Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-17 09:56:17

0001 /* zlib.h -- interface of the 'zlib' general purpose compression library
0002   version 1.3.1, January 22nd, 2024
0003 
0004   Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
0005 
0006   This software is provided 'as-is', without any express or implied
0007   warranty.  In no event will the authors be held liable for any damages
0008   arising from the use of this software.
0009 
0010   Permission is granted to anyone to use this software for any purpose,
0011   including commercial applications, and to alter it and redistribute it
0012   freely, subject to the following restrictions:
0013 
0014   1. The origin of this software must not be misrepresented; you must not
0015      claim that you wrote the original software. If you use this software
0016      in a product, an acknowledgment in the product documentation would be
0017      appreciated but is not required.
0018   2. Altered source versions must be plainly marked as such, and must not be
0019      misrepresented as being the original software.
0020   3. This notice may not be removed or altered from any source distribution.
0021 
0022   Jean-loup Gailly        Mark Adler
0023   jloup@gzip.org          madler@alumni.caltech.edu
0024 
0025 
0026   The data format used by the zlib library is described by RFCs (Request for
0027   Comments) 1950 to 1952 in the files http://tools.ietf.org/html/rfc1950
0028   (zlib format), rfc1951 (deflate format) and rfc1952 (gzip format).
0029 */
0030 
0031 #ifndef ZLIB_H
0032 #define ZLIB_H
0033 
0034 #include "zconf.h"
0035 
0036 #ifdef __cplusplus
0037 extern "C" {
0038 #endif
0039 
0040 #define ZLIB_VERSION "1.3.1"
0041 #define ZLIB_VERNUM 0x1310
0042 #define ZLIB_VER_MAJOR 1
0043 #define ZLIB_VER_MINOR 3
0044 #define ZLIB_VER_REVISION 1
0045 #define ZLIB_VER_SUBREVISION 0
0046 
0047 /*
0048     The 'zlib' compression library provides in-memory compression and
0049   decompression functions, including integrity checks of the uncompressed data.
0050   This version of the library supports only one compression method (deflation)
0051   but other algorithms will be added later and will have the same stream
0052   interface.
0053 
0054     Compression can be done in a single step if the buffers are large enough,
0055   or can be done by repeated calls of the compression function.  In the latter
0056   case, the application must provide more input and/or consume the output
0057   (providing more output space) before each call.
0058 
0059     The compressed data format used by default by the in-memory functions is
0060   the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped
0061   around a deflate stream, which is itself documented in RFC 1951.
0062 
0063     The library also supports reading and writing files in gzip (.gz) format
0064   with an interface similar to that of stdio using the functions that start
0065   with "gz".  The gzip format is different from the zlib format.  gzip is a
0066   gzip wrapper, documented in RFC 1952, wrapped around a deflate stream.
0067 
0068     This library can optionally read and write gzip and raw deflate streams in
0069   memory as well.
0070 
0071     The zlib format was designed to be compact and fast for use in memory
0072   and on communications channels.  The gzip format was designed for single-
0073   file compression on file systems, has a larger header than zlib to maintain
0074   directory information, and uses a different, slower check method than zlib.
0075 
0076     The library does not install any signal handler.  The decoder checks
0077   the consistency of the compressed data, so the library should never crash
0078   even in the case of corrupted input.
0079 */
0080 
0081 typedef voidpf (*alloc_func)(voidpf opaque, uInt items, uInt size);
0082 typedef void   (*free_func)(voidpf opaque, voidpf address);
0083 
0084 struct internal_state;
0085 
0086 typedef struct z_stream_s {
0087     z_const Bytef *next_in;     /* next input byte */
0088     uInt     avail_in;  /* number of bytes available at next_in */
0089     uLong    total_in;  /* total number of input bytes read so far */
0090 
0091     Bytef    *next_out; /* next output byte will go here */
0092     uInt     avail_out; /* remaining free space at next_out */
0093     uLong    total_out; /* total number of bytes output so far */
0094 
0095     z_const char *msg;  /* last error message, NULL if no error */
0096     struct internal_state FAR *state; /* not visible by applications */
0097 
0098     alloc_func zalloc;  /* used to allocate the internal state */
0099     free_func  zfree;   /* used to free the internal state */
0100     voidpf     opaque;  /* private data object passed to zalloc and zfree */
0101 
0102     int     data_type;  /* best guess about the data type: binary or text
0103                            for deflate, or the decoding state for inflate */
0104     uLong   adler;      /* Adler-32 or CRC-32 value of the uncompressed data */
0105     uLong   reserved;   /* reserved for future use */
0106 } z_stream;
0107 
0108 typedef z_stream FAR *z_streamp;
0109 
0110 /*
0111      gzip header information passed to and from zlib routines.  See RFC 1952
0112   for more details on the meanings of these fields.
0113 */
0114 typedef struct gz_header_s {
0115     int     text;       /* true if compressed data believed to be text */
0116     uLong   time;       /* modification time */
0117     int     xflags;     /* extra flags (not used when writing a gzip file) */
0118     int     os;         /* operating system */
0119     Bytef   *extra;     /* pointer to extra field or Z_NULL if none */
0120     uInt    extra_len;  /* extra field length (valid if extra != Z_NULL) */
0121     uInt    extra_max;  /* space at extra (only when reading header) */
0122     Bytef   *name;      /* pointer to zero-terminated file name or Z_NULL */
0123     uInt    name_max;   /* space at name (only when reading header) */
0124     Bytef   *comment;   /* pointer to zero-terminated comment or Z_NULL */
0125     uInt    comm_max;   /* space at comment (only when reading header) */
0126     int     hcrc;       /* true if there was or will be a header crc */
0127     int     done;       /* true when done reading gzip header (not used
0128                            when writing a gzip file) */
0129 } gz_header;
0130 
0131 typedef gz_header FAR *gz_headerp;
0132 
0133 /*
0134      The application must update next_in and avail_in when avail_in has dropped
0135    to zero.  It must update next_out and avail_out when avail_out has dropped
0136    to zero.  The application must initialize zalloc, zfree and opaque before
0137    calling the init function.  All other fields are set by the compression
0138    library and must not be updated by the application.
0139 
0140      The opaque value provided by the application will be passed as the first
0141    parameter for calls of zalloc and zfree.  This can be useful for custom
0142    memory management.  The compression library attaches no meaning to the
0143    opaque value.
0144 
0145      zalloc must return Z_NULL if there is not enough memory for the object.
0146    If zlib is used in a multi-threaded application, zalloc and zfree must be
0147    thread safe.  In that case, zlib is thread-safe.  When zalloc and zfree are
0148    Z_NULL on entry to the initialization function, they are set to internal
0149    routines that use the standard library functions malloc() and free().
0150 
0151      On 16-bit systems, the functions zalloc and zfree must be able to allocate
0152    exactly 65536 bytes, but will not be required to allocate more than this if
0153    the symbol MAXSEG_64K is defined (see zconf.h).  WARNING: On MSDOS, pointers
0154    returned by zalloc for objects of exactly 65536 bytes *must* have their
0155    offset normalized to zero.  The default allocation function provided by this
0156    library ensures this (see zutil.c).  To reduce memory requirements and avoid
0157    any allocation of 64K objects, at the expense of compression ratio, compile
0158    the library with -DMAX_WBITS=14 (see zconf.h).
0159 
0160      The fields total_in and total_out can be used for statistics or progress
0161    reports.  After compression, total_in holds the total size of the
0162    uncompressed data and may be saved for use by the decompressor (particularly
0163    if the decompressor wants to decompress everything in a single step).
0164 */
0165 
0166                         /* constants */
0167 
0168 #define Z_NO_FLUSH      0
0169 #define Z_PARTIAL_FLUSH 1
0170 #define Z_SYNC_FLUSH    2
0171 #define Z_FULL_FLUSH    3
0172 #define Z_FINISH        4
0173 #define Z_BLOCK         5
0174 #define Z_TREES         6
0175 /* Allowed flush values; see deflate() and inflate() below for details */
0176 
0177 #define Z_OK            0
0178 #define Z_STREAM_END    1
0179 #define Z_NEED_DICT     2
0180 #define Z_ERRNO        (-1)
0181 #define Z_STREAM_ERROR (-2)
0182 #define Z_DATA_ERROR   (-3)
0183 #define Z_MEM_ERROR    (-4)
0184 #define Z_BUF_ERROR    (-5)
0185 #define Z_VERSION_ERROR (-6)
0186 /* Return codes for the compression/decompression functions. Negative values
0187  * are errors, positive values are used for special but normal events.
0188  */
0189 
0190 #define Z_NO_COMPRESSION         0
0191 #define Z_BEST_SPEED             1
0192 #define Z_BEST_COMPRESSION       9
0193 #define Z_DEFAULT_COMPRESSION  (-1)
0194 /* compression levels */
0195 
0196 #define Z_FILTERED            1
0197 #define Z_HUFFMAN_ONLY        2
0198 #define Z_RLE                 3
0199 #define Z_FIXED               4
0200 #define Z_DEFAULT_STRATEGY    0
0201 /* compression strategy; see deflateInit2() below for details */
0202 
0203 #define Z_BINARY   0
0204 #define Z_TEXT     1
0205 #define Z_ASCII    Z_TEXT   /* for compatibility with 1.2.2 and earlier */
0206 #define Z_UNKNOWN  2
0207 /* Possible values of the data_type field for deflate() */
0208 
0209 #define Z_DEFLATED   8
0210 /* The deflate compression method (the only one supported in this version) */
0211 
0212 #define Z_NULL  0  /* for initializing zalloc, zfree, opaque */
0213 
0214 #define zlib_version zlibVersion()
0215 /* for compatibility with versions < 1.0.2 */
0216 
0217 
0218                         /* basic functions */
0219 
0220 ZEXTERN const char * ZEXPORT zlibVersion(void);
0221 /* The application can compare zlibVersion and ZLIB_VERSION for consistency.
0222    If the first character differs, the library code actually used is not
0223    compatible with the zlib.h header file used by the application.  This check
0224    is automatically made by deflateInit and inflateInit.
0225  */
0226 
0227 /*
0228 ZEXTERN int ZEXPORT deflateInit(z_streamp strm, int level);
0229 
0230      Initializes the internal stream state for compression.  The fields
0231    zalloc, zfree and opaque must be initialized before by the caller.  If
0232    zalloc and zfree are set to Z_NULL, deflateInit updates them to use default
0233    allocation functions.  total_in, total_out, adler, and msg are initialized.
0234 
0235      The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
0236    1 gives best speed, 9 gives best compression, 0 gives no compression at all
0237    (the input data is simply copied a block at a time).  Z_DEFAULT_COMPRESSION
0238    requests a default compromise between speed and compression (currently
0239    equivalent to level 6).
0240 
0241      deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
0242    memory, Z_STREAM_ERROR if level is not a valid compression level, or
0243    Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible
0244    with the version assumed by the caller (ZLIB_VERSION).  msg is set to null
0245    if there is no error message.  deflateInit does not perform any compression:
0246    this will be done by deflate().
0247 */
0248 
0249 
0250 ZEXTERN int ZEXPORT deflate(z_streamp strm, int flush);
0251 /*
0252     deflate compresses as much data as possible, and stops when the input
0253   buffer becomes empty or the output buffer becomes full.  It may introduce
0254   some output latency (reading input without producing any output) except when
0255   forced to flush.
0256 
0257     The detailed semantics are as follows.  deflate performs one or both of the
0258   following actions:
0259 
0260   - Compress more input starting at next_in and update next_in and avail_in
0261     accordingly.  If not all input can be processed (because there is not
0262     enough room in the output buffer), next_in and avail_in are updated and
0263     processing will resume at this point for the next call of deflate().
0264 
0265   - Generate more output starting at next_out and update next_out and avail_out
0266     accordingly.  This action is forced if the parameter flush is non zero.
0267     Forcing flush frequently degrades the compression ratio, so this parameter
0268     should be set only when necessary.  Some output may be provided even if
0269     flush is zero.
0270 
0271     Before the call of deflate(), the application should ensure that at least
0272   one of the actions is possible, by providing more input and/or consuming more
0273   output, and updating avail_in or avail_out accordingly; avail_out should
0274   never be zero before the call.  The application can consume the compressed
0275   output when it wants, for example when the output buffer is full (avail_out
0276   == 0), or after each call of deflate().  If deflate returns Z_OK and with
0277   zero avail_out, it must be called again after making room in the output
0278   buffer because there might be more output pending. See deflatePending(),
0279   which can be used if desired to determine whether or not there is more output
0280   in that case.
0281 
0282     Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to
0283   decide how much data to accumulate before producing output, in order to
0284   maximize compression.
0285 
0286     If the parameter flush is set to Z_SYNC_FLUSH, all pending output is
0287   flushed to the output buffer and the output is aligned on a byte boundary, so
0288   that the decompressor can get all input data available so far.  (In
0289   particular avail_in is zero after the call if enough output space has been
0290   provided before the call.) Flushing may degrade compression for some
0291   compression algorithms and so it should be used only when necessary.  This
0292   completes the current deflate block and follows it with an empty stored block
0293   that is three bits plus filler bits to the next byte, followed by four bytes
0294   (00 00 ff ff).
0295 
0296     If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the
0297   output buffer, but the output is not aligned to a byte boundary.  All of the
0298   input data so far will be available to the decompressor, as for Z_SYNC_FLUSH.
0299   This completes the current deflate block and follows it with an empty fixed
0300   codes block that is 10 bits long.  This assures that enough bytes are output
0301   in order for the decompressor to finish the block before the empty fixed
0302   codes block.
0303 
0304     If flush is set to Z_BLOCK, a deflate block is completed and emitted, as
0305   for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to
0306   seven bits of the current block are held to be written as the next byte after
0307   the next deflate block is completed.  In this case, the decompressor may not
0308   be provided enough bits at this point in order to complete decompression of
0309   the data provided so far to the compressor.  It may need to wait for the next
0310   block to be emitted.  This is for advanced applications that need to control
0311   the emission of deflate blocks.
0312 
0313     If flush is set to Z_FULL_FLUSH, all output is flushed as with
0314   Z_SYNC_FLUSH, and the compression state is reset so that decompression can
0315   restart from this point if previous compressed data has been damaged or if
0316   random access is desired.  Using Z_FULL_FLUSH too often can seriously degrade
0317   compression.
0318 
0319     If deflate returns with avail_out == 0, this function must be called again
0320   with the same value of the flush parameter and more output space (updated
0321   avail_out), until the flush is complete (deflate returns with non-zero
0322   avail_out).  In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
0323   avail_out is greater than six when the flush marker begins, in order to avoid
0324   repeated flush markers upon calling deflate() again when avail_out == 0.
0325 
0326     If the parameter flush is set to Z_FINISH, pending input is processed,
0327   pending output is flushed and deflate returns with Z_STREAM_END if there was
0328   enough output space.  If deflate returns with Z_OK or Z_BUF_ERROR, this
0329   function must be called again with Z_FINISH and more output space (updated
0330   avail_out) but no more input data, until it returns with Z_STREAM_END or an
0331   error.  After deflate has returned Z_STREAM_END, the only possible operations
0332   on the stream are deflateReset or deflateEnd.
0333 
0334     Z_FINISH can be used in the first deflate call after deflateInit if all the
0335   compression is to be done in a single step.  In order to complete in one
0336   call, avail_out must be at least the value returned by deflateBound (see
0337   below).  Then deflate is guaranteed to return Z_STREAM_END.  If not enough
0338   output space is provided, deflate will not return Z_STREAM_END, and it must
0339   be called again as described above.
0340 
0341     deflate() sets strm->adler to the Adler-32 checksum of all input read
0342   so far (that is, total_in bytes).  If a gzip stream is being generated, then
0343   strm->adler will be the CRC-32 checksum of the input read so far.  (See
0344   deflateInit2 below.)
0345 
0346     deflate() may update strm->data_type if it can make a good guess about
0347   the input data type (Z_BINARY or Z_TEXT).  If in doubt, the data is
0348   considered binary.  This field is only for information purposes and does not
0349   affect the compression algorithm in any manner.
0350 
0351     deflate() returns Z_OK if some progress has been made (more input
0352   processed or more output produced), Z_STREAM_END if all input has been
0353   consumed and all output has been produced (only when flush is set to
0354   Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
0355   if next_in or next_out was Z_NULL or the state was inadvertently written over
0356   by the application), or Z_BUF_ERROR if no progress is possible (for example
0357   avail_in or avail_out was zero).  Note that Z_BUF_ERROR is not fatal, and
0358   deflate() can be called again with more input and more output space to
0359   continue compressing.
0360 */
0361 
0362 
0363 ZEXTERN int ZEXPORT deflateEnd(z_streamp strm);
0364 /*
0365      All dynamically allocated data structures for this stream are freed.
0366    This function discards any unprocessed input and does not flush any pending
0367    output.
0368 
0369      deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
0370    stream state was inconsistent, Z_DATA_ERROR if the stream was freed
0371    prematurely (some input or output was discarded).  In the error case, msg
0372    may be set but then points to a static string (which must not be
0373    deallocated).
0374 */
0375 
0376 
0377 /*
0378 ZEXTERN int ZEXPORT inflateInit(z_streamp strm);
0379 
0380      Initializes the internal stream state for decompression.  The fields
0381    next_in, avail_in, zalloc, zfree and opaque must be initialized before by
0382    the caller.  In the current version of inflate, the provided input is not
0383    read or consumed.  The allocation of a sliding window will be deferred to
0384    the first call of inflate (if the decompression does not complete on the
0385    first call).  If zalloc and zfree are set to Z_NULL, inflateInit updates
0386    them to use default allocation functions.  total_in, total_out, adler, and
0387    msg are initialized.
0388 
0389      inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
0390    memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
0391    version assumed by the caller, or Z_STREAM_ERROR if the parameters are
0392    invalid, such as a null pointer to the structure.  msg is set to null if
0393    there is no error message.  inflateInit does not perform any decompression.
0394    Actual decompression will be done by inflate().  So next_in, and avail_in,
0395    next_out, and avail_out are unused and unchanged.  The current
0396    implementation of inflateInit() does not process any header information --
0397    that is deferred until inflate() is called.
0398 */
0399 
0400 
0401 ZEXTERN int ZEXPORT inflate(z_streamp strm, int flush);
0402 /*
0403     inflate decompresses as much data as possible, and stops when the input
0404   buffer becomes empty or the output buffer becomes full.  It may introduce
0405   some output latency (reading input without producing any output) except when
0406   forced to flush.
0407 
0408   The detailed semantics are as follows.  inflate performs one or both of the
0409   following actions:
0410 
0411   - Decompress more input starting at next_in and update next_in and avail_in
0412     accordingly.  If not all input can be processed (because there is not
0413     enough room in the output buffer), then next_in and avail_in are updated
0414     accordingly, and processing will resume at this point for the next call of
0415     inflate().
0416 
0417   - Generate more output starting at next_out and update next_out and avail_out
0418     accordingly.  inflate() provides as much output as possible, until there is
0419     no more input data or no more space in the output buffer (see below about
0420     the flush parameter).
0421 
0422     Before the call of inflate(), the application should ensure that at least
0423   one of the actions is possible, by providing more input and/or consuming more
0424   output, and updating the next_* and avail_* values accordingly.  If the
0425   caller of inflate() does not provide both available input and available
0426   output space, it is possible that there will be no progress made.  The
0427   application can consume the uncompressed output when it wants, for example
0428   when the output buffer is full (avail_out == 0), or after each call of
0429   inflate().  If inflate returns Z_OK and with zero avail_out, it must be
0430   called again after making room in the output buffer because there might be
0431   more output pending.
0432 
0433     The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH,
0434   Z_BLOCK, or Z_TREES.  Z_SYNC_FLUSH requests that inflate() flush as much
0435   output as possible to the output buffer.  Z_BLOCK requests that inflate()
0436   stop if and when it gets to the next deflate block boundary.  When decoding
0437   the zlib or gzip format, this will cause inflate() to return immediately
0438   after the header and before the first block.  When doing a raw inflate,
0439   inflate() will go ahead and process the first block, and will return when it
0440   gets to the end of that block, or when it runs out of data.
0441 
0442     The Z_BLOCK option assists in appending to or combining deflate streams.
0443   To assist in this, on return inflate() always sets strm->data_type to the
0444   number of unused bits in the last byte taken from strm->next_in, plus 64 if
0445   inflate() is currently decoding the last block in the deflate stream, plus
0446   128 if inflate() returned immediately after decoding an end-of-block code or
0447   decoding the complete header up to just before the first byte of the deflate
0448   stream.  The end-of-block will not be indicated until all of the uncompressed
0449   data from that block has been written to strm->next_out.  The number of
0450   unused bits may in general be greater than seven, except when bit 7 of
0451   data_type is set, in which case the number of unused bits will be less than
0452   eight.  data_type is set as noted here every time inflate() returns for all
0453   flush options, and so can be used to determine the amount of currently
0454   consumed input in bits.
0455 
0456     The Z_TREES option behaves as Z_BLOCK does, but it also returns when the
0457   end of each deflate block header is reached, before any actual data in that
0458   block is decoded.  This allows the caller to determine the length of the
0459   deflate block header for later use in random access within a deflate block.
0460   256 is added to the value of strm->data_type when inflate() returns
0461   immediately after reaching the end of the deflate block header.
0462 
0463     inflate() should normally be called until it returns Z_STREAM_END or an
0464   error.  However if all decompression is to be performed in a single step (a
0465   single call of inflate), the parameter flush should be set to Z_FINISH.  In
0466   this case all pending input is processed and all pending output is flushed;
0467   avail_out must be large enough to hold all of the uncompressed data for the
0468   operation to complete.  (The size of the uncompressed data may have been
0469   saved by the compressor for this purpose.)  The use of Z_FINISH is not
0470   required to perform an inflation in one step.  However it may be used to
0471   inform inflate that a faster approach can be used for the single inflate()
0472   call.  Z_FINISH also informs inflate to not maintain a sliding window if the
0473   stream completes, which reduces inflate's memory footprint.  If the stream
0474   does not complete, either because not all of the stream is provided or not
0475   enough output space is provided, then a sliding window will be allocated and
0476   inflate() can be called again to continue the operation as if Z_NO_FLUSH had
0477   been used.
0478 
0479      In this implementation, inflate() always flushes as much output as
0480   possible to the output buffer, and always uses the faster approach on the
0481   first call.  So the effects of the flush parameter in this implementation are
0482   on the return value of inflate() as noted below, when inflate() returns early
0483   when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of
0484   memory for a sliding window when Z_FINISH is used.
0485 
0486      If a preset dictionary is needed after this call (see inflateSetDictionary
0487   below), inflate sets strm->adler to the Adler-32 checksum of the dictionary
0488   chosen by the compressor and returns Z_NEED_DICT; otherwise it sets
0489   strm->adler to the Adler-32 checksum of all output produced so far (that is,
0490   total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described
0491   below.  At the end of the stream, inflate() checks that its computed Adler-32
0492   checksum is equal to that saved by the compressor and returns Z_STREAM_END
0493   only if the checksum is correct.
0494 
0495     inflate() can decompress and check either zlib-wrapped or gzip-wrapped
0496   deflate data.  The header type is detected automatically, if requested when
0497   initializing with inflateInit2().  Any information contained in the gzip
0498   header is not retained unless inflateGetHeader() is used.  When processing
0499   gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output
0500   produced so far.  The CRC-32 is checked against the gzip trailer, as is the
0501   uncompressed length, modulo 2^32.
0502 
0503     inflate() returns Z_OK if some progress has been made (more input processed
0504   or more output produced), Z_STREAM_END if the end of the compressed data has
0505   been reached and all uncompressed output has been produced, Z_NEED_DICT if a
0506   preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
0507   corrupted (input stream not conforming to the zlib format or incorrect check
0508   value, in which case strm->msg points to a string with a more specific
0509   error), Z_STREAM_ERROR if the stream structure was inconsistent (for example
0510   next_in or next_out was Z_NULL, or the state was inadvertently written over
0511   by the application), Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR
0512   if no progress was possible or if there was not enough room in the output
0513   buffer when Z_FINISH is used.  Note that Z_BUF_ERROR is not fatal, and
0514   inflate() can be called again with more input and more output space to
0515   continue decompressing.  If Z_DATA_ERROR is returned, the application may
0516   then call inflateSync() to look for a good compression block if a partial
0517   recovery of the data is to be attempted.
0518 */
0519 
0520 
0521 ZEXTERN int ZEXPORT inflateEnd(z_streamp strm);
0522 /*
0523      All dynamically allocated data structures for this stream are freed.
0524    This function discards any unprocessed input and does not flush any pending
0525    output.
0526 
0527      inflateEnd returns Z_OK if success, or Z_STREAM_ERROR if the stream state
0528    was inconsistent.
0529 */
0530 
0531 
0532                         /* Advanced functions */
0533 
0534 /*
0535     The following functions are needed only in some special applications.
0536 */
0537 
0538 /*
0539 ZEXTERN int ZEXPORT deflateInit2(z_streamp strm,
0540                                  int level,
0541                                  int method,
0542                                  int windowBits,
0543                                  int memLevel,
0544                                  int strategy);
0545 
0546      This is another version of deflateInit with more compression options.  The
0547    fields zalloc, zfree and opaque must be initialized before by the caller.
0548 
0549      The method parameter is the compression method.  It must be Z_DEFLATED in
0550    this version of the library.
0551 
0552      The windowBits parameter is the base two logarithm of the window size
0553    (the size of the history buffer).  It should be in the range 8..15 for this
0554    version of the library.  Larger values of this parameter result in better
0555    compression at the expense of memory usage.  The default value is 15 if
0556    deflateInit is used instead.
0557 
0558      For the current implementation of deflate(), a windowBits value of 8 (a
0559    window size of 256 bytes) is not supported.  As a result, a request for 8
0560    will result in 9 (a 512-byte window).  In that case, providing 8 to
0561    inflateInit2() will result in an error when the zlib header with 9 is
0562    checked against the initialization of inflate().  The remedy is to not use 8
0563    with deflateInit2() with this initialization, or at least in that case use 9
0564    with inflateInit2().
0565 
0566      windowBits can also be -8..-15 for raw deflate.  In this case, -windowBits
0567    determines the window size.  deflate() will then generate raw deflate data
0568    with no zlib header or trailer, and will not compute a check value.
0569 
0570      windowBits can also be greater than 15 for optional gzip encoding.  Add
0571    16 to windowBits to write a simple gzip header and trailer around the
0572    compressed data instead of a zlib wrapper.  The gzip header will have no
0573    file name, no extra data, no comment, no modification time (set to zero), no
0574    header crc, and the operating system will be set to the appropriate value,
0575    if the operating system was determined at compile time.  If a gzip stream is
0576    being written, strm->adler is a CRC-32 instead of an Adler-32.
0577 
0578      For raw deflate or gzip encoding, a request for a 256-byte window is
0579    rejected as invalid, since only the zlib header provides a means of
0580    transmitting the window size to the decompressor.
0581 
0582      The memLevel parameter specifies how much memory should be allocated
0583    for the internal compression state.  memLevel=1 uses minimum memory but is
0584    slow and reduces compression ratio; memLevel=9 uses maximum memory for
0585    optimal speed.  The default value is 8.  See zconf.h for total memory usage
0586    as a function of windowBits and memLevel.
0587 
0588      The strategy parameter is used to tune the compression algorithm.  Use the
0589    value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a
0590    filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no
0591    string match), or Z_RLE to limit match distances to one (run-length
0592    encoding).  Filtered data consists mostly of small values with a somewhat
0593    random distribution.  In this case, the compression algorithm is tuned to
0594    compress them better.  The effect of Z_FILTERED is to force more Huffman
0595    coding and less string matching; it is somewhat intermediate between
0596    Z_DEFAULT_STRATEGY and Z_HUFFMAN_ONLY.  Z_RLE is designed to be almost as
0597    fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data.  The
0598    strategy parameter only affects the compression ratio but not the
0599    correctness of the compressed output even if it is not set appropriately.
0600    Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler
0601    decoder for special applications.
0602 
0603      deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
0604    memory, Z_STREAM_ERROR if any parameter is invalid (such as an invalid
0605    method), or Z_VERSION_ERROR if the zlib library version (zlib_version) is
0606    incompatible with the version assumed by the caller (ZLIB_VERSION).  msg is
0607    set to null if there is no error message.  deflateInit2 does not perform any
0608    compression: this will be done by deflate().
0609 */
0610 
0611 ZEXTERN int ZEXPORT deflateSetDictionary(z_streamp strm,
0612                                          const Bytef *dictionary,
0613                                          uInt  dictLength);
0614 /*
0615      Initializes the compression dictionary from the given byte sequence
0616    without producing any compressed output.  When using the zlib format, this
0617    function must be called immediately after deflateInit, deflateInit2 or
0618    deflateReset, and before any call of deflate.  When doing raw deflate, this
0619    function must be called either before any call of deflate, or immediately
0620    after the completion of a deflate block, i.e. after all input has been
0621    consumed and all output has been delivered when using any of the flush
0622    options Z_BLOCK, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH, or Z_FULL_FLUSH.  The
0623    compressor and decompressor must use exactly the same dictionary (see
0624    inflateSetDictionary).
0625 
0626      The dictionary should consist of strings (byte sequences) that are likely
0627    to be encountered later in the data to be compressed, with the most commonly
0628    used strings preferably put towards the end of the dictionary.  Using a
0629    dictionary is most useful when the data to be compressed is short and can be
0630    predicted with good accuracy; the data can then be compressed better than
0631    with the default empty dictionary.
0632 
0633      Depending on the size of the compression data structures selected by
0634    deflateInit or deflateInit2, a part of the dictionary may in effect be
0635    discarded, for example if the dictionary is larger than the window size
0636    provided in deflateInit or deflateInit2.  Thus the strings most likely to be
0637    useful should be put at the end of the dictionary, not at the front.  In
0638    addition, the current implementation of deflate will use at most the window
0639    size minus 262 bytes of the provided dictionary.
0640 
0641      Upon return of this function, strm->adler is set to the Adler-32 value
0642    of the dictionary; the decompressor may later use this value to determine
0643    which dictionary has been used by the compressor.  (The Adler-32 value
0644    applies to the whole dictionary even if only a subset of the dictionary is
0645    actually used by the compressor.) If a raw deflate was requested, then the
0646    Adler-32 value is not computed and strm->adler is not set.
0647 
0648      deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
0649    parameter is invalid (e.g.  dictionary being Z_NULL) or the stream state is
0650    inconsistent (for example if deflate has already been called for this stream
0651    or if not at a block boundary for raw deflate).  deflateSetDictionary does
0652    not perform any compression: this will be done by deflate().
0653 */
0654 
0655 ZEXTERN int ZEXPORT deflateGetDictionary(z_streamp strm,
0656                                          Bytef *dictionary,
0657                                          uInt  *dictLength);
0658 /*
0659      Returns the sliding dictionary being maintained by deflate.  dictLength is
0660    set to the number of bytes in the dictionary, and that many bytes are copied
0661    to dictionary.  dictionary must have enough space, where 32768 bytes is
0662    always enough.  If deflateGetDictionary() is called with dictionary equal to
0663    Z_NULL, then only the dictionary length is returned, and nothing is copied.
0664    Similarly, if dictLength is Z_NULL, then it is not set.
0665 
0666      deflateGetDictionary() may return a length less than the window size, even
0667    when more than the window size in input has been provided. It may return up
0668    to 258 bytes less in that case, due to how zlib's implementation of deflate
0669    manages the sliding window and lookahead for matches, where matches can be
0670    up to 258 bytes long. If the application needs the last window-size bytes of
0671    input, then that would need to be saved by the application outside of zlib.
0672 
0673      deflateGetDictionary returns Z_OK on success, or Z_STREAM_ERROR if the
0674    stream state is inconsistent.
0675 */
0676 
0677 ZEXTERN int ZEXPORT deflateCopy(z_streamp dest,
0678                                 z_streamp source);
0679 /*
0680      Sets the destination stream as a complete copy of the source stream.
0681 
0682      This function can be useful when several compression strategies will be
0683    tried, for example when there are several ways of pre-processing the input
0684    data with a filter.  The streams that will be discarded should then be freed
0685    by calling deflateEnd.  Note that deflateCopy duplicates the internal
0686    compression state which can be quite large, so this strategy is slow and can
0687    consume lots of memory.
0688 
0689      deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
0690    enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
0691    (such as zalloc being Z_NULL).  msg is left unchanged in both source and
0692    destination.
0693 */
0694 
0695 ZEXTERN int ZEXPORT deflateReset(z_streamp strm);
0696 /*
0697      This function is equivalent to deflateEnd followed by deflateInit, but
0698    does not free and reallocate the internal compression state.  The stream
0699    will leave the compression level and any other attributes that may have been
0700    set unchanged.  total_in, total_out, adler, and msg are initialized.
0701 
0702      deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
0703    stream state was inconsistent (such as zalloc or state being Z_NULL).
0704 */
0705 
0706 ZEXTERN int ZEXPORT deflateParams(z_streamp strm,
0707                                   int level,
0708                                   int strategy);
0709 /*
0710      Dynamically update the compression level and compression strategy.  The
0711    interpretation of level and strategy is as in deflateInit2().  This can be
0712    used to switch between compression and straight copy of the input data, or
0713    to switch to a different kind of input data requiring a different strategy.
0714    If the compression approach (which is a function of the level) or the
0715    strategy is changed, and if there have been any deflate() calls since the
0716    state was initialized or reset, then the input available so far is
0717    compressed with the old level and strategy using deflate(strm, Z_BLOCK).
0718    There are three approaches for the compression levels 0, 1..3, and 4..9
0719    respectively.  The new level and strategy will take effect at the next call
0720    of deflate().
0721 
0722      If a deflate(strm, Z_BLOCK) is performed by deflateParams(), and it does
0723    not have enough output space to complete, then the parameter change will not
0724    take effect.  In this case, deflateParams() can be called again with the
0725    same parameters and more output space to try again.
0726 
0727      In order to assure a change in the parameters on the first try, the
0728    deflate stream should be flushed using deflate() with Z_BLOCK or other flush
0729    request until strm.avail_out is not zero, before calling deflateParams().
0730    Then no more input data should be provided before the deflateParams() call.
0731    If this is done, the old level and strategy will be applied to the data
0732    compressed before deflateParams(), and the new level and strategy will be
0733    applied to the data compressed after deflateParams().
0734 
0735      deflateParams returns Z_OK on success, Z_STREAM_ERROR if the source stream
0736    state was inconsistent or if a parameter was invalid, or Z_BUF_ERROR if
0737    there was not enough output space to complete the compression of the
0738    available input data before a change in the strategy or approach.  Note that
0739    in the case of a Z_BUF_ERROR, the parameters are not changed.  A return
0740    value of Z_BUF_ERROR is not fatal, in which case deflateParams() can be
0741    retried with more output space.
0742 */
0743 
0744 ZEXTERN int ZEXPORT deflateTune(z_streamp strm,
0745                                 int good_length,
0746                                 int max_lazy,
0747                                 int nice_length,
0748                                 int max_chain);
0749 /*
0750      Fine tune deflate's internal compression parameters.  This should only be
0751    used by someone who understands the algorithm used by zlib's deflate for
0752    searching for the best matching string, and even then only by the most
0753    fanatic optimizer trying to squeeze out the last compressed bit for their
0754    specific input data.  Read the deflate.c source code for the meaning of the
0755    max_lazy, good_length, nice_length, and max_chain parameters.
0756 
0757      deflateTune() can be called after deflateInit() or deflateInit2(), and
0758    returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream.
0759  */
0760 
0761 ZEXTERN uLong ZEXPORT deflateBound(z_streamp strm,
0762                                    uLong sourceLen);
0763 /*
0764      deflateBound() returns an upper bound on the compressed size after
0765    deflation of sourceLen bytes.  It must be called after deflateInit() or
0766    deflateInit2(), and after deflateSetHeader(), if used.  This would be used
0767    to allocate an output buffer for deflation in a single pass, and so would be
0768    called before deflate().  If that first deflate() call is provided the
0769    sourceLen input bytes, an output buffer allocated to the size returned by
0770    deflateBound(), and the flush value Z_FINISH, then deflate() is guaranteed
0771    to return Z_STREAM_END.  Note that it is possible for the compressed size to
0772    be larger than the value returned by deflateBound() if flush options other
0773    than Z_FINISH or Z_NO_FLUSH are used.
0774 */
0775 
0776 ZEXTERN int ZEXPORT deflatePending(z_streamp strm,
0777                                    unsigned *pending,
0778                                    int *bits);
0779 /*
0780      deflatePending() returns the number of bytes and bits of output that have
0781    been generated, but not yet provided in the available output.  The bytes not
0782    provided would be due to the available output space having being consumed.
0783    The number of bits of output not provided are between 0 and 7, where they
0784    await more bits to join them in order to fill out a full byte.  If pending
0785    or bits are Z_NULL, then those values are not set.
0786 
0787      deflatePending returns Z_OK if success, or Z_STREAM_ERROR if the source
0788    stream state was inconsistent.
0789  */
0790 
0791 ZEXTERN int ZEXPORT deflatePrime(z_streamp strm,
0792                                  int bits,
0793                                  int value);
0794 /*
0795      deflatePrime() inserts bits in the deflate output stream.  The intent
0796    is that this function is used to start off the deflate output with the bits
0797    leftover from a previous deflate stream when appending to it.  As such, this
0798    function can only be used for raw deflate, and must be used before the first
0799    deflate() call after a deflateInit2() or deflateReset().  bits must be less
0800    than or equal to 16, and that many of the least significant bits of value
0801    will be inserted in the output.
0802 
0803      deflatePrime returns Z_OK if success, Z_BUF_ERROR if there was not enough
0804    room in the internal buffer to insert the bits, or Z_STREAM_ERROR if the
0805    source stream state was inconsistent.
0806 */
0807 
0808 ZEXTERN int ZEXPORT deflateSetHeader(z_streamp strm,
0809                                      gz_headerp head);
0810 /*
0811      deflateSetHeader() provides gzip header information for when a gzip
0812    stream is requested by deflateInit2().  deflateSetHeader() may be called
0813    after deflateInit2() or deflateReset() and before the first call of
0814    deflate().  The text, time, os, extra field, name, and comment information
0815    in the provided gz_header structure are written to the gzip header (xflag is
0816    ignored -- the extra flags are set according to the compression level).  The
0817    caller must assure that, if not Z_NULL, name and comment are terminated with
0818    a zero byte, and that if extra is not Z_NULL, that extra_len bytes are
0819    available there.  If hcrc is true, a gzip header crc is included.  Note that
0820    the current versions of the command-line version of gzip (up through version
0821    1.3.x) do not support header crc's, and will report that it is a "multi-part
0822    gzip file" and give up.
0823 
0824      If deflateSetHeader is not used, the default gzip header has text false,
0825    the time set to zero, and os set to the current operating system, with no
0826    extra, name, or comment fields.  The gzip header is returned to the default
0827    state by deflateReset().
0828 
0829      deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
0830    stream state was inconsistent.
0831 */
0832 
0833 /*
0834 ZEXTERN int ZEXPORT inflateInit2(z_streamp strm,
0835                                  int windowBits);
0836 
0837      This is another version of inflateInit with an extra parameter.  The
0838    fields next_in, avail_in, zalloc, zfree and opaque must be initialized
0839    before by the caller.
0840 
0841      The windowBits parameter is the base two logarithm of the maximum window
0842    size (the size of the history buffer).  It should be in the range 8..15 for
0843    this version of the library.  The default value is 15 if inflateInit is used
0844    instead.  windowBits must be greater than or equal to the windowBits value
0845    provided to deflateInit2() while compressing, or it must be equal to 15 if
0846    deflateInit2() was not used.  If a compressed stream with a larger window
0847    size is given as input, inflate() will return with the error code
0848    Z_DATA_ERROR instead of trying to allocate a larger window.
0849 
0850      windowBits can also be zero to request that inflate use the window size in
0851    the zlib header of the compressed stream.
0852 
0853      windowBits can also be -8..-15 for raw inflate.  In this case, -windowBits
0854    determines the window size.  inflate() will then process raw deflate data,
0855    not looking for a zlib or gzip header, not generating a check value, and not
0856    looking for any check values for comparison at the end of the stream.  This
0857    is for use with other formats that use the deflate compressed data format
0858    such as zip.  Those formats provide their own check values.  If a custom
0859    format is developed using the raw deflate format for compressed data, it is
0860    recommended that a check value such as an Adler-32 or a CRC-32 be applied to
0861    the uncompressed data as is done in the zlib, gzip, and zip formats.  For
0862    most applications, the zlib format should be used as is.  Note that comments
0863    above on the use in deflateInit2() applies to the magnitude of windowBits.
0864 
0865      windowBits can also be greater than 15 for optional gzip decoding.  Add
0866    32 to windowBits to enable zlib and gzip decoding with automatic header
0867    detection, or add 16 to decode only the gzip format (the zlib format will
0868    return a Z_DATA_ERROR).  If a gzip stream is being decoded, strm->adler is a
0869    CRC-32 instead of an Adler-32.  Unlike the gunzip utility and gzread() (see
0870    below), inflate() will *not* automatically decode concatenated gzip members.
0871    inflate() will return Z_STREAM_END at the end of the gzip member.  The state
0872    would need to be reset to continue decoding a subsequent gzip member.  This
0873    *must* be done if there is more data after a gzip member, in order for the
0874    decompression to be compliant with the gzip standard (RFC 1952).
0875 
0876      inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
0877    memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
0878    version assumed by the caller, or Z_STREAM_ERROR if the parameters are
0879    invalid, such as a null pointer to the structure.  msg is set to null if
0880    there is no error message.  inflateInit2 does not perform any decompression
0881    apart from possibly reading the zlib header if present: actual decompression
0882    will be done by inflate().  (So next_in and avail_in may be modified, but
0883    next_out and avail_out are unused and unchanged.) The current implementation
0884    of inflateInit2() does not process any header information -- that is
0885    deferred until inflate() is called.
0886 */
0887 
0888 ZEXTERN int ZEXPORT inflateSetDictionary(z_streamp strm,
0889                                          const Bytef *dictionary,
0890                                          uInt  dictLength);
0891 /*
0892      Initializes the decompression dictionary from the given uncompressed byte
0893    sequence.  This function must be called immediately after a call of inflate,
0894    if that call returned Z_NEED_DICT.  The dictionary chosen by the compressor
0895    can be determined from the Adler-32 value returned by that call of inflate.
0896    The compressor and decompressor must use exactly the same dictionary (see
0897    deflateSetDictionary).  For raw inflate, this function can be called at any
0898    time to set the dictionary.  If the provided dictionary is smaller than the
0899    window and there is already data in the window, then the provided dictionary
0900    will amend what's there.  The application must insure that the dictionary
0901    that was used for compression is provided.
0902 
0903      inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
0904    parameter is invalid (e.g.  dictionary being Z_NULL) or the stream state is
0905    inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the
0906    expected one (incorrect Adler-32 value).  inflateSetDictionary does not
0907    perform any decompression: this will be done by subsequent calls of
0908    inflate().
0909 */
0910 
0911 ZEXTERN int ZEXPORT inflateGetDictionary(z_streamp strm,
0912                                          Bytef *dictionary,
0913                                          uInt  *dictLength);
0914 /*
0915      Returns the sliding dictionary being maintained by inflate.  dictLength is
0916    set to the number of bytes in the dictionary, and that many bytes are copied
0917    to dictionary.  dictionary must have enough space, where 32768 bytes is
0918    always enough.  If inflateGetDictionary() is called with dictionary equal to
0919    Z_NULL, then only the dictionary length is returned, and nothing is copied.
0920    Similarly, if dictLength is Z_NULL, then it is not set.
0921 
0922      inflateGetDictionary returns Z_OK on success, or Z_STREAM_ERROR if the
0923    stream state is inconsistent.
0924 */
0925 
0926 ZEXTERN int ZEXPORT inflateSync(z_streamp strm);
0927 /*
0928      Skips invalid compressed data until a possible full flush point (see above
0929    for the description of deflate with Z_FULL_FLUSH) can be found, or until all
0930    available input is skipped.  No output is provided.
0931 
0932      inflateSync searches for a 00 00 FF FF pattern in the compressed data.
0933    All full flush points have this pattern, but not all occurrences of this
0934    pattern are full flush points.
0935 
0936      inflateSync returns Z_OK if a possible full flush point has been found,
0937    Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point
0938    has been found, or Z_STREAM_ERROR if the stream structure was inconsistent.
0939    In the success case, the application may save the current value of total_in
0940    which indicates where valid compressed data was found.  In the error case,
0941    the application may repeatedly call inflateSync, providing more input each
0942    time, until success or end of the input data.
0943 */
0944 
0945 ZEXTERN int ZEXPORT inflateCopy(z_streamp dest,
0946                                 z_streamp source);
0947 /*
0948      Sets the destination stream as a complete copy of the source stream.
0949 
0950      This function can be useful when randomly accessing a large stream.  The
0951    first pass through the stream can periodically record the inflate state,
0952    allowing restarting inflate at those points when randomly accessing the
0953    stream.
0954 
0955      inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
0956    enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
0957    (such as zalloc being Z_NULL).  msg is left unchanged in both source and
0958    destination.
0959 */
0960 
0961 ZEXTERN int ZEXPORT inflateReset(z_streamp strm);
0962 /*
0963      This function is equivalent to inflateEnd followed by inflateInit,
0964    but does not free and reallocate the internal decompression state.  The
0965    stream will keep attributes that may have been set by inflateInit2.
0966    total_in, total_out, adler, and msg are initialized.
0967 
0968      inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
0969    stream state was inconsistent (such as zalloc or state being Z_NULL).
0970 */
0971 
0972 ZEXTERN int ZEXPORT inflateReset2(z_streamp strm,
0973                                   int windowBits);
0974 /*
0975      This function is the same as inflateReset, but it also permits changing
0976    the wrap and window size requests.  The windowBits parameter is interpreted
0977    the same as it is for inflateInit2.  If the window size is changed, then the
0978    memory allocated for the window is freed, and the window will be reallocated
0979    by inflate() if needed.
0980 
0981      inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source
0982    stream state was inconsistent (such as zalloc or state being Z_NULL), or if
0983    the windowBits parameter is invalid.
0984 */
0985 
0986 ZEXTERN int ZEXPORT inflatePrime(z_streamp strm,
0987                                  int bits,
0988                                  int value);
0989 /*
0990      This function inserts bits in the inflate input stream.  The intent is
0991    that this function is used to start inflating at a bit position in the
0992    middle of a byte.  The provided bits will be used before any bytes are used
0993    from next_in.  This function should only be used with raw inflate, and
0994    should be used before the first inflate() call after inflateInit2() or
0995    inflateReset().  bits must be less than or equal to 16, and that many of the
0996    least significant bits of value will be inserted in the input.
0997 
0998      If bits is negative, then the input stream bit buffer is emptied.  Then
0999    inflatePrime() can be called again to put bits in the buffer.  This is used
1000    to clear out bits leftover after feeding inflate a block description prior
1001    to feeding inflate codes.
1002 
1003      inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
1004    stream state was inconsistent.
1005 */
1006 
1007 ZEXTERN long ZEXPORT inflateMark(z_streamp strm);
1008 /*
1009      This function returns two values, one in the lower 16 bits of the return
1010    value, and the other in the remaining upper bits, obtained by shifting the
1011    return value down 16 bits.  If the upper value is -1 and the lower value is
1012    zero, then inflate() is currently decoding information outside of a block.
1013    If the upper value is -1 and the lower value is non-zero, then inflate is in
1014    the middle of a stored block, with the lower value equaling the number of
1015    bytes from the input remaining to copy.  If the upper value is not -1, then
1016    it is the number of bits back from the current bit position in the input of
1017    the code (literal or length/distance pair) currently being processed.  In
1018    that case the lower value is the number of bytes already emitted for that
1019    code.
1020 
1021      A code is being processed if inflate is waiting for more input to complete
1022    decoding of the code, or if it has completed decoding but is waiting for
1023    more output space to write the literal or match data.
1024 
1025      inflateMark() is used to mark locations in the input data for random
1026    access, which may be at bit positions, and to note those cases where the
1027    output of a code may span boundaries of random access blocks.  The current
1028    location in the input stream can be determined from avail_in and data_type
1029    as noted in the description for the Z_BLOCK flush parameter for inflate.
1030 
1031      inflateMark returns the value noted above, or -65536 if the provided
1032    source stream state was inconsistent.
1033 */
1034 
1035 ZEXTERN int ZEXPORT inflateGetHeader(z_streamp strm,
1036                                      gz_headerp head);
1037 /*
1038      inflateGetHeader() requests that gzip header information be stored in the
1039    provided gz_header structure.  inflateGetHeader() may be called after
1040    inflateInit2() or inflateReset(), and before the first call of inflate().
1041    As inflate() processes the gzip stream, head->done is zero until the header
1042    is completed, at which time head->done is set to one.  If a zlib stream is
1043    being decoded, then head->done is set to -1 to indicate that there will be
1044    no gzip header information forthcoming.  Note that Z_BLOCK or Z_TREES can be
1045    used to force inflate() to return immediately after header processing is
1046    complete and before any actual data is decompressed.
1047 
1048      The text, time, xflags, and os fields are filled in with the gzip header
1049    contents.  hcrc is set to true if there is a header CRC.  (The header CRC
1050    was valid if done is set to one.) If extra is not Z_NULL, then extra_max
1051    contains the maximum number of bytes to write to extra.  Once done is true,
1052    extra_len contains the actual extra field length, and extra contains the
1053    extra field, or that field truncated if extra_max is less than extra_len.
1054    If name is not Z_NULL, then up to name_max characters are written there,
1055    terminated with a zero unless the length is greater than name_max.  If
1056    comment is not Z_NULL, then up to comm_max characters are written there,
1057    terminated with a zero unless the length is greater than comm_max.  When any
1058    of extra, name, or comment are not Z_NULL and the respective field is not
1059    present in the header, then that field is set to Z_NULL to signal its
1060    absence.  This allows the use of deflateSetHeader() with the returned
1061    structure to duplicate the header.  However if those fields are set to
1062    allocated memory, then the application will need to save those pointers
1063    elsewhere so that they can be eventually freed.
1064 
1065      If inflateGetHeader is not used, then the header information is simply
1066    discarded.  The header is always checked for validity, including the header
1067    CRC if present.  inflateReset() will reset the process to discard the header
1068    information.  The application would need to call inflateGetHeader() again to
1069    retrieve the header from the next gzip stream.
1070 
1071      inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
1072    stream state was inconsistent.
1073 */
1074 
1075 /*
1076 ZEXTERN int ZEXPORT inflateBackInit(z_streamp strm, int windowBits,
1077                                     unsigned char FAR *window);
1078 
1079      Initialize the internal stream state for decompression using inflateBack()
1080    calls.  The fields zalloc, zfree and opaque in strm must be initialized
1081    before the call.  If zalloc and zfree are Z_NULL, then the default library-
1082    derived memory allocation routines are used.  windowBits is the base two
1083    logarithm of the window size, in the range 8..15.  window is a caller
1084    supplied buffer of that size.  Except for special applications where it is
1085    assured that deflate was used with small window sizes, windowBits must be 15
1086    and a 32K byte window must be supplied to be able to decompress general
1087    deflate streams.
1088 
1089      See inflateBack() for the usage of these routines.
1090 
1091      inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of
1092    the parameters are invalid, Z_MEM_ERROR if the internal state could not be
1093    allocated, or Z_VERSION_ERROR if the version of the library does not match
1094    the version of the header file.
1095 */
1096 
1097 typedef unsigned (*in_func)(void FAR *,
1098                             z_const unsigned char FAR * FAR *);
1099 typedef int (*out_func)(void FAR *, unsigned char FAR *, unsigned);
1100 
1101 ZEXTERN int ZEXPORT inflateBack(z_streamp strm,
1102                                 in_func in, void FAR *in_desc,
1103                                 out_func out, void FAR *out_desc);
1104 /*
1105      inflateBack() does a raw inflate with a single call using a call-back
1106    interface for input and output.  This is potentially more efficient than
1107    inflate() for file i/o applications, in that it avoids copying between the
1108    output and the sliding window by simply making the window itself the output
1109    buffer.  inflate() can be faster on modern CPUs when used with large
1110    buffers.  inflateBack() trusts the application to not change the output
1111    buffer passed by the output function, at least until inflateBack() returns.
1112 
1113      inflateBackInit() must be called first to allocate the internal state
1114    and to initialize the state with the user-provided window buffer.
1115    inflateBack() may then be used multiple times to inflate a complete, raw
1116    deflate stream with each call.  inflateBackEnd() is then called to free the
1117    allocated state.
1118 
1119      A raw deflate stream is one with no zlib or gzip header or trailer.
1120    This routine would normally be used in a utility that reads zip or gzip
1121    files and writes out uncompressed files.  The utility would decode the
1122    header and process the trailer on its own, hence this routine expects only
1123    the raw deflate stream to decompress.  This is different from the default
1124    behavior of inflate(), which expects a zlib header and trailer around the
1125    deflate stream.
1126 
1127      inflateBack() uses two subroutines supplied by the caller that are then
1128    called by inflateBack() for input and output.  inflateBack() calls those
1129    routines until it reads a complete deflate stream and writes out all of the
1130    uncompressed data, or until it encounters an error.  The function's
1131    parameters and return types are defined above in the in_func and out_func
1132    typedefs.  inflateBack() will call in(in_desc, &buf) which should return the
1133    number of bytes of provided input, and a pointer to that input in buf.  If
1134    there is no input available, in() must return zero -- buf is ignored in that
1135    case -- and inflateBack() will return a buffer error.  inflateBack() will
1136    call out(out_desc, buf, len) to write the uncompressed data buf[0..len-1].
1137    out() should return zero on success, or non-zero on failure.  If out()
1138    returns non-zero, inflateBack() will return with an error.  Neither in() nor
1139    out() are permitted to change the contents of the window provided to
1140    inflateBackInit(), which is also the buffer that out() uses to write from.
1141    The length written by out() will be at most the window size.  Any non-zero
1142    amount of input may be provided by in().
1143 
1144      For convenience, inflateBack() can be provided input on the first call by
1145    setting strm->next_in and strm->avail_in.  If that input is exhausted, then
1146    in() will be called.  Therefore strm->next_in must be initialized before
1147    calling inflateBack().  If strm->next_in is Z_NULL, then in() will be called
1148    immediately for input.  If strm->next_in is not Z_NULL, then strm->avail_in
1149    must also be initialized, and then if strm->avail_in is not zero, input will
1150    initially be taken from strm->next_in[0 ..  strm->avail_in - 1].
1151 
1152      The in_desc and out_desc parameters of inflateBack() is passed as the
1153    first parameter of in() and out() respectively when they are called.  These
1154    descriptors can be optionally used to pass any information that the caller-
1155    supplied in() and out() functions need to do their job.
1156 
1157      On return, inflateBack() will set strm->next_in and strm->avail_in to
1158    pass back any unused input that was provided by the last in() call.  The
1159    return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR
1160    if in() or out() returned an error, Z_DATA_ERROR if there was a format error
1161    in the deflate stream (in which case strm->msg is set to indicate the nature
1162    of the error), or Z_STREAM_ERROR if the stream was not properly initialized.
1163    In the case of Z_BUF_ERROR, an input or output error can be distinguished
1164    using strm->next_in which will be Z_NULL only if in() returned an error.  If
1165    strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning
1166    non-zero.  (in() will always be called before out(), so strm->next_in is
1167    assured to be defined if out() returns non-zero.)  Note that inflateBack()
1168    cannot return Z_OK.
1169 */
1170 
1171 ZEXTERN int ZEXPORT inflateBackEnd(z_streamp strm);
1172 /*
1173      All memory allocated by inflateBackInit() is freed.
1174 
1175      inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream
1176    state was inconsistent.
1177 */
1178 
1179 ZEXTERN uLong ZEXPORT zlibCompileFlags(void);
1180 /* Return flags indicating compile-time options.
1181 
1182     Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other:
1183      1.0: size of uInt
1184      3.2: size of uLong
1185      5.4: size of voidpf (pointer)
1186      7.6: size of z_off_t
1187 
1188     Compiler, assembler, and debug options:
1189      8: ZLIB_DEBUG
1190      9: ASMV or ASMINF -- use ASM code
1191      10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention
1192      11: 0 (reserved)
1193 
1194     One-time table building (smaller code, but not thread-safe if true):
1195      12: BUILDFIXED -- build static block decoding tables when needed
1196      13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed
1197      14,15: 0 (reserved)
1198 
1199     Library content (indicates missing functionality):
1200      16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking
1201                           deflate code when not needed)
1202      17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect
1203                     and decode gzip streams (to avoid linking crc code)
1204      18-19: 0 (reserved)
1205 
1206     Operation variations (changes in library functionality):
1207      20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate
1208      21: FASTEST -- deflate algorithm with only one, lowest compression level
1209      22,23: 0 (reserved)
1210 
1211     The sprintf variant used by gzprintf (zero is best):
1212      24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format
1213      25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure!
1214      26: 0 = returns value, 1 = void -- 1 means inferred string length returned
1215 
1216     Remainder:
1217      27-31: 0 (reserved)
1218  */
1219 
1220 #ifndef Z_SOLO
1221 
1222                         /* utility functions */
1223 
1224 /*
1225      The following utility functions are implemented on top of the basic
1226    stream-oriented functions.  To simplify the interface, some default options
1227    are assumed (compression level and memory usage, standard memory allocation
1228    functions).  The source code of these utility functions can be modified if
1229    you need special options.
1230 */
1231 
1232 ZEXTERN int ZEXPORT compress(Bytef *dest,   uLongf *destLen,
1233                              const Bytef *source, uLong sourceLen);
1234 /*
1235      Compresses the source buffer into the destination buffer.  sourceLen is
1236    the byte length of the source buffer.  Upon entry, destLen is the total size
1237    of the destination buffer, which must be at least the value returned by
1238    compressBound(sourceLen).  Upon exit, destLen is the actual size of the
1239    compressed data.  compress() is equivalent to compress2() with a level
1240    parameter of Z_DEFAULT_COMPRESSION.
1241 
1242      compress returns Z_OK if success, Z_MEM_ERROR if there was not
1243    enough memory, Z_BUF_ERROR if there was not enough room in the output
1244    buffer.
1245 */
1246 
1247 ZEXTERN int ZEXPORT compress2(Bytef *dest,   uLongf *destLen,
1248                               const Bytef *source, uLong sourceLen,
1249                               int level);
1250 /*
1251      Compresses the source buffer into the destination buffer.  The level
1252    parameter has the same meaning as in deflateInit.  sourceLen is the byte
1253    length of the source buffer.  Upon entry, destLen is the total size of the
1254    destination buffer, which must be at least the value returned by
1255    compressBound(sourceLen).  Upon exit, destLen is the actual size of the
1256    compressed data.
1257 
1258      compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
1259    memory, Z_BUF_ERROR if there was not enough room in the output buffer,
1260    Z_STREAM_ERROR if the level parameter is invalid.
1261 */
1262 
1263 ZEXTERN uLong ZEXPORT compressBound(uLong sourceLen);
1264 /*
1265      compressBound() returns an upper bound on the compressed size after
1266    compress() or compress2() on sourceLen bytes.  It would be used before a
1267    compress() or compress2() call to allocate the destination buffer.
1268 */
1269 
1270 ZEXTERN int ZEXPORT uncompress(Bytef *dest,   uLongf *destLen,
1271                                const Bytef *source, uLong sourceLen);
1272 /*
1273      Decompresses the source buffer into the destination buffer.  sourceLen is
1274    the byte length of the source buffer.  Upon entry, destLen is the total size
1275    of the destination buffer, which must be large enough to hold the entire
1276    uncompressed data.  (The size of the uncompressed data must have been saved
1277    previously by the compressor and transmitted to the decompressor by some
1278    mechanism outside the scope of this compression library.) Upon exit, destLen
1279    is the actual size of the uncompressed data.
1280 
1281      uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
1282    enough memory, Z_BUF_ERROR if there was not enough room in the output
1283    buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete.  In
1284    the case where there is not enough room, uncompress() will fill the output
1285    buffer with the uncompressed data up to that point.
1286 */
1287 
1288 ZEXTERN int ZEXPORT uncompress2(Bytef *dest,   uLongf *destLen,
1289                                 const Bytef *source, uLong *sourceLen);
1290 /*
1291      Same as uncompress, except that sourceLen is a pointer, where the
1292    length of the source is *sourceLen.  On return, *sourceLen is the number of
1293    source bytes consumed.
1294 */
1295 
1296                         /* gzip file access functions */
1297 
1298 /*
1299      This library supports reading and writing files in gzip (.gz) format with
1300    an interface similar to that of stdio, using the functions that start with
1301    "gz".  The gzip format is different from the zlib format.  gzip is a gzip
1302    wrapper, documented in RFC 1952, wrapped around a deflate stream.
1303 */
1304 
1305 typedef struct gzFile_s *gzFile;    /* semi-opaque gzip file descriptor */
1306 
1307 /*
1308 ZEXTERN gzFile ZEXPORT gzopen(const char *path, const char *mode);
1309 
1310      Open the gzip (.gz) file at path for reading and decompressing, or
1311    compressing and writing.  The mode parameter is as in fopen ("rb" or "wb")
1312    but can also include a compression level ("wb9") or a strategy: 'f' for
1313    filtered data as in "wb6f", 'h' for Huffman-only compression as in "wb1h",
1314    'R' for run-length encoding as in "wb1R", or 'F' for fixed code compression
1315    as in "wb9F".  (See the description of deflateInit2 for more information
1316    about the strategy parameter.)  'T' will request transparent writing or
1317    appending with no compression and not using the gzip format.
1318 
1319      "a" can be used instead of "w" to request that the gzip stream that will
1320    be written be appended to the file.  "+" will result in an error, since
1321    reading and writing to the same gzip file is not supported.  The addition of
1322    "x" when writing will create the file exclusively, which fails if the file
1323    already exists.  On systems that support it, the addition of "e" when
1324    reading or writing will set the flag to close the file on an execve() call.
1325 
1326      These functions, as well as gzip, will read and decode a sequence of gzip
1327    streams in a file.  The append function of gzopen() can be used to create
1328    such a file.  (Also see gzflush() for another way to do this.)  When
1329    appending, gzopen does not test whether the file begins with a gzip stream,
1330    nor does it look for the end of the gzip streams to begin appending.  gzopen
1331    will simply append a gzip stream to the existing file.
1332 
1333      gzopen can be used to read a file which is not in gzip format; in this
1334    case gzread will directly read from the file without decompression.  When
1335    reading, this will be detected automatically by looking for the magic two-
1336    byte gzip header.
1337 
1338      gzopen returns NULL if the file could not be opened, if there was
1339    insufficient memory to allocate the gzFile state, or if an invalid mode was
1340    specified (an 'r', 'w', or 'a' was not provided, or '+' was provided).
1341    errno can be checked to determine if the reason gzopen failed was that the
1342    file could not be opened.
1343 */
1344 
1345 ZEXTERN gzFile ZEXPORT gzdopen(int fd, const char *mode);
1346 /*
1347      Associate a gzFile with the file descriptor fd.  File descriptors are
1348    obtained from calls like open, dup, creat, pipe or fileno (if the file has
1349    been previously opened with fopen).  The mode parameter is as in gzopen.
1350 
1351      The next call of gzclose on the returned gzFile will also close the file
1352    descriptor fd, just like fclose(fdopen(fd, mode)) closes the file descriptor
1353    fd.  If you want to keep fd open, use fd = dup(fd_keep); gz = gzdopen(fd,
1354    mode);.  The duplicated descriptor should be saved to avoid a leak, since
1355    gzdopen does not close fd if it fails.  If you are using fileno() to get the
1356    file descriptor from a FILE *, then you will have to use dup() to avoid
1357    double-close()ing the file descriptor.  Both gzclose() and fclose() will
1358    close the associated file descriptor, so they need to have different file
1359    descriptors.
1360 
1361      gzdopen returns NULL if there was insufficient memory to allocate the
1362    gzFile state, if an invalid mode was specified (an 'r', 'w', or 'a' was not
1363    provided, or '+' was provided), or if fd is -1.  The file descriptor is not
1364    used until the next gz* read, write, seek, or close operation, so gzdopen
1365    will not detect if fd is invalid (unless fd is -1).
1366 */
1367 
1368 ZEXTERN int ZEXPORT gzbuffer(gzFile file, unsigned size);
1369 /*
1370      Set the internal buffer size used by this library's functions for file to
1371    size.  The default buffer size is 8192 bytes.  This function must be called
1372    after gzopen() or gzdopen(), and before any other calls that read or write
1373    the file.  The buffer memory allocation is always deferred to the first read
1374    or write.  Three times that size in buffer space is allocated.  A larger
1375    buffer size of, for example, 64K or 128K bytes will noticeably increase the
1376    speed of decompression (reading).
1377 
1378      The new buffer size also affects the maximum length for gzprintf().
1379 
1380      gzbuffer() returns 0 on success, or -1 on failure, such as being called
1381    too late.
1382 */
1383 
1384 ZEXTERN int ZEXPORT gzsetparams(gzFile file, int level, int strategy);
1385 /*
1386      Dynamically update the compression level and strategy for file.  See the
1387    description of deflateInit2 for the meaning of these parameters. Previously
1388    provided data is flushed before applying the parameter changes.
1389 
1390      gzsetparams returns Z_OK if success, Z_STREAM_ERROR if the file was not
1391    opened for writing, Z_ERRNO if there is an error writing the flushed data,
1392    or Z_MEM_ERROR if there is a memory allocation error.
1393 */
1394 
1395 ZEXTERN int ZEXPORT gzread(gzFile file, voidp buf, unsigned len);
1396 /*
1397      Read and decompress up to len uncompressed bytes from file into buf.  If
1398    the input file is not in gzip format, gzread copies the given number of
1399    bytes into the buffer directly from the file.
1400 
1401      After reaching the end of a gzip stream in the input, gzread will continue
1402    to read, looking for another gzip stream.  Any number of gzip streams may be
1403    concatenated in the input file, and will all be decompressed by gzread().
1404    If something other than a gzip stream is encountered after a gzip stream,
1405    that remaining trailing garbage is ignored (and no error is returned).
1406 
1407      gzread can be used to read a gzip file that is being concurrently written.
1408    Upon reaching the end of the input, gzread will return with the available
1409    data.  If the error code returned by gzerror is Z_OK or Z_BUF_ERROR, then
1410    gzclearerr can be used to clear the end of file indicator in order to permit
1411    gzread to be tried again.  Z_OK indicates that a gzip stream was completed
1412    on the last gzread.  Z_BUF_ERROR indicates that the input file ended in the
1413    middle of a gzip stream.  Note that gzread does not return -1 in the event
1414    of an incomplete gzip stream.  This error is deferred until gzclose(), which
1415    will return Z_BUF_ERROR if the last gzread ended in the middle of a gzip
1416    stream.  Alternatively, gzerror can be used before gzclose to detect this
1417    case.
1418 
1419      gzread returns the number of uncompressed bytes actually read, less than
1420    len for end of file, or -1 for error.  If len is too large to fit in an int,
1421    then nothing is read, -1 is returned, and the error state is set to
1422    Z_STREAM_ERROR.
1423 */
1424 
1425 ZEXTERN z_size_t ZEXPORT gzfread(voidp buf, z_size_t size, z_size_t nitems,
1426                                  gzFile file);
1427 /*
1428      Read and decompress up to nitems items of size size from file into buf,
1429    otherwise operating as gzread() does.  This duplicates the interface of
1430    stdio's fread(), with size_t request and return types.  If the library
1431    defines size_t, then z_size_t is identical to size_t.  If not, then z_size_t
1432    is an unsigned integer type that can contain a pointer.
1433 
1434      gzfread() returns the number of full items read of size size, or zero if
1435    the end of the file was reached and a full item could not be read, or if
1436    there was an error.  gzerror() must be consulted if zero is returned in
1437    order to determine if there was an error.  If the multiplication of size and
1438    nitems overflows, i.e. the product does not fit in a z_size_t, then nothing
1439    is read, zero is returned, and the error state is set to Z_STREAM_ERROR.
1440 
1441      In the event that the end of file is reached and only a partial item is
1442    available at the end, i.e. the remaining uncompressed data length is not a
1443    multiple of size, then the final partial item is nevertheless read into buf
1444    and the end-of-file flag is set.  The length of the partial item read is not
1445    provided, but could be inferred from the result of gztell().  This behavior
1446    is the same as the behavior of fread() implementations in common libraries,
1447    but it prevents the direct use of gzfread() to read a concurrently written
1448    file, resetting and retrying on end-of-file, when size is not 1.
1449 */
1450 
1451 ZEXTERN int ZEXPORT gzwrite(gzFile file, voidpc buf, unsigned len);
1452 /*
1453      Compress and write the len uncompressed bytes at buf to file. gzwrite
1454    returns the number of uncompressed bytes written or 0 in case of error.
1455 */
1456 
1457 ZEXTERN z_size_t ZEXPORT gzfwrite(voidpc buf, z_size_t size,
1458                                   z_size_t nitems, gzFile file);
1459 /*
1460      Compress and write nitems items of size size from buf to file, duplicating
1461    the interface of stdio's fwrite(), with size_t request and return types.  If
1462    the library defines size_t, then z_size_t is identical to size_t.  If not,
1463    then z_size_t is an unsigned integer type that can contain a pointer.
1464 
1465      gzfwrite() returns the number of full items written of size size, or zero
1466    if there was an error.  If the multiplication of size and nitems overflows,
1467    i.e. the product does not fit in a z_size_t, then nothing is written, zero
1468    is returned, and the error state is set to Z_STREAM_ERROR.
1469 */
1470 
1471 ZEXTERN int ZEXPORTVA gzprintf(gzFile file, const char *format, ...);
1472 /*
1473      Convert, format, compress, and write the arguments (...) to file under
1474    control of the string format, as in fprintf.  gzprintf returns the number of
1475    uncompressed bytes actually written, or a negative zlib error code in case
1476    of error.  The number of uncompressed bytes written is limited to 8191, or
1477    one less than the buffer size given to gzbuffer().  The caller should assure
1478    that this limit is not exceeded.  If it is exceeded, then gzprintf() will
1479    return an error (0) with nothing written.  In this case, there may also be a
1480    buffer overflow with unpredictable consequences, which is possible only if
1481    zlib was compiled with the insecure functions sprintf() or vsprintf(),
1482    because the secure snprintf() or vsnprintf() functions were not available.
1483    This can be determined using zlibCompileFlags().
1484 */
1485 
1486 ZEXTERN int ZEXPORT gzputs(gzFile file, const char *s);
1487 /*
1488      Compress and write the given null-terminated string s to file, excluding
1489    the terminating null character.
1490 
1491      gzputs returns the number of characters written, or -1 in case of error.
1492 */
1493 
1494 ZEXTERN char * ZEXPORT gzgets(gzFile file, char *buf, int len);
1495 /*
1496      Read and decompress bytes from file into buf, until len-1 characters are
1497    read, or until a newline character is read and transferred to buf, or an
1498    end-of-file condition is encountered.  If any characters are read or if len
1499    is one, the string is terminated with a null character.  If no characters
1500    are read due to an end-of-file or len is less than one, then the buffer is
1501    left untouched.
1502 
1503      gzgets returns buf which is a null-terminated string, or it returns NULL
1504    for end-of-file or in case of error.  If there was an error, the contents at
1505    buf are indeterminate.
1506 */
1507 
1508 ZEXTERN int ZEXPORT gzputc(gzFile file, int c);
1509 /*
1510      Compress and write c, converted to an unsigned char, into file.  gzputc
1511    returns the value that was written, or -1 in case of error.
1512 */
1513 
1514 ZEXTERN int ZEXPORT gzgetc(gzFile file);
1515 /*
1516      Read and decompress one byte from file.  gzgetc returns this byte or -1
1517    in case of end of file or error.  This is implemented as a macro for speed.
1518    As such, it does not do all of the checking the other functions do.  I.e.
1519    it does not check to see if file is NULL, nor whether the structure file
1520    points to has been clobbered or not.
1521 */
1522 
1523 ZEXTERN int ZEXPORT gzungetc(int c, gzFile file);
1524 /*
1525      Push c back onto the stream for file to be read as the first character on
1526    the next read.  At least one character of push-back is always allowed.
1527    gzungetc() returns the character pushed, or -1 on failure.  gzungetc() will
1528    fail if c is -1, and may fail if a character has been pushed but not read
1529    yet.  If gzungetc is used immediately after gzopen or gzdopen, at least the
1530    output buffer size of pushed characters is allowed.  (See gzbuffer above.)
1531    The pushed character will be discarded if the stream is repositioned with
1532    gzseek() or gzrewind().
1533 */
1534 
1535 ZEXTERN int ZEXPORT gzflush(gzFile file, int flush);
1536 /*
1537      Flush all pending output to file.  The parameter flush is as in the
1538    deflate() function.  The return value is the zlib error number (see function
1539    gzerror below).  gzflush is only permitted when writing.
1540 
1541      If the flush parameter is Z_FINISH, the remaining data is written and the
1542    gzip stream is completed in the output.  If gzwrite() is called again, a new
1543    gzip stream will be started in the output.  gzread() is able to read such
1544    concatenated gzip streams.
1545 
1546      gzflush should be called only when strictly necessary because it will
1547    degrade compression if called too often.
1548 */
1549 
1550 /*
1551 ZEXTERN z_off_t ZEXPORT gzseek(gzFile file,
1552                                z_off_t offset, int whence);
1553 
1554      Set the starting position to offset relative to whence for the next gzread
1555    or gzwrite on file.  The offset represents a number of bytes in the
1556    uncompressed data stream.  The whence parameter is defined as in lseek(2);
1557    the value SEEK_END is not supported.
1558 
1559      If the file is opened for reading, this function is emulated but can be
1560    extremely slow.  If the file is opened for writing, only forward seeks are
1561    supported; gzseek then compresses a sequence of zeroes up to the new
1562    starting position.
1563 
1564      gzseek returns the resulting offset location as measured in bytes from
1565    the beginning of the uncompressed stream, or -1 in case of error, in
1566    particular if the file is opened for writing and the new starting position
1567    would be before the current position.
1568 */
1569 
1570 ZEXTERN int ZEXPORT    gzrewind(gzFile file);
1571 /*
1572      Rewind file. This function is supported only for reading.
1573 
1574      gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET).
1575 */
1576 
1577 /*
1578 ZEXTERN z_off_t ZEXPORT    gztell(gzFile file);
1579 
1580      Return the starting position for the next gzread or gzwrite on file.
1581    This position represents a number of bytes in the uncompressed data stream,
1582    and is zero when starting, even if appending or reading a gzip stream from
1583    the middle of a file using gzdopen().
1584 
1585      gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR)
1586 */
1587 
1588 /*
1589 ZEXTERN z_off_t ZEXPORT gzoffset(gzFile file);
1590 
1591      Return the current compressed (actual) read or write offset of file.  This
1592    offset includes the count of bytes that precede the gzip stream, for example
1593    when appending or when using gzdopen() for reading.  When reading, the
1594    offset does not include as yet unused buffered input.  This information can
1595    be used for a progress indicator.  On error, gzoffset() returns -1.
1596 */
1597 
1598 ZEXTERN int ZEXPORT gzeof(gzFile file);
1599 /*
1600      Return true (1) if the end-of-file indicator for file has been set while
1601    reading, false (0) otherwise.  Note that the end-of-file indicator is set
1602    only if the read tried to go past the end of the input, but came up short.
1603    Therefore, just like feof(), gzeof() may return false even if there is no
1604    more data to read, in the event that the last read request was for the exact
1605    number of bytes remaining in the input file.  This will happen if the input
1606    file size is an exact multiple of the buffer size.
1607 
1608      If gzeof() returns true, then the read functions will return no more data,
1609    unless the end-of-file indicator is reset by gzclearerr() and the input file
1610    has grown since the previous end of file was detected.
1611 */
1612 
1613 ZEXTERN int ZEXPORT gzdirect(gzFile file);
1614 /*
1615      Return true (1) if file is being copied directly while reading, or false
1616    (0) if file is a gzip stream being decompressed.
1617 
1618      If the input file is empty, gzdirect() will return true, since the input
1619    does not contain a gzip stream.
1620 
1621      If gzdirect() is used immediately after gzopen() or gzdopen() it will
1622    cause buffers to be allocated to allow reading the file to determine if it
1623    is a gzip file.  Therefore if gzbuffer() is used, it should be called before
1624    gzdirect().
1625 
1626      When writing, gzdirect() returns true (1) if transparent writing was
1627    requested ("wT" for the gzopen() mode), or false (0) otherwise.  (Note:
1628    gzdirect() is not needed when writing.  Transparent writing must be
1629    explicitly requested, so the application already knows the answer.  When
1630    linking statically, using gzdirect() will include all of the zlib code for
1631    gzip file reading and decompression, which may not be desired.)
1632 */
1633 
1634 ZEXTERN int ZEXPORT    gzclose(gzFile file);
1635 /*
1636      Flush all pending output for file, if necessary, close file and
1637    deallocate the (de)compression state.  Note that once file is closed, you
1638    cannot call gzerror with file, since its structures have been deallocated.
1639    gzclose must not be called more than once on the same file, just as free
1640    must not be called more than once on the same allocation.
1641 
1642      gzclose will return Z_STREAM_ERROR if file is not valid, Z_ERRNO on a
1643    file operation error, Z_MEM_ERROR if out of memory, Z_BUF_ERROR if the
1644    last read ended in the middle of a gzip stream, or Z_OK on success.
1645 */
1646 
1647 ZEXTERN int ZEXPORT gzclose_r(gzFile file);
1648 ZEXTERN int ZEXPORT gzclose_w(gzFile file);
1649 /*
1650      Same as gzclose(), but gzclose_r() is only for use when reading, and
1651    gzclose_w() is only for use when writing or appending.  The advantage to
1652    using these instead of gzclose() is that they avoid linking in zlib
1653    compression or decompression code that is not used when only reading or only
1654    writing respectively.  If gzclose() is used, then both compression and
1655    decompression code will be included the application when linking to a static
1656    zlib library.
1657 */
1658 
1659 ZEXTERN const char * ZEXPORT gzerror(gzFile file, int *errnum);
1660 /*
1661      Return the error message for the last error which occurred on file.
1662    errnum is set to zlib error number.  If an error occurred in the file system
1663    and not in the compression library, errnum is set to Z_ERRNO and the
1664    application may consult errno to get the exact error code.
1665 
1666      The application must not modify the returned string.  Future calls to
1667    this function may invalidate the previously returned string.  If file is
1668    closed, then the string previously returned by gzerror will no longer be
1669    available.
1670 
1671      gzerror() should be used to distinguish errors from end-of-file for those
1672    functions above that do not distinguish those cases in their return values.
1673 */
1674 
1675 ZEXTERN void ZEXPORT gzclearerr(gzFile file);
1676 /*
1677      Clear the error and end-of-file flags for file.  This is analogous to the
1678    clearerr() function in stdio.  This is useful for continuing to read a gzip
1679    file that is being written concurrently.
1680 */
1681 
1682 #endif /* !Z_SOLO */
1683 
1684                         /* checksum functions */
1685 
1686 /*
1687      These functions are not related to compression but are exported
1688    anyway because they might be useful in applications using the compression
1689    library.
1690 */
1691 
1692 ZEXTERN uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len);
1693 /*
1694      Update a running Adler-32 checksum with the bytes buf[0..len-1] and
1695    return the updated checksum. An Adler-32 value is in the range of a 32-bit
1696    unsigned integer. If buf is Z_NULL, this function returns the required
1697    initial value for the checksum.
1698 
1699      An Adler-32 checksum is almost as reliable as a CRC-32 but can be computed
1700    much faster.
1701 
1702    Usage example:
1703 
1704      uLong adler = adler32(0L, Z_NULL, 0);
1705 
1706      while (read_buffer(buffer, length) != EOF) {
1707        adler = adler32(adler, buffer, length);
1708      }
1709      if (adler != original_adler) error();
1710 */
1711 
1712 ZEXTERN uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf,
1713                                 z_size_t len);
1714 /*
1715      Same as adler32(), but with a size_t length.
1716 */
1717 
1718 /*
1719 ZEXTERN uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2,
1720                                       z_off_t len2);
1721 
1722      Combine two Adler-32 checksums into one.  For two sequences of bytes, seq1
1723    and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for
1724    each, adler1 and adler2.  adler32_combine() returns the Adler-32 checksum of
1725    seq1 and seq2 concatenated, requiring only adler1, adler2, and len2.  Note
1726    that the z_off_t type (like off_t) is a signed integer.  If len2 is
1727    negative, the result has no meaning or utility.
1728 */
1729 
1730 ZEXTERN uLong ZEXPORT crc32(uLong crc, const Bytef *buf, uInt len);
1731 /*
1732      Update a running CRC-32 with the bytes buf[0..len-1] and return the
1733    updated CRC-32. A CRC-32 value is in the range of a 32-bit unsigned integer.
1734    If buf is Z_NULL, this function returns the required initial value for the
1735    crc. Pre- and post-conditioning (one's complement) is performed within this
1736    function so it shouldn't be done by the application.
1737 
1738    Usage example:
1739 
1740      uLong crc = crc32(0L, Z_NULL, 0);
1741 
1742      while (read_buffer(buffer, length) != EOF) {
1743        crc = crc32(crc, buffer, length);
1744      }
1745      if (crc != original_crc) error();
1746 */
1747 
1748 ZEXTERN uLong ZEXPORT crc32_z(uLong crc, const Bytef *buf,
1749                               z_size_t len);
1750 /*
1751      Same as crc32(), but with a size_t length.
1752 */
1753 
1754 /*
1755 ZEXTERN uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2);
1756 
1757      Combine two CRC-32 check values into one.  For two sequences of bytes,
1758    seq1 and seq2 with lengths len1 and len2, CRC-32 check values were
1759    calculated for each, crc1 and crc2.  crc32_combine() returns the CRC-32
1760    check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and
1761    len2. len2 must be non-negative.
1762 */
1763 
1764 /*
1765 ZEXTERN uLong ZEXPORT crc32_combine_gen(z_off_t len2);
1766 
1767      Return the operator corresponding to length len2, to be used with
1768    crc32_combine_op(). len2 must be non-negative.
1769 */
1770 
1771 ZEXTERN uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op);
1772 /*
1773      Give the same result as crc32_combine(), using op in place of len2. op is
1774    is generated from len2 by crc32_combine_gen(). This will be faster than
1775    crc32_combine() if the generated op is used more than once.
1776 */
1777 
1778 
1779                         /* various hacks, don't look :) */
1780 
1781 /* deflateInit and inflateInit are macros to allow checking the zlib version
1782  * and the compiler's view of z_stream:
1783  */
1784 ZEXTERN int ZEXPORT deflateInit_(z_streamp strm, int level,
1785                                  const char *version, int stream_size);
1786 ZEXTERN int ZEXPORT inflateInit_(z_streamp strm,
1787                                  const char *version, int stream_size);
1788 ZEXTERN int ZEXPORT deflateInit2_(z_streamp strm, int  level, int  method,
1789                                   int windowBits, int memLevel,
1790                                   int strategy, const char *version,
1791                                   int stream_size);
1792 ZEXTERN int ZEXPORT inflateInit2_(z_streamp strm, int  windowBits,
1793                                   const char *version, int stream_size);
1794 ZEXTERN int ZEXPORT inflateBackInit_(z_streamp strm, int windowBits,
1795                                      unsigned char FAR *window,
1796                                      const char *version,
1797                                      int stream_size);
1798 #ifdef Z_PREFIX_SET
1799 #  define z_deflateInit(strm, level) \
1800           deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream))
1801 #  define z_inflateInit(strm) \
1802           inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream))
1803 #  define z_deflateInit2(strm, level, method, windowBits, memLevel, strategy) \
1804           deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\
1805                         (strategy), ZLIB_VERSION, (int)sizeof(z_stream))
1806 #  define z_inflateInit2(strm, windowBits) \
1807           inflateInit2_((strm), (windowBits), ZLIB_VERSION, \
1808                         (int)sizeof(z_stream))
1809 #  define z_inflateBackInit(strm, windowBits, window) \
1810           inflateBackInit_((strm), (windowBits), (window), \
1811                            ZLIB_VERSION, (int)sizeof(z_stream))
1812 #else
1813 #  define deflateInit(strm, level) \
1814           deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream))
1815 #  define inflateInit(strm) \
1816           inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream))
1817 #  define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \
1818           deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\
1819                         (strategy), ZLIB_VERSION, (int)sizeof(z_stream))
1820 #  define inflateInit2(strm, windowBits) \
1821           inflateInit2_((strm), (windowBits), ZLIB_VERSION, \
1822                         (int)sizeof(z_stream))
1823 #  define inflateBackInit(strm, windowBits, window) \
1824           inflateBackInit_((strm), (windowBits), (window), \
1825                            ZLIB_VERSION, (int)sizeof(z_stream))
1826 #endif
1827 
1828 #ifndef Z_SOLO
1829 
1830 /* gzgetc() macro and its supporting function and exposed data structure.  Note
1831  * that the real internal state is much larger than the exposed structure.
1832  * This abbreviated structure exposes just enough for the gzgetc() macro.  The
1833  * user should not mess with these exposed elements, since their names or
1834  * behavior could change in the future, perhaps even capriciously.  They can
1835  * only be used by the gzgetc() macro.  You have been warned.
1836  */
1837 struct gzFile_s {
1838     unsigned have;
1839     unsigned char *next;
1840     z_off64_t pos;
1841 };
1842 ZEXTERN int ZEXPORT gzgetc_(gzFile file);       /* backward compatibility */
1843 #ifdef Z_PREFIX_SET
1844 #  undef z_gzgetc
1845 #  define z_gzgetc(g) \
1846           ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : (gzgetc)(g))
1847 #else
1848 #  define gzgetc(g) \
1849           ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : (gzgetc)(g))
1850 #endif
1851 
1852 /* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or
1853  * change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if
1854  * both are true, the application gets the *64 functions, and the regular
1855  * functions are changed to 64 bits) -- in case these are set on systems
1856  * without large file support, _LFS64_LARGEFILE must also be true
1857  */
1858 #ifdef Z_LARGE64
1859    ZEXTERN gzFile ZEXPORT gzopen64(const char *, const char *);
1860    ZEXTERN z_off64_t ZEXPORT gzseek64(gzFile, z_off64_t, int);
1861    ZEXTERN z_off64_t ZEXPORT gztell64(gzFile);
1862    ZEXTERN z_off64_t ZEXPORT gzoffset64(gzFile);
1863    ZEXTERN uLong ZEXPORT adler32_combine64(uLong, uLong, z_off64_t);
1864    ZEXTERN uLong ZEXPORT crc32_combine64(uLong, uLong, z_off64_t);
1865    ZEXTERN uLong ZEXPORT crc32_combine_gen64(z_off64_t);
1866 #endif
1867 
1868 #if !defined(ZLIB_INTERNAL) && defined(Z_WANT64)
1869 #  ifdef Z_PREFIX_SET
1870 #    define z_gzopen z_gzopen64
1871 #    define z_gzseek z_gzseek64
1872 #    define z_gztell z_gztell64
1873 #    define z_gzoffset z_gzoffset64
1874 #    define z_adler32_combine z_adler32_combine64
1875 #    define z_crc32_combine z_crc32_combine64
1876 #    define z_crc32_combine_gen z_crc32_combine_gen64
1877 #  else
1878 #    define gzopen gzopen64
1879 #    define gzseek gzseek64
1880 #    define gztell gztell64
1881 #    define gzoffset gzoffset64
1882 #    define adler32_combine adler32_combine64
1883 #    define crc32_combine crc32_combine64
1884 #    define crc32_combine_gen crc32_combine_gen64
1885 #  endif
1886 #  ifndef Z_LARGE64
1887      ZEXTERN gzFile ZEXPORT gzopen64(const char *, const char *);
1888      ZEXTERN z_off_t ZEXPORT gzseek64(gzFile, z_off_t, int);
1889      ZEXTERN z_off_t ZEXPORT gztell64(gzFile);
1890      ZEXTERN z_off_t ZEXPORT gzoffset64(gzFile);
1891      ZEXTERN uLong ZEXPORT adler32_combine64(uLong, uLong, z_off_t);
1892      ZEXTERN uLong ZEXPORT crc32_combine64(uLong, uLong, z_off_t);
1893      ZEXTERN uLong ZEXPORT crc32_combine_gen64(z_off_t);
1894 #  endif
1895 #else
1896    ZEXTERN gzFile ZEXPORT gzopen(const char *, const char *);
1897    ZEXTERN z_off_t ZEXPORT gzseek(gzFile, z_off_t, int);
1898    ZEXTERN z_off_t ZEXPORT gztell(gzFile);
1899    ZEXTERN z_off_t ZEXPORT gzoffset(gzFile);
1900    ZEXTERN uLong ZEXPORT adler32_combine(uLong, uLong, z_off_t);
1901    ZEXTERN uLong ZEXPORT crc32_combine(uLong, uLong, z_off_t);
1902    ZEXTERN uLong ZEXPORT crc32_combine_gen(z_off_t);
1903 #endif
1904 
1905 #else /* Z_SOLO */
1906 
1907    ZEXTERN uLong ZEXPORT adler32_combine(uLong, uLong, z_off_t);
1908    ZEXTERN uLong ZEXPORT crc32_combine(uLong, uLong, z_off_t);
1909    ZEXTERN uLong ZEXPORT crc32_combine_gen(z_off_t);
1910 
1911 #endif /* !Z_SOLO */
1912 
1913 /* undocumented functions */
1914 ZEXTERN const char   * ZEXPORT zError(int);
1915 ZEXTERN int            ZEXPORT inflateSyncPoint(z_streamp);
1916 ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table(void);
1917 ZEXTERN int            ZEXPORT inflateUndermine(z_streamp, int);
1918 ZEXTERN int            ZEXPORT inflateValidate(z_streamp, int);
1919 ZEXTERN unsigned long  ZEXPORT inflateCodesUsed(z_streamp);
1920 ZEXTERN int            ZEXPORT inflateResetKeep(z_streamp);
1921 ZEXTERN int            ZEXPORT deflateResetKeep(z_streamp);
1922 #if defined(_WIN32) && !defined(Z_SOLO)
1923 ZEXTERN gzFile         ZEXPORT gzopen_w(const wchar_t *path,
1924                                         const char *mode);
1925 #endif
1926 #if defined(STDC) || defined(Z_HAVE_STDARG_H)
1927 #  ifndef Z_SOLO
1928 ZEXTERN int            ZEXPORTVA gzvprintf(gzFile file,
1929                                            const char *format,
1930                                            va_list va);
1931 #  endif
1932 #endif
1933 
1934 #ifdef __cplusplus
1935 }
1936 #endif
1937 
1938 #endif /* ZLIB_H */