocations. In this case, it is
0555 crucial that instances are deallocated on the C++ side to avoid memory leaks.
0556
0557 .. code-block:: cpp
0558
0559 /* ... definition ... */
0560
0561 class MyClass {
0562 private:
0563 ~MyClass() { }
0564 };
0565
0566 /* ... binding code ... */
0567
0568 py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
0569 .def(py::init<>())
0570
0571 .. _destructors_that_call_python:
0572
0573 Destructors that call Python
0574 ============================
0575
0576 If a Python function is invoked from a C++ destructor, an exception may be thrown
0577 of type :class:`error_already_set`. If this error is thrown out of a class destructor,
0578 ``std::terminate()`` will be called, terminating the process. Class destructors
0579 must catch all exceptions of type :class:`error_already_set` to discard the Python
0580 exception using :func:`error_already_set::discard_as_unraisable`.
0581
0582 Every Python function should be treated as *possibly throwing*. When a Python generator
0583 stops yielding items, Python will throw a ``StopIteration`` exception, which can pass
0584 though C++ destructors if the generator's stack frame holds the last reference to C++
0585 objects.
0586
0587 For more information, see :ref:`the documentation on exceptions <unraisable_exceptions>`.
0588
0589 .. code-block:: cpp
0590
0591 class MyClass {
0592 public:
0593 ~MyClass() {
0594 try {
0595 py::print("Even printing is dangerous in a destructor");
0596 py::exec("raise ValueError('This is an unraisable exception')");
0597 } catch (py::error_already_set &e) {
0598 // error_context should be information about where/why the occurred,
0599 // e.g. use __func__ to get the name of the current function
0600 e.discard_as_unraisable(__func__);
0601 }
0602 }
0603 };
0604
0605 .. note::
0606
0607 pybind11 does not support C++ destructors marked ``noexcept(false)``.
0608
0609 .. versionadded:: 2.6
0610
0611 .. _implicit_conversions:
0612
0613 Implicit conversions
0614 ====================
0615
0616 Suppose that instances of two types ``A`` and ``B`` are used in a project, and
0617 that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
0618 could be a fixed and an arbitrary precision number type).
0619
0620 .. code-block:: cpp
0621
0622 py::class_<A>(m, "A")
0623 /// ... members ...
0624
0625 py::class_<B>(m, "B")
0626 .def(py::init<A>())
0627 /// ... members ...
0628
0629 m.def("func",
0630 [](const B &) { /* .... */ }
0631 );
0632
0633 To invoke the function ``func`` using a variable ``a`` containing an ``A``
0634 instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
0635 will automatically apply an implicit type conversion, which makes it possible
0636 to directly write ``func(a)``.
0637
0638 In this situation (i.e. where ``B`` has a constructor that converts from
0639 ``A``), the following statement enables similar implicit conversions on the
0640 Python side:
0641
0642 .. code-block:: cpp
0643
0644 py::implicitly_convertible<A, B>();
0645
0646 .. note::
0647
0648 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
0649 data type that is exposed to Python via pybind11.
0650
0651 To prevent runaway recursion, implicit conversions are non-reentrant: an
0652 implicit conversion invoked as part of another implicit conversion of the
0653 same type (i.e. from ``A`` to ``B``) will fail.
0654
0655 .. _static_properties:
0656
0657 Static properties
0658 =================
0659
0660 The section on :ref:`properties` discussed the creation of instance properties
0661 that are implemented in terms of C++ getters and setters.
0662
0663 Static properties can also be created in a similar way to expose getters and
0664 setters of static class attributes. Note that the implicit ``self`` argument
0665 also exists in this case and is used to pass the Python ``type`` subclass
0666 instance. This parameter will often not be needed by the C++ side, and the
0667 following example illustrates how to instantiate a lambda getter function
0668 that ignores it:
0669
0670 .. code-block:: cpp
0671
0672 py::class_<Foo>(m, "Foo")
0673 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
0674
0675 Operator overloading
0676 ====================
0677
0678 Suppose that we're given the following ``Vector2`` class with a vector addition
0679 and scalar multiplication operation, all implemented using overloaded operators
0680 in C++.
0681
0682 .. code-block:: cpp
0683
0684 class Vector2 {
0685 public:
0686 Vector2(float x, float y) : x(x), y(y) { }
0687
0688 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
0689 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
0690 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
0691 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
0692
0693 friend Vector2 operator*(float f, const Vector2 &v) {
0694 return Vector2(f * v.x, f * v.y);
0695 }
0696
0697 std::string toString() const {
0698 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
0699 }
0700 private:
0701 float x, y;
0702 };
0703
0704 The following snippet shows how the above operators can be conveniently exposed
0705 to Python.
0706
0707 .. code-block:: cpp
0708
0709 #include <pybind11/operators.h>
0710
0711 PYBIND11_MODULE(example, m) {
0712 py::class_<Vector2>(m, "Vector2")
0713 .def(py::init<float, float>())
0714 .def(py::self + py::self)
0715 .def(py::self += py::self)
0716 .def(py::self *= float())
0717 .def(float() * py::self)
0718 .def(py::self * float())
0719 .def(-py::self)
0720 .def("__repr__", &Vector2::toString);
0721 }
0722
0723 Note that a line like
0724
0725 .. code-block:: cpp
0726
0727 .def(py::self * float())
0728
0729 is really just short hand notation for
0730
0731 .. code-block:: cpp
0732
0733 .def("__mul__", [](const Vector2 &a, float b) {
0734 return a * b;
0735 }, py::is_operator())
0736
0737 This can be useful for exposing additional operators that don't exist on the
0738 C++ side, or to perform other types of customization. The ``py::is_operator``
0739 flag marker is needed to inform pybind11 that this is an operator, which
0740 returns ``NotImplemented`` when invoked with incompatible arguments rather than
0741 throwing a type error.
0742
0743 .. note::
0744
0745 To use the more convenient ``py::self`` notation, the additional
0746 header file :file:`pybind11/operators.h` must be included.
0747
0748 .. seealso::
0749
0750 The file :file:`tests/test_operator_overloading.cpp` contains a
0751 complete example that demonstrates how to work with overloaded operators in
0752 more detail.
0753
0754 .. _pickling:
0755
0756 Pickling support
0757 ================
0758
0759 Python's ``pickle`` module provides a powerful facility to serialize and
0760 de-serialize a Python object graph into a binary data stream. To pickle and
0761 unpickle C++ classes using pybind11, a ``py::pickle()`` definition must be
0762 provided. Suppose the class in question has the following signature:
0763
0764 .. code-block:: cpp
0765
0766 class Pickleable {
0767 public:
0768 Pickleable(const std::string &value) : m_value(value) { }
0769 const std::string &value() const { return m_value; }
0770
0771 void setExtra(int extra) { m_extra = extra; }
0772 int extra() const { return m_extra; }
0773 private:
0774 std::string m_value;
0775 int m_extra = 0;
0776 };
0777
0778 Pickling support in Python is enabled by defining the ``__setstate__`` and
0779 ``__getstate__`` methods [#f3]_. For pybind11 classes, use ``py::pickle()``
0780 to bind these two functions:
0781
0782 .. code-block:: cpp
0783
0784 py::class_<Pickleable>(m, "Pickleable")
0785 .def(py::init<std::string>())
0786 .def("value", &Pickleable::value)
0787 .def("extra", &Pickleable::extra)
0788 .def("setExtra", &Pickleable::setExtra)
0789 .def(py::pickle(
0790 [](const Pickleable &p) { // __getstate__
0791 /* Return a tuple that fully encodes the state of the object */
0792 return py::make_tuple(p.value(), p.extra());
0793 },
0794 [](py::tuple t) { // __setstate__
0795 if (t.size() != 2)
0796 throw std::runtime_error("Invalid state!");
0797
0798 /* Create a new C++ instance */
0799 Pickleable p(t[0].cast<std::string>());
0800
0801 /* Assign any additional state */
0802 p.setExtra(t[1].cast<int>());
0803
0804 return p;
0805 }
0806 ));
0807
0808 The ``__setstate__`` part of the ``py::pickle()`` definition follows the same
0809 rules as the single-argument version of ``py::init()``. The return type can be
0810 a value, pointer or holder type. See :ref:`custom_constructors` for details.
0811
0812 An instance can now be pickled as follows:
0813
0814 .. code-block:: python
0815
0816 import pickle
0817
0818 p = Pickleable("test_value")
0819 p.setExtra(15)
0820 data = pickle.dumps(p)
0821
0822
0823 .. note::
0824 If given, the second argument to ``dumps`` must be 2 or larger - 0 and 1 are
0825 not supported. Newer versions are also fine; for instance, specify ``-1`` to
0826 always use the latest available version. Beware: failure to follow these
0827 instructions will cause important pybind11 memory allocation routines to be
0828 skipped during unpickling, which will likely lead to memory corruption
0829 and/or segmentation faults. Python defaults to version 3 (Python 3-3.7) and
0830 version 4 for Python 3.8+.
0831
0832 .. seealso::
0833
0834 The file :file:`tests/test_pickling.cpp` contains a complete example
0835 that demonstrates how to pickle and unpickle types using pybind11 in more
0836 detail.
0837
0838 .. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
0839
0840 Deepcopy support
0841 ================
0842
0843 Python normally uses references in assignments. Sometimes a real copy is needed
0844 to prevent changing all copies. The ``copy`` module [#f5]_ provides these
0845 capabilities.
0846
0847 A class with pickle support is automatically also (deep)copy
0848 compatible. However, performance can be improved by adding custom
0849 ``__copy__`` and ``__deepcopy__`` methods.
0850
0851 For simple classes (deep)copy can be enabled by using the copy constructor,
0852 which should look as follows:
0853
0854 .. code-block:: cpp
0855
0856 py::class_<Copyable>(m, "Copyable")
0857 .def("__copy__", [](const Copyable &self) {
0858 return Copyable(self);
0859 })
0860 .def("__deepcopy__", [](const Copyable &self, py::dict) {
0861 return Copyable(self);
0862 }, "memo"_a);
0863
0864 .. note::
0865
0866 Dynamic attributes will not be copied in this example.
0867
0868 .. [#f5] https://docs.python.org/3/library/copy.html
0869
0870 Multiple Inheritance
0871 ====================
0872
0873 pybind11 can create bindings for types that derive from multiple base types
0874 (aka. *multiple inheritance*). To do so, specify all bases in the template
0875 arguments of the ``class_`` declaration:
0876
0877 .. code-block:: cpp
0878
0879 py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType")
0880 ...
0881
0882 The base types can be specified in arbitrary order, and they can even be
0883 interspersed with alias types and holder types (discussed earlier in this
0884 document)---pybind11 will automatically find out which is which. The only
0885 requirement is that the first template argument is the type to be declared.
0886
0887 It is also permitted to inherit multiply from exported C++ classes in Python,
0888 as well as inheriting from multiple Python and/or pybind11-exported classes.
0889
0890 There is one caveat regarding the implementation of this feature:
0891
0892 When only one base type is specified for a C++ type that actually has multiple
0893 bases, pybind11 will assume that it does not participate in multiple
0894 inheritance, which can lead to undefined behavior. In such cases, add the tag
0895 ``multiple_inheritance`` to the class constructor:
0896
0897 .. code-block:: cpp
0898
0899 py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance());
0900
0901 The tag is redundant and does not need to be specified when multiple base types
0902 are listed.
0903
0904 .. _module_local:
0905
0906 Module-local class bindings
0907 ===========================
0908
0909 When creating a binding for a class, pybind11 by default makes that binding
0910 "global" across modules. What this means is that a type defined in one module
0911 can be returned from any module resulting in the same Python type. For
0912 example, this allows the following:
0913
0914 .. code-block:: cpp
0915
0916 // In the module1.cpp binding code for module1:
0917 py::class_<Pet>(m, "Pet")
0918 .def(py::init<std::string>())
0919 .def_readonly("name", &Pet::name);
0920
0921 .. code-block:: cpp
0922
0923 // In the module2.cpp binding code for module2:
0924 m.def("create_pet", [](std::string name) { return new Pet(name); });
0925
0926 .. code-block:: pycon
0927
0928 >>> from module1 import Pet
0929 >>> from module2 import create_pet
0930 >>> pet1 = Pet("Kitty")
0931 >>> pet2 = create_pet("Doggy")
0932 >>> pet2.name()
0933 'Doggy'
0934
0935 When writing binding code for a library, this is usually desirable: this
0936 allows, for example, splitting up a complex library into multiple Python
0937 modules.
0938
0939 In some cases, however, this can cause conflicts. For example, suppose two
0940 unrelated modules make use of an external C++ library and each provide custom
0941 bindings for one of that library's classes. This will result in an error when
0942 a Python program attempts to import both modules (directly or indirectly)
0943 because of conflicting definitions on the external type:
0944
0945 .. code-block:: cpp
0946
0947 // dogs.cpp
0948
0949 // Binding for external library class:
0950 py::class<pets::Pet>(m, "Pet")
0951 .def("name", &pets::Pet::name);
0952
0953 // Binding for local extension class:
0954 py::class<Dog, pets::Pet>(m, "Dog")
0955 .def(py::init<std::string>());
0956
0957 .. code-block:: cpp
0958
0959 // cats.cpp, in a completely separate project from the above dogs.cpp.
0960
0961 // Binding for external library class:
0962 py::class<pets::Pet>(m, "Pet")
0963 .def("get_name", &pets::Pet::name);
0964
0965 // Binding for local extending class:
0966 py::class<Cat, pets::Pet>(m, "Cat")
0967 .def(py::init<std::string>());
0968
0969 .. code-block:: pycon
0970
0971 >>> import cats
0972 >>> import dogs
0973 Traceback (most recent call last):
0974 File "<stdin>", line 1, in <module>
0975 ImportError: generic_type: type "Pet" is already registered!
0976
0977 To get around this, you can tell pybind11 to keep the external class binding
0978 localized to the module by passing the ``py::module_local()`` attribute into
0979 the ``py::class_`` constructor:
0980
0981 .. code-block:: cpp
0982
0983 // Pet binding in dogs.cpp:
0984 py::class<pets::Pet>(m, "Pet", py::module_local())
0985 .def("name", &pets::Pet::name);
0986
0987 .. code-block:: cpp
0988
0989 // Pet binding in cats.cpp:
0990 py::class<pets::Pet>(m, "Pet", py::module_local())
0991 .def("get_name", &pets::Pet::name);
0992
0993 This makes the Python-side ``dogs.Pet`` and ``cats.Pet`` into distinct classes,
0994 avoiding the conflict and allowing both modules to be loaded. C++ code in the
0995 ``dogs`` module that casts or returns a ``Pet`` instance will result in a
0996 ``dogs.Pet`` Python instance, while C++ code in the ``cats`` module will result
0997 in a ``cats.Pet`` Python instance.
0998
0999 This does come with two caveats, however: First, external modules cannot return
1000 or cast a ``Pet`` instance to Python (unless they also provide their own local
1001 bindings). Second, from the Python point of view they are two distinct classes.
1002
1003 Note that the locality only applies in the C++ -> Python direction. When
1004 passing such a ``py::module_local`` type into a C++ function, the module-local
1005 classes are still considered. This means that if the following function is
1006 added to any module (including but not limited to the ``cats`` and ``dogs``
1007 modules above) it will be callable with either a ``dogs.Pet`` or ``cats.Pet``
1008 argument:
1009
1010 .. code-block:: cpp
1011
1012 m.def("pet_name", [](const pets::Pet &pet) { return pet.name(); });
1013
1014 For example, suppose the above function is added to each of ``cats.cpp``,
1015 ``dogs.cpp`` and ``frogs.cpp`` (where ``frogs.cpp`` is some other module that
1016 does *not* bind ``Pets`` at all).
1017
1018 .. code-block:: pycon
1019
1020 >>> import cats, dogs, frogs # No error because of the added py::module_local()
1021 >>> mycat, mydog = cats.Cat("Fluffy"), dogs.Dog("Rover")
1022 >>> (cats.pet_name(mycat), dogs.pet_name(mydog))
1023 ('Fluffy', 'Rover')
1024 >>> (cats.pet_name(mydog), dogs.pet_name(mycat), frogs.pet_name(mycat))
1025 ('Rover', 'Fluffy', 'Fluffy')
1026
1027 It is possible to use ``py::module_local()`` registrations in one module even
1028 if another module registers the same type globally: within the module with the
1029 module-local definition, all C++ instances will be cast to the associated bound
1030 Python type. In other modules any such values are converted to the global
1031 Python type created elsewhere.
1032
1033 .. note::
1034
1035 STL bindings (as provided via the optional :file:`pybind11/stl_bind.h`
1036 header) apply ``py::module_local`` by default when the bound type might
1037 conflict with other modules; see :ref:`stl_bind` for details.
1038
1039 .. note::
1040
1041 The localization of the bound types is actually tied to the shared object
1042 or binary generated by the compiler/linker. For typical modules created
1043 with ``PYBIND11_MODULE()``, this distinction is not significant. It is
1044 possible, however, when :ref:`embedding` to embed multiple modules in the
1045 same binary (see :ref:`embedding_modules`). In such a case, the
1046 localization will apply across all embedded modules within the same binary.
1047
1048 .. seealso::
1049
1050 The file :file:`tests/test_local_bindings.cpp` contains additional examples
1051 that demonstrate how ``py::module_local()`` works.
1052
1053 Binding protected member functions
1054 ==================================
1055
1056 It's normally not possible to expose ``protected`` member functions to Python:
1057
1058 .. code-block:: cpp
1059
1060 class A {
1061 protected:
1062 int foo() const { return 42; }
1063 };
1064
1065 py::class_<A>(m, "A")
1066 .def("foo", &A::foo); // error: 'foo' is a protected member of 'A'
1067
1068 On one hand, this is good because non-``public`` members aren't meant to be
1069 accessed from the outside. But we may want to make use of ``protected``
1070 functions in derived Python classes.
1071
1072 The following pattern makes this possible:
1073
1074 .. code-block:: cpp
1075
1076 class A {
1077 protected:
1078 int foo() const { return 42; }
1079 };
1080
1081 class Publicist : public A { // helper type for exposing protected functions
1082 public:
1083 using A::foo; // inherited with different access modifier
1084 };
1085
1086 py::class_<A>(m, "A") // bind the primary class
1087 .def("foo", &Publicist::foo); // expose protected methods via the publicist
1088
1089 This works because ``&Publicist::foo`` is exactly the same function as
1090 ``&A::foo`` (same signature and address), just with a different access
1091 modifier. The only purpose of the ``Publicist`` helper class is to make
1092 the function name ``public``.
1093
1094 If the intent is to expose ``protected`` ``virtual`` functions which can be
1095 overridden in Python, the publicist pattern can be combined with the previously
1096 described trampoline:
1097
1098 .. code-block:: cpp
1099
1100 class A {
1101 public:
1102 virtual ~A() = default;
1103
1104 protected:
1105 virtual int foo() const { return 42; }
1106 };
1107
1108 class Trampoline : public A {
1109 public:
1110 int foo() const override { PYBIND11_OVERRIDE(int, A, foo, ); }
1111 };
1112
1113 class Publicist : public A {
1114 public:
1115 using A::foo;
1116 };
1117
1118 py::class_<A, Trampoline>(m, "A") // <-- `Trampoline` here
1119 .def("foo", &Publicist::foo); // <-- `Publicist` here, not `Trampoline`!
1120
1121 Binding final classes
1122 =====================
1123
1124 Some classes may not be appropriate to inherit from. In C++11, classes can
1125 use the ``final`` specifier to ensure that a class cannot be inherited from.
1126 The ``py::is_final`` attribute can be used to ensure that Python classes
1127 cannot inherit from a specified type. The underlying C++ type does not need
1128 to be declared final.
1129
1130 .. code-block:: cpp
1131
1132 class IsFinal final {};
1133
1134 py::class_<IsFinal>(m, "IsFinal", py::is_final());
1135
1136 When you try to inherit from such a class in Python, you will now get this
1137 error:
1138
1139 .. code-block:: pycon
1140
1141 >>> class PyFinalChild(IsFinal):
1142 ... pass
1143 ...
1144 TypeError: type 'IsFinal' is not an acceptable base type
1145
1146 .. note:: This attribute is currently ignored on PyPy
1147
1148 .. versionadded:: 2.6
1149
1150 Binding classes with template parameters
1151 ========================================
1152
1153 pybind11 can also wrap classes that have template parameters. Consider these classes:
1154
1155 .. code-block:: cpp
1156
1157 struct Cat {};
1158 struct Dog {};
1159
1160 template <typename PetType>
1161 struct Cage {
1162 Cage(PetType& pet);
1163 PetType& get();
1164 };
1165
1166 C++ templates may only be instantiated at compile time, so pybind11 can only
1167 wrap instantiated templated classes. You cannot wrap a non-instantiated template:
1168
1169 .. code-block:: cpp
1170
1171 // BROKEN (this will not compile)
1172 py::class_<Cage>(m, "Cage");
1173 .def("get", &Cage::get);
1174
1175 You must explicitly specify each template/type combination that you want to
1176 wrap separately.
1177
1178 .. code-block:: cpp
1179
1180 // ok
1181 py::class_<Cage<Cat>>(m, "CatCage")
1182 .def("get", &Cage<Cat>::get);
1183
1184 // ok
1185 py::class_<Cage<Dog>>(m, "DogCage")
1186 .def("get", &Cage<Dog>::get);
1187
1188 If your class methods have template parameters you can wrap those as well,
1189 but once again each instantiation must be explicitly specified:
1190
1191 .. code-block:: cpp
1192
1193 typename <typename T>
1194 struct MyClass {
1195 template <typename V>
1196 T fn(V v);
1197 };
1198
1199 py::class<MyClass<int>>(m, "MyClassT")
1200 .def("fn", &MyClass<int>::fn<std::string>);
1201
1202 Custom automatic downcasters
1203 ============================
1204
1205 As explained in :ref:`inheritance`, pybind11 comes with built-in
1206 understanding of the dynamic type of polymorphic objects in C++; that
1207 is, returning a Pet to Python produces a Python object that knows it's
1208 wrapping a Dog, if Pet has virtual methods and pybind11 knows about
1209 Dog and this Pet is in fact a Dog. Sometimes, you might want to
1210 provide this automatic downcasting behavior when creating bindings for
1211 a class hierarchy that does not use standard C++ polymorphism, such as
1212 LLVM [#f4]_. As long as there's some way to determine at runtime
1213 whether a downcast is safe, you can proceed by specializing the
1214 ``pybind11::polymorphic_type_hook`` template:
1215
1216 .. code-block:: cpp
1217
1218 enum class PetKind { Cat, Dog, Zebra };
1219 struct Pet { // Not polymorphic: has no virtual methods
1220 const PetKind kind;
1221 int age = 0;
1222 protected:
1223 Pet(PetKind _kind) : kind(_kind) {}
1224 };
1225 struct Dog : Pet {
1226 Dog() : Pet(PetKind::Dog) {}
1227 std::string sound = "woof!";
1228 std::string bark() const { return sound; }
1229 };
1230
1231 namespace PYBIND11_NAMESPACE {
1232 template<> struct polymorphic_type_hook<Pet> {
1233 static const void *get(const Pet *src, const std::type_info*& type) {
1234 // note that src may be nullptr
1235 if (src && src->kind == PetKind::Dog) {
1236 type = &typeid(Dog);
1237 return static_cast<const Dog*>(src);
1238 }
1239 return src;
1240 }
1241 };
1242 } // namespace PYBIND11_NAMESPACE
1243
1244 When pybind11 wants to convert a C++ pointer of type ``Base*`` to a
1245 Python object, it calls ``polymorphic_type_hook<Base>::get()`` to
1246 determine if a downcast is possible. The ``get()`` function should use
1247 whatever runtime information is available to determine if its ``src``
1248 parameter is in fact an instance of some class ``Derived`` that
1249 inherits from ``Base``. If it finds such a ``Derived``, it sets ``type
1250 = &typeid(Derived)`` and returns a pointer to the ``Derived`` object
1251 that contains ``src``. Otherwise, it just returns ``src``, leaving
1252 ``type`` at its default value of nullptr. If you set ``type`` to a
1253 type that pybind11 doesn't know about, no downcasting will occur, and
1254 the original ``src`` pointer will be used with its static type
1255 ``Base*``.
1256
1257 It is critical that the returned pointer and ``type`` argument of
1258 ``get()`` agree with each other: if ``type`` is set to something
1259 non-null, the returned pointer must point to the start of an object
1260 whose type is ``type``. If the hierarchy being exposed uses only
1261 single inheritance, a simple ``return src;`` will achieve this just
1262 fine, but in the general case, you must cast ``src`` to the
1263 appropriate derived-class pointer (e.g. using
1264 ``static_cast<Derived>(src)``) before allowing it to be returned as a
1265 ``void*``.
1266
1267 .. [#f4] https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
1268
1269 .. note::
1270
1271 pybind11's standard support for downcasting objects whose types
1272 have virtual methods is implemented using
1273 ``polymorphic_type_hook`` too, using the standard C++ ability to
1274 determine the most-derived type of a polymorphic object using
1275 ``typeid()`` and to cast a base pointer to that most-derived type
1276 (even if you don't know what it is) using ``dynamic_cast<void*>``.
1277
1278 .. seealso::
1279
1280 The file :file:`tests/test_tagbased_polymorphic.cpp` contains a
1281 more complete example, including a demonstration of how to provide
1282 automatic downcasting for an entire class hierarchy without
1283 writing one get() function for each class.
1284
1285 Accessing the type object
1286 =========================
1287
1288 You can get the type object from a C++ class that has already been registered using:
1289
1290 .. code-block:: cpp
1291
1292 py::type T_py = py::type::of<T>();
1293
1294 You can directly use ``py::type::of(ob)`` to get the type object from any python
1295 object, just like ``type(ob)`` in Python.
1296
1297 .. note::
1298
1299 Other types, like ``py::type::of<int>()``, do not work, see :ref:`type-conversions`.
1300
1301 .. versionadded:: 2.6
1302
1303 Custom type setup
1304 =================
1305
1306 For advanced use cases, such as enabling garbage collection support, you may
1307 wish to directly manipulate the ``PyHeapTypeObject`` corresponding to a
1308 ``py::class_`` definition.
1309
1310 You can do that using ``py::custom_type_setup``:
1311
1312 .. code-block:: cpp
1313
1314 struct OwnsPythonObjects {
1315 py::object value = py::none();
1316 };
1317 py::class_<OwnsPythonObjects> cls(
1318 m, "OwnsPythonObjects", py::custom_type_setup([](PyHeapTypeObject *heap_type) {
1319 auto *type = &heap_type->ht_type;
1320 type->tp_flags |= Py_TPFLAGS_HAVE_GC;
1321 type->tp_traverse = [](PyObject *self_base, visitproc visit, void *arg) {
1322 auto &self = py::cast<OwnsPythonObjects&>(py::handle(self_base));
1323 Py_VISIT(self.value.ptr());
1324 return 0;
1325 };
1326 type->tp_clear = [](PyObject *self_base) {
1327 auto &self = py::cast<OwnsPythonObjects&>(py::handle(self_base));
1328 self.value = py::none();
1329 return 0;
1330 };
1331 }));
1332 cls.def(py::init<>());
1333 cls.def_readwrite("value", &OwnsPythonObjects::value);
1334
1335 .. versionadded:: 2.8