Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-08-28 09:11:28

0001 /***************************************************************************
0002  * Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and         *
0003  * Martin Renou                                                             *
0004  * Copyright (c) QuantStack                                                 *
0005  * Copyright (c) Serge Guelton                                              *
0006  *                                                                          *
0007  * Distributed under the terms of the BSD 3-Clause License.                 *
0008  *                                                                          *
0009  * The full license is in the file LICENSE, distributed with this software. *
0010  ****************************************************************************/
0011 
0012 #ifndef XSIMD_GENERIC_MATH_HPP
0013 #define XSIMD_GENERIC_MATH_HPP
0014 
0015 #include "../xsimd_scalar.hpp"
0016 #include "./xsimd_generic_details.hpp"
0017 #include "./xsimd_generic_trigo.hpp"
0018 
0019 #include <type_traits>
0020 
0021 namespace xsimd
0022 {
0023 
0024     namespace kernel
0025     {
0026 
0027         using namespace types;
0028         // abs
0029         template <class A, class T, class>
0030         XSIMD_INLINE batch<T, A> abs(batch<T, A> const& self, requires_arch<generic>) noexcept
0031         {
0032             if (std::is_unsigned<T>::value)
0033                 return self;
0034             else
0035             {
0036                 auto sign = bitofsign(self);
0037                 auto inv = self ^ sign;
0038                 return inv - sign;
0039             }
0040         }
0041 
0042         template <class A, class T>
0043         XSIMD_INLINE batch<T, A> abs(batch<std::complex<T>, A> const& z, requires_arch<generic>) noexcept
0044         {
0045             return hypot(z.real(), z.imag());
0046         }
0047 
0048         // avg
0049         namespace detail
0050         {
0051             template <class A, class T>
0052             XSIMD_INLINE batch<T, A> avg(batch<T, A> const& x, batch<T, A> const& y, std::true_type, std::false_type) noexcept
0053             {
0054                 return (x & y) + ((x ^ y) >> 1);
0055             }
0056 
0057             template <class A, class T>
0058             XSIMD_INLINE batch<T, A> avg(batch<T, A> const& x, batch<T, A> const& y, std::true_type, std::true_type) noexcept
0059             {
0060                 // Inspired by
0061                 // https://stackoverflow.com/questions/5697500/take-the-average-of-two-signed-numbers-in-c
0062                 auto t = (x & y) + ((x ^ y) >> 1);
0063                 auto t_u = bitwise_cast<typename std::make_unsigned<T>::type>(t);
0064                 auto avg = t + (bitwise_cast<T>(t_u >> (8 * sizeof(T) - 1)) & (x ^ y));
0065                 return avg;
0066             }
0067 
0068             template <class A, class T>
0069             XSIMD_INLINE batch<T, A> avg(batch<T, A> const& x, batch<T, A> const& y, std::false_type, std::true_type) noexcept
0070             {
0071                 return (x + y) / 2;
0072             }
0073         }
0074 
0075         template <class A, class T>
0076         XSIMD_INLINE batch<T, A> avg(batch<T, A> const& x, batch<T, A> const& y, requires_arch<generic>) noexcept
0077         {
0078             return detail::avg(x, y, typename std::is_integral<T>::type {}, typename std::is_signed<T>::type {});
0079         }
0080 
0081         // avgr
0082         namespace detail
0083         {
0084             template <class A, class T>
0085             XSIMD_INLINE batch<T, A> avgr(batch<T, A> const& x, batch<T, A> const& y, std::true_type) noexcept
0086             {
0087                 constexpr unsigned shift = 8 * sizeof(T) - 1;
0088                 auto adj = std::is_signed<T>::value ? ((x ^ y) & 0x1) : (((x ^ y) << shift) >> shift);
0089                 return ::xsimd::kernel::avg(x, y, A {}) + adj;
0090             }
0091 
0092             template <class A, class T>
0093             XSIMD_INLINE batch<T, A> avgr(batch<T, A> const& x, batch<T, A> const& y, std::false_type) noexcept
0094             {
0095                 return ::xsimd::kernel::avg(x, y, A {});
0096             }
0097         }
0098 
0099         template <class A, class T>
0100         XSIMD_INLINE batch<T, A> avgr(batch<T, A> const& x, batch<T, A> const& y, requires_arch<generic>) noexcept
0101         {
0102             return detail::avgr(x, y, typename std::is_integral<T>::type {});
0103         }
0104 
0105         // batch_cast
0106         template <class A, class T>
0107         XSIMD_INLINE batch<T, A> batch_cast(batch<T, A> const& self, batch<T, A> const&, requires_arch<generic>) noexcept
0108         {
0109             return self;
0110         }
0111 
0112         namespace detail
0113         {
0114             template <class A, class T_out, class T_in>
0115             XSIMD_INLINE batch<T_out, A> batch_cast(batch<T_in, A> const& self, batch<T_out, A> const& out, requires_arch<generic>, with_fast_conversion) noexcept
0116             {
0117                 return fast_cast(self, out, A {});
0118             }
0119             template <class A, class T_out, class T_in>
0120             XSIMD_INLINE batch<T_out, A> batch_cast(batch<T_in, A> const& self, batch<T_out, A> const&, requires_arch<generic>, with_slow_conversion) noexcept
0121             {
0122                 static_assert(!std::is_same<T_in, T_out>::value, "there should be no conversion for this type combination");
0123                 using batch_type_in = batch<T_in, A>;
0124                 using batch_type_out = batch<T_out, A>;
0125                 static_assert(batch_type_in::size == batch_type_out::size, "compatible sizes");
0126                 alignas(A::alignment()) T_in buffer_in[batch_type_in::size];
0127                 alignas(A::alignment()) T_out buffer_out[batch_type_out::size];
0128                 self.store_aligned(&buffer_in[0]);
0129                 std::copy(std::begin(buffer_in), std::end(buffer_in), std::begin(buffer_out));
0130                 return batch_type_out::load_aligned(buffer_out);
0131             }
0132 
0133         }
0134 
0135         template <class A, class T_out, class T_in>
0136         XSIMD_INLINE batch<T_out, A> batch_cast(batch<T_in, A> const& self, batch<T_out, A> const& out, requires_arch<generic>) noexcept
0137         {
0138             return detail::batch_cast(self, out, A {}, detail::conversion_type<A, T_in, T_out> {});
0139         }
0140 
0141         // bitofsign
0142         template <class A, class T>
0143         XSIMD_INLINE batch<T, A> bitofsign(batch<T, A> const& self, requires_arch<generic>) noexcept
0144         {
0145             static_assert(std::is_integral<T>::value, "int type implementation");
0146             if (std::is_unsigned<T>::value)
0147                 return batch<T, A>(0);
0148             else
0149                 return self >> (T)(8 * sizeof(T) - 1);
0150         }
0151 
0152         template <class A>
0153         XSIMD_INLINE batch<float, A> bitofsign(batch<float, A> const& self, requires_arch<generic>) noexcept
0154         {
0155             return self & constants::signmask<batch<float, A>>();
0156         }
0157         template <class A>
0158         XSIMD_INLINE batch<double, A> bitofsign(batch<double, A> const& self, requires_arch<generic>) noexcept
0159         {
0160             return self & constants::signmask<batch<double, A>>();
0161         }
0162 
0163         // bitwise_cast
0164         template <class A, class T>
0165         XSIMD_INLINE batch<T, A> bitwise_cast(batch<T, A> const& self, batch<T, A> const&, requires_arch<generic>) noexcept
0166         {
0167             return self;
0168         }
0169 
0170         // cbrt
0171         /* origin: boost/simd/arch/common/simd/function/cbrt.hpp */
0172         /*
0173          * ====================================================
0174          * copyright 2016 NumScale SAS
0175          *
0176          * Distributed under the Boost Software License, Version 1.0.
0177          * (See copy at http://boost.org/LICENSE_1_0.txt)
0178          * ====================================================
0179          */
0180         template <class A>
0181         XSIMD_INLINE batch<float, A> cbrt(batch<float, A> const& self, requires_arch<generic>) noexcept
0182         {
0183             using batch_type = batch<float, A>;
0184             batch_type z = abs(self);
0185 #ifndef XSIMD_NO_DENORMALS
0186             auto denormal = z < constants::smallestposval<batch_type>();
0187             z = select(denormal, z * constants::twotonmb<batch_type>(), z);
0188             batch_type f = select(denormal, constants::twotonmbo3<batch_type>(), batch_type(1.));
0189 #endif
0190             const batch_type CBRT2(bit_cast<float>(0x3fa14518));
0191             const batch_type CBRT4(bit_cast<float>(0x3fcb2ff5));
0192             const batch_type CBRT2I(bit_cast<float>(0x3f4b2ff5));
0193             const batch_type CBRT4I(bit_cast<float>(0x3f214518));
0194             using i_type = as_integer_t<batch_type>;
0195             i_type e;
0196             batch_type x = frexp(z, e);
0197             x = detail::horner<batch_type,
0198                                0x3ece0609,
0199                                0x3f91eb77,
0200                                0xbf745265,
0201                                0x3f0bf0fe,
0202                                0xbe09e49a>(x);
0203             auto flag = e >= i_type(0);
0204             i_type e1 = abs(e);
0205             i_type rem = e1;
0206             e1 /= i_type(3);
0207             rem -= e1 * i_type(3);
0208             e = e1 * sign(e);
0209             const batch_type cbrt2 = select(batch_bool_cast<float>(flag), CBRT2, CBRT2I);
0210             const batch_type cbrt4 = select(batch_bool_cast<float>(flag), CBRT4, CBRT4I);
0211             batch_type fact = select(batch_bool_cast<float>(rem == i_type(1)), cbrt2, batch_type(1.));
0212             fact = select(batch_bool_cast<float>(rem == i_type(2)), cbrt4, fact);
0213             x = ldexp(x * fact, e);
0214             x -= (x - z / (x * x)) * batch_type(1.f / 3.f);
0215 #ifndef XSIMD_NO_DENORMALS
0216             x = (x | bitofsign(self)) * f;
0217 #else
0218             x = x | bitofsign(self);
0219 #endif
0220 #ifndef XSIMD_NO_INFINITIES
0221             return select(self == batch_type(0.) || isinf(self), self, x);
0222 #else
0223             return select(self == batch_type(0.), self, x);
0224 #endif
0225         }
0226 
0227         template <class A>
0228         XSIMD_INLINE batch<double, A> cbrt(batch<double, A> const& self, requires_arch<generic>) noexcept
0229         {
0230             using batch_type = batch<double, A>;
0231             batch_type z = abs(self);
0232 #ifndef XSIMD_NO_DENORMALS
0233             auto denormal = z < constants::smallestposval<batch_type>();
0234             z = select(denormal, z * constants::twotonmb<batch_type>(), z);
0235             batch_type f = select(denormal, constants::twotonmbo3<batch_type>(), batch_type(1.));
0236 #endif
0237             const batch_type CBRT2(bit_cast<double>(int64_t(0x3ff428a2f98d728b)));
0238             const batch_type CBRT4(bit_cast<double>(int64_t(0x3ff965fea53d6e3d)));
0239             const batch_type CBRT2I(bit_cast<double>(int64_t(0x3fe965fea53d6e3d)));
0240             const batch_type CBRT4I(bit_cast<double>(int64_t(0x3fe428a2f98d728b)));
0241             using i_type = as_integer_t<batch_type>;
0242             i_type e;
0243             batch_type x = frexp(z, e);
0244             x = detail::horner<batch_type,
0245                                0x3fd9c0c12122a4feull,
0246                                0x3ff23d6ee505873aull,
0247                                0xbfee8a4ca3ba37b8ull,
0248                                0x3fe17e1fc7e59d58ull,
0249                                0xbfc13c93386fdff6ull>(x);
0250             auto flag = e >= typename i_type::value_type(0);
0251             i_type e1 = abs(e);
0252             i_type rem = e1;
0253             e1 /= i_type(3);
0254             rem -= e1 * i_type(3);
0255             e = e1 * sign(e);
0256             const batch_type cbrt2 = select(batch_bool_cast<double>(flag), CBRT2, CBRT2I);
0257             const batch_type cbrt4 = select(batch_bool_cast<double>(flag), CBRT4, CBRT4I);
0258             batch_type fact = select(batch_bool_cast<double>(rem == i_type(1)), cbrt2, batch_type(1.));
0259             fact = select(batch_bool_cast<double>(rem == i_type(2)), cbrt4, fact);
0260             x = ldexp(x * fact, e);
0261             x -= (x - z / (x * x)) * batch_type(1. / 3.);
0262             x -= (x - z / (x * x)) * batch_type(1. / 3.);
0263 #ifndef XSIMD_NO_DENORMALS
0264             x = (x | bitofsign(self)) * f;
0265 #else
0266             x = x | bitofsign(self);
0267 #endif
0268 #ifndef XSIMD_NO_INFINITIES
0269             return select(self == batch_type(0.) || isinf(self), self, x);
0270 #else
0271             return select(self == batch_type(0.), self, x);
0272 #endif
0273         }
0274 
0275         // clip
0276         template <class A, class T>
0277         XSIMD_INLINE batch<T, A> clip(batch<T, A> const& self, batch<T, A> const& lo, batch<T, A> const& hi, requires_arch<generic>) noexcept
0278         {
0279             return min(hi, max(self, lo));
0280         }
0281 
0282         // copysign
0283         template <class A, class T, class _ = typename std::enable_if<std::is_floating_point<T>::value, void>::type>
0284         XSIMD_INLINE batch<T, A> copysign(batch<T, A> const& self, batch<T, A> const& other, requires_arch<generic>) noexcept
0285         {
0286             return abs(self) | bitofsign(other);
0287         }
0288 
0289         // erf
0290 
0291         namespace detail
0292         {
0293             /* origin: boost/simd/arch/common/detail/generic/erf_kernel.hpp */
0294             /*
0295              * ====================================================
0296              * copyright 2016 NumScale SAS
0297              *
0298              * Distributed under the Boost Software License, Version 1.0.
0299              * (See copy at http://boost.org/LICENSE_1_0.txt)
0300              * ====================================================
0301              */
0302             template <class B>
0303             struct erf_kernel;
0304 
0305             template <class A>
0306             struct erf_kernel<batch<float, A>>
0307             {
0308                 using batch_type = batch<float, A>;
0309                 // computes erf(a0)/a0
0310                 // x is sqr(a0) and 0 <= abs(a0) <= 2/3
0311                 static XSIMD_INLINE batch_type erf1(const batch_type& x) noexcept
0312                 {
0313                     return detail::horner<batch_type,
0314                                           0x3f906eba, //   1.128379154774254e+00
0315                                           0xbec0937e, //  -3.761252839094832e-01
0316                                           0x3de70f22, //   1.128218315189123e-01
0317                                           0xbcdb61f4, //  -2.678010670585737e-02
0318                                           0x3ba4468d, //   5.013293006147870e-03
0319                                           0xba1fc83b //  -6.095205117313012e-04
0320                                           >(x);
0321                 }
0322 
0323                 // computes erfc(x)*exp(sqr(x))
0324                 // x >=  2/3
0325                 static XSIMD_INLINE batch_type erfc2(const batch_type& x) noexcept
0326                 {
0327                     return detail::horner<batch_type,
0328                                           0x3f0a0e8b, //   5.392844046572836e-01
0329                                           0xbf918a62, //  -1.137035586823118e+00
0330                                           0x3e243828, //   1.603704761054187e-01
0331                                           0x3ec4ca6e, //   3.843569094305250e-01
0332                                           0x3e1175c7, //   1.420508523645926e-01
0333                                           0x3e2006f0, //   1.562764709849380e-01
0334                                           0xbfaea865, //  -1.364514006347145e+00
0335                                           0x4050b063, //   3.260765682222576e+00
0336                                           0xc0cd1a85, //  -6.409487379234005e+00
0337                                           0x40d67e3b, //   6.702908785399893e+00
0338                                           0xc0283611 //  -2.628299919293280e+00
0339                                           >(x);
0340                 }
0341 
0342                 static XSIMD_INLINE batch_type erfc3(const batch_type& x) noexcept
0343                 {
0344                     return (batch_type(1.) - x) * detail::horner<batch_type,
0345                                                                  0x3f7ffffe, //   9.9999988e-01
0346                                                                  0xbe036d7e, //  -1.2834737e-01
0347                                                                  0xbfa11698, //  -1.2585020e+00
0348                                                                  0xbffc9284, //  -1.9732213e+00
0349                                                                  0xc016c985, //  -2.3560498e+00
0350                                                                  0x3f2cff3b, //   6.7576951e-01
0351                                                                  0xc010d956, //  -2.2632651e+00
0352                                                                  0x401b5680, //   2.4271545e+00
0353                                                                  0x41aa8e55 //   2.1319498e+01
0354                                                                  >(x);
0355                 }
0356             };
0357 
0358             template <class A>
0359             struct erf_kernel<batch<double, A>>
0360             {
0361                 using batch_type = batch<double, A>;
0362                 // computes erf(a0)/a0
0363                 // x is sqr(a0) and 0 <= abs(a0) <= 0.65
0364                 static XSIMD_INLINE batch_type erf1(const batch_type& x) noexcept
0365                 {
0366                     return detail::horner<batch_type,
0367                                           0x3ff20dd750429b61ull, // 1.12837916709551
0368                                           0x3fc16500f106c0a5ull, // 0.135894887627278
0369                                           0x3fa4a59a4f02579cull, // 4.03259488531795E-02
0370                                           0x3f53b7664358865aull, // 1.20339380863079E-03
0371                                           0x3f110512d5b20332ull // 6.49254556481904E-05
0372                                           >(x)
0373                         / detail::horner<batch_type,
0374                                          0x3ff0000000000000ull, // 1
0375                                          0x3fdd0a84eb1ca867ull, // 0.453767041780003
0376                                          0x3fb64536ca92ea2full, // 8.69936222615386E-02
0377                                          0x3f8166f75999dbd1ull, // 8.49717371168693E-03
0378                                          0x3f37ea4332348252ull // 3.64915280629351E-04
0379                                          >(x);
0380                 }
0381 
0382                 // computes erfc(x)*exp(x*x)
0383                 // 0.65 <= abs(x) <= 2.2
0384                 static XSIMD_INLINE batch_type erfc2(const batch_type& x) noexcept
0385                 {
0386                     return detail::horner<batch_type,
0387                                           0x3feffffffbbb552bull, // 0.999999992049799
0388                                           0x3ff54dfe9b258a60ull, // 1.33154163936765
0389                                           0x3fec1986509e687bull, // 0.878115804155882
0390                                           0x3fd53dd7a67c7e9full, // 0.331899559578213
0391                                           0x3fb2488a6b5cb5e5ull, // 7.14193832506776E-02
0392                                           0x3f7cf4cfe0aacbb4ull, // 7.06940843763253E-03
0393                                           0x0ull // 0
0394                                           >(x)
0395                         / detail::horner<batch_type,
0396                                          0x3ff0000000000000ull, // 1
0397                                          0x4003adeae79b9708ull, // 2.45992070144246
0398                                          0x40053b1052dca8bdull, // 2.65383972869776
0399                                          0x3ff9e677c2777c3cull, // 1.61876655543871
0400                                          0x3fe307622fcff772ull, // 0.594651311286482
0401                                          0x3fc033c113a7deeeull, // 0.126579413030178
0402                                          0x3f89a996639b0d00ull // 1.25304936549413E-02
0403                                          >(x);
0404                 }
0405 
0406                 // computes erfc(x)*exp(x*x)
0407                 // 2.2 <= abs(x) <= 6
0408                 static XSIMD_INLINE batch_type erfc3(const batch_type& x) noexcept
0409                 {
0410                     return detail::horner<batch_type,
0411                                           0x3fefff5a9e697ae2ull, // 0.99992114009714
0412                                           0x3ff9fa202deb88e5ull, // 1.62356584489367
0413                                           0x3ff44744306832aeull, // 1.26739901455873
0414                                           0x3fe29be1cff90d94ull, // 0.581528574177741
0415                                           0x3fc42210f88b9d43ull, // 0.157289620742839
0416                                           0x3f971d0907ea7a92ull, // 2.25716982919218E-02
0417                                           0x0ll // 0
0418                                           >(x)
0419                         / detail::horner<batch_type,
0420                                          0x3ff0000000000000ull, // 1
0421                                          0x400602f24bf3fdb6ull, // 2.75143870676376
0422                                          0x400afd487397568full, // 3.37367334657285
0423                                          0x400315ffdfd5ce91ull, // 2.38574194785344
0424                                          0x3ff0cfd4cb6cde9full, // 1.05074004614827
0425                                          0x3fd1d7ab774bb837ull, // 0.278788439273629
0426                                          0x3fa47bd61bbb3843ull // 4.00072964526861E-02
0427                                          >(x);
0428                 }
0429 
0430                 // computes erfc(rx)*exp(rx*rx)
0431                 // x >=  6 rx = 1/x
0432                 static XSIMD_INLINE batch_type erfc4(const batch_type& x) noexcept
0433                 {
0434                     return detail::horner<batch_type,
0435                                           0xbc7e4ad1ec7d0000ll, // -2.627435221016534e-17
0436                                           0x3fe20dd750429a16ll, // 5.641895835477182e-01
0437                                           0x3db60000e984b501ll, // 2.000889609806154e-11
0438                                           0xbfd20dd753ae5dfdll, // -2.820947949598745e-01
0439                                           0x3e907e71e046a820ll, // 2.457786367990903e-07
0440                                           0x3fdb1494cac06d39ll, // 4.231311779019112e-01
0441                                           0x3f34a451701654f1ll, // 3.149699042180451e-04
0442                                           0xbff105e6b8ef1a63ll, // -1.063940737150596e+00
0443                                           0x3fb505a857e9ccc8ll, // 8.211757799454056e-02
0444                                           0x40074fbabc514212ll, // 2.913930388669777e+00
0445                                           0x4015ac7631f7ac4fll, // 5.418419628850713e+00
0446                                           0xc0457e03041e9d8bll, // -4.298446704382794e+01
0447                                           0x4055803d26c4ec4fll, // 8.600373238783617e+01
0448                                           0xc0505fce04ec4ec5ll // -6.549694941594051e+01
0449                                           >(x);
0450                 }
0451             };
0452         }
0453         /* origin: boost/simd/arch/common/simd/function/erf.hpp */
0454         /*
0455          * ====================================================
0456          * copyright 2016 NumScale SAS
0457          *
0458          * Distributed under the Boost Software License, Version 1.0.
0459          * (See copy at http://boost.org/LICENSE_1_0.txt)
0460          * ====================================================
0461          */
0462 
0463         template <class A>
0464         XSIMD_INLINE batch<float, A> erf(batch<float, A> const& self, requires_arch<generic>) noexcept
0465         {
0466             using batch_type = batch<float, A>;
0467             batch_type x = abs(self);
0468             batch_type r1(0.);
0469             auto test1 = x < batch_type(2.f / 3.f);
0470             if (any(test1))
0471             {
0472                 r1 = self * detail::erf_kernel<batch_type>::erf1(x * x);
0473                 if (all(test1))
0474                     return r1;
0475             }
0476             batch_type z = x / (batch_type(1.) + x);
0477             z -= batch_type(0.4f);
0478             batch_type r2 = batch_type(1.) - exp(-x * x) * detail::erf_kernel<batch_type>::erfc2(z);
0479             r2 = select(self < batch_type(0.), -r2, r2);
0480             r1 = select(test1, r1, r2);
0481 #ifndef XSIMD_NO_INFINITIES
0482             r1 = select(xsimd::isinf(self), sign(self), r1);
0483 #endif
0484             return r1;
0485         }
0486 
0487         template <class A>
0488         XSIMD_INLINE batch<double, A> erf(batch<double, A> const& self, requires_arch<generic>) noexcept
0489         {
0490             using batch_type = batch<double, A>;
0491             batch_type x = abs(self);
0492             batch_type xx = x * x;
0493             batch_type lim1(0.65);
0494             batch_type lim2(2.2);
0495             auto test1 = x < lim1;
0496             batch_type r1(0.);
0497             if (any(test1))
0498             {
0499                 r1 = self * detail::erf_kernel<batch_type>::erf1(xx);
0500                 if (all(test1))
0501                     return r1;
0502             }
0503             auto test2 = x < lim2;
0504             auto test3 = test2 && !test1;
0505             batch_type ex = exp(-xx);
0506             if (any(test3))
0507             {
0508                 batch_type z = batch_type(1.) - ex * detail::erf_kernel<batch_type>::erfc2(x);
0509                 batch_type r2 = select(self < batch_type(0.), -z, z);
0510                 r1 = select(test1, r1, r2);
0511                 if (all(test1 || test3))
0512                     return r1;
0513             }
0514             batch_type z = batch_type(1.) - ex * detail::erf_kernel<batch_type>::erfc3(x);
0515             z = select(self < batch_type(0.), -z, z);
0516 #ifndef XSIMD_NO_INFINITIES
0517             z = select(xsimd::isinf(self), sign(self), z);
0518 #endif
0519             return select(test2, r1, z);
0520         }
0521 
0522         // erfc
0523         template <class A>
0524         XSIMD_INLINE batch<float, A> erfc(batch<float, A> const& self, requires_arch<generic>) noexcept
0525         {
0526             using batch_type = batch<float, A>;
0527             batch_type x = abs(self);
0528             auto test0 = self < batch_type(0.);
0529             batch_type r1(0.);
0530             auto test1 = 3.f * x < 2.f;
0531             batch_type z = x / (batch_type(1.) + x);
0532             if (any(test1))
0533             {
0534                 r1 = detail::erf_kernel<batch_type>::erfc3(z);
0535                 if (all(test1))
0536                     return select(test0, batch_type(2.) - r1, r1);
0537             }
0538 
0539             z -= batch_type(0.4f);
0540             batch_type r2 = exp(-x * x) * detail::erf_kernel<batch_type>::erfc2(z);
0541             r1 = select(test1, r1, r2);
0542 #ifndef XSIMD_NO_INFINITIES
0543             r1 = select(x == constants::infinity<batch_type>(), batch_type(0.), r1);
0544 #endif
0545             return select(test0, batch_type(2.) - r1, r1);
0546         }
0547 
0548         template <class A>
0549         XSIMD_INLINE batch<double, A> erfc(batch<double, A> const& self, requires_arch<generic>) noexcept
0550         {
0551             using batch_type = batch<double, A>;
0552             batch_type x = abs(self);
0553             batch_type xx = x * x;
0554             batch_type lim1(0.65);
0555             batch_type lim2(2.2);
0556             auto test0 = self < batch_type(0.);
0557             auto test1 = x < lim1;
0558             batch_type r1(0.);
0559             if (any(test1))
0560             {
0561                 r1 = batch_type(1.) - x * detail::erf_kernel<batch_type>::erf1(xx);
0562                 if (all(test1))
0563                     return select(test0, batch_type(2.) - r1, r1);
0564             }
0565             auto test2 = x < lim2;
0566             auto test3 = test2 && !test1;
0567             batch_type ex = exp(-xx);
0568             if (any(test3))
0569             {
0570                 batch_type z = ex * detail::erf_kernel<batch_type>::erfc2(x);
0571                 r1 = select(test1, r1, z);
0572                 if (all(test1 || test3))
0573                     return select(test0, batch_type(2.) - r1, r1);
0574             }
0575             batch_type z = ex * detail::erf_kernel<batch_type>::erfc3(x);
0576             r1 = select(test2, r1, z);
0577 #ifndef XSIMD_NO_INFINITIES
0578             r1 = select(x == constants::infinity<batch_type>(), batch_type(0.), r1);
0579 #endif
0580             return select(test0, batch_type(2.) - r1, r1);
0581         }
0582 
0583         // estrin
0584         namespace detail
0585         {
0586 
0587             template <class B>
0588             struct estrin
0589             {
0590                 B x;
0591 
0592                 template <typename... Ts>
0593                 XSIMD_INLINE B operator()(const Ts&... coefs) noexcept
0594                 {
0595                     return eval(coefs...);
0596                 }
0597 
0598             private:
0599                 XSIMD_INLINE B eval(const B& c0) noexcept
0600                 {
0601                     return c0;
0602                 }
0603 
0604                 XSIMD_INLINE B eval(const B& c0, const B& c1) noexcept
0605                 {
0606                     return fma(x, c1, c0);
0607                 }
0608 
0609                 template <size_t... Is, class Tuple>
0610                 XSIMD_INLINE B eval(::xsimd::detail::index_sequence<Is...>, const Tuple& tuple)
0611                 {
0612                     return estrin { x * x }(std::get<Is>(tuple)...);
0613                 }
0614 
0615                 template <class... Args>
0616                 XSIMD_INLINE B eval(const std::tuple<Args...>& tuple) noexcept
0617                 {
0618                     return eval(::xsimd::detail::make_index_sequence<sizeof...(Args)>(), tuple);
0619                 }
0620 
0621                 template <class... Args>
0622                 XSIMD_INLINE B eval(const std::tuple<Args...>& tuple, const B& c0) noexcept
0623                 {
0624                     return eval(std::tuple_cat(tuple, std::make_tuple(eval(c0))));
0625                 }
0626 
0627                 template <class... Args>
0628                 XSIMD_INLINE B eval(const std::tuple<Args...>& tuple, const B& c0, const B& c1) noexcept
0629                 {
0630                     return eval(std::tuple_cat(tuple, std::make_tuple(eval(c0, c1))));
0631                 }
0632 
0633                 template <class... Args, class... Ts>
0634                 XSIMD_INLINE B eval(const std::tuple<Args...>& tuple, const B& c0, const B& c1, const Ts&... coefs) noexcept
0635                 {
0636                     return eval(std::tuple_cat(tuple, std::make_tuple(eval(c0, c1))), coefs...);
0637                 }
0638 
0639                 template <class... Ts>
0640                 XSIMD_INLINE B eval(const B& c0, const B& c1, const Ts&... coefs) noexcept
0641                 {
0642                     return eval(std::make_tuple(eval(c0, c1)), coefs...);
0643                 }
0644             };
0645         }
0646 
0647         template <class T, class A, uint64_t... Coefs>
0648         XSIMD_INLINE batch<T, A> estrin(const batch<T, A>& self) noexcept
0649         {
0650             using batch_type = batch<T, A>;
0651             return detail::estrin<batch_type> { self }(detail::coef<batch_type, Coefs>()...);
0652         }
0653 
0654         // exp
0655         /* origin: boost/simd/arch/common/detail/simd/expo_base.hpp */
0656         /*
0657          * ====================================================
0658          * copyright 2016 NumScale SAS
0659          *
0660          * Distributed under the Boost Software License, Version 1.0.
0661          * (See copy at http://boost.org/LICENSE_1_0.txt)
0662          * ====================================================
0663          */
0664         namespace detail
0665         {
0666             enum exp_reduction_tag
0667             {
0668                 exp_tag,
0669                 exp2_tag,
0670                 exp10_tag
0671             };
0672 
0673             template <class B, exp_reduction_tag Tag>
0674             struct exp_reduction_base;
0675 
0676             template <class B>
0677             struct exp_reduction_base<B, exp_tag>
0678             {
0679                 static constexpr B maxlog() noexcept
0680                 {
0681                     return constants::maxlog<B>();
0682                 }
0683 
0684                 static constexpr B minlog() noexcept
0685                 {
0686                     return constants::minlog<B>();
0687                 }
0688             };
0689 
0690             template <class B>
0691             struct exp_reduction_base<B, exp10_tag>
0692             {
0693                 static constexpr B maxlog() noexcept
0694                 {
0695                     return constants::maxlog10<B>();
0696                 }
0697 
0698                 static constexpr B minlog() noexcept
0699                 {
0700                     return constants::minlog10<B>();
0701                 }
0702             };
0703 
0704             template <class B>
0705             struct exp_reduction_base<B, exp2_tag>
0706             {
0707                 static constexpr B maxlog() noexcept
0708                 {
0709                     return constants::maxlog2<B>();
0710                 }
0711 
0712                 static constexpr B minlog() noexcept
0713                 {
0714                     return constants::minlog2<B>();
0715                 }
0716             };
0717 
0718             template <class T, class A, exp_reduction_tag Tag>
0719             struct exp_reduction;
0720 
0721             template <class A>
0722             struct exp_reduction<float, A, exp_tag> : exp_reduction_base<batch<float, A>, exp_tag>
0723             {
0724                 using batch_type = batch<float, A>;
0725                 static XSIMD_INLINE batch_type approx(const batch_type& x) noexcept
0726                 {
0727                     batch_type y = detail::horner<batch_type,
0728                                                   0x3f000000, //  5.0000000e-01
0729                                                   0x3e2aa9a5, //  1.6666277e-01
0730                                                   0x3d2aa957, //  4.1665401e-02
0731                                                   0x3c098d8b, //  8.3955629e-03
0732                                                   0x3ab778cf //  1.3997796e-03
0733                                                   >(x);
0734                     return ++fma(y, x * x, x);
0735                 }
0736 
0737                 static XSIMD_INLINE batch_type reduce(const batch_type& a, batch_type& x) noexcept
0738                 {
0739                     batch_type k = nearbyint(constants::invlog_2<batch_type>() * a);
0740                     x = fnma(k, constants::log_2hi<batch_type>(), a);
0741                     x = fnma(k, constants::log_2lo<batch_type>(), x);
0742                     return k;
0743                 }
0744             };
0745 
0746             template <class A>
0747             struct exp_reduction<float, A, exp10_tag> : exp_reduction_base<batch<float, A>, exp10_tag>
0748             {
0749                 using batch_type = batch<float, A>;
0750                 static XSIMD_INLINE batch_type approx(const batch_type& x) noexcept
0751                 {
0752                     return ++(detail::horner<batch_type,
0753                                              0x40135d8e, //    2.3025851e+00
0754                                              0x4029a926, //    2.6509490e+00
0755                                              0x400237da, //    2.0346589e+00
0756                                              0x3f95eb4c, //    1.1712432e+00
0757                                              0x3f0aacef, //    5.4170126e-01
0758                                              0x3e54dff1 //    2.0788552e-01
0759                                              >(x)
0760                               * x);
0761                 }
0762 
0763                 static XSIMD_INLINE batch_type reduce(const batch_type& a, batch_type& x) noexcept
0764                 {
0765                     batch_type k = nearbyint(constants::invlog10_2<batch_type>() * a);
0766                     x = fnma(k, constants::log10_2hi<batch_type>(), a);
0767                     x -= k * constants::log10_2lo<batch_type>();
0768                     return k;
0769                 }
0770             };
0771 
0772             template <class A>
0773             struct exp_reduction<float, A, exp2_tag> : exp_reduction_base<batch<float, A>, exp2_tag>
0774             {
0775                 using batch_type = batch<float, A>;
0776                 static XSIMD_INLINE batch_type approx(const batch_type& x) noexcept
0777                 {
0778                     batch_type y = detail::horner<batch_type,
0779                                                   0x3e75fdf1, //    2.4022652e-01
0780                                                   0x3d6356eb, //    5.5502813e-02
0781                                                   0x3c1d9422, //    9.6178371e-03
0782                                                   0x3ab01218, //    1.3433127e-03
0783                                                   0x3922c8c4 //    1.5524315e-04
0784                                                   >(x);
0785                     return ++fma(y, x * x, x * constants::log_2<batch_type>());
0786                 }
0787 
0788                 static XSIMD_INLINE batch_type reduce(const batch_type& a, batch_type& x) noexcept
0789                 {
0790                     batch_type k = nearbyint(a);
0791                     x = (a - k);
0792                     return k;
0793                 }
0794             };
0795 
0796             template <class A>
0797             struct exp_reduction<double, A, exp_tag> : exp_reduction_base<batch<double, A>, exp_tag>
0798             {
0799                 using batch_type = batch<double, A>;
0800                 static XSIMD_INLINE batch_type approx(const batch_type& x) noexcept
0801                 {
0802                     batch_type t = x * x;
0803                     return fnma(t,
0804                                 detail::horner<batch_type,
0805                                                0x3fc555555555553eull,
0806                                                0xbf66c16c16bebd93ull,
0807                                                0x3f11566aaf25de2cull,
0808                                                0xbebbbd41c5d26bf1ull,
0809                                                0x3e66376972bea4d0ull>(t),
0810                                 x);
0811                 }
0812 
0813                 static XSIMD_INLINE batch_type reduce(const batch_type& a, batch_type& hi, batch_type& lo, batch_type& x) noexcept
0814                 {
0815                     batch_type k = nearbyint(constants::invlog_2<batch_type>() * a);
0816                     hi = fnma(k, constants::log_2hi<batch_type>(), a);
0817                     lo = k * constants::log_2lo<batch_type>();
0818                     x = hi - lo;
0819                     return k;
0820                 }
0821 
0822                 static XSIMD_INLINE batch_type finalize(const batch_type& x, const batch_type& c, const batch_type& hi, const batch_type& lo) noexcept
0823                 {
0824                     return batch_type(1.) - (((lo - (x * c) / (batch_type(2.) - c)) - hi));
0825                 }
0826             };
0827 
0828             template <class A>
0829             struct exp_reduction<double, A, exp10_tag> : exp_reduction_base<batch<double, A>, exp10_tag>
0830             {
0831                 using batch_type = batch<double, A>;
0832                 static XSIMD_INLINE batch_type approx(const batch_type& x) noexcept
0833                 {
0834                     batch_type xx = x * x;
0835                     batch_type px = x * detail::horner<batch_type, 0x40a2b4798e134a01ull, 0x40796b7a050349e4ull, 0x40277d9474c55934ull, 0x3fa4fd75f3062dd4ull>(xx);
0836                     batch_type x2 = px / (detail::horner1<batch_type, 0x40a03f37650df6e2ull, 0x4093e05eefd67782ull, 0x405545fdce51ca08ull>(xx) - px);
0837                     return ++(x2 + x2);
0838                 }
0839 
0840                 static XSIMD_INLINE batch_type reduce(const batch_type& a, batch_type&, batch_type&, batch_type& x) noexcept
0841                 {
0842                     batch_type k = nearbyint(constants::invlog10_2<batch_type>() * a);
0843                     x = fnma(k, constants::log10_2hi<batch_type>(), a);
0844                     x = fnma(k, constants::log10_2lo<batch_type>(), x);
0845                     return k;
0846                 }
0847 
0848                 static XSIMD_INLINE batch_type finalize(const batch_type&, const batch_type& c, const batch_type&, const batch_type&) noexcept
0849                 {
0850                     return c;
0851                 }
0852             };
0853 
0854             template <class A>
0855             struct exp_reduction<double, A, exp2_tag> : exp_reduction_base<batch<double, A>, exp2_tag>
0856             {
0857                 using batch_type = batch<double, A>;
0858                 static XSIMD_INLINE batch_type approx(const batch_type& x) noexcept
0859                 {
0860                     batch_type t = x * x;
0861                     return fnma(t,
0862                                 detail::horner<batch_type,
0863                                                0x3fc555555555553eull,
0864                                                0xbf66c16c16bebd93ull,
0865                                                0x3f11566aaf25de2cull,
0866                                                0xbebbbd41c5d26bf1ull,
0867                                                0x3e66376972bea4d0ull>(t),
0868                                 x);
0869                 }
0870 
0871                 static XSIMD_INLINE batch_type reduce(const batch_type& a, batch_type&, batch_type&, batch_type& x) noexcept
0872                 {
0873                     batch_type k = nearbyint(a);
0874                     x = (a - k) * constants::log_2<batch_type>();
0875                     return k;
0876                 }
0877 
0878                 static XSIMD_INLINE batch_type finalize(const batch_type& x, const batch_type& c, const batch_type&, const batch_type&) noexcept
0879                 {
0880                     return batch_type(1.) + x + x * c / (batch_type(2.) - c);
0881                 }
0882             };
0883 
0884             template <exp_reduction_tag Tag, class A>
0885             XSIMD_INLINE batch<float, A> exp(batch<float, A> const& self) noexcept
0886             {
0887                 using batch_type = batch<float, A>;
0888                 using reducer_t = exp_reduction<float, A, Tag>;
0889                 batch_type x;
0890                 batch_type k = reducer_t::reduce(self, x);
0891                 x = reducer_t::approx(x);
0892                 x = select(self <= reducer_t::minlog(), batch_type(0.), ldexp(x, to_int(k)));
0893                 x = select(self >= reducer_t::maxlog(), constants::infinity<batch_type>(), x);
0894                 return x;
0895             }
0896 
0897             template <exp_reduction_tag Tag, class A>
0898             XSIMD_INLINE batch<double, A> exp(batch<double, A> const& self) noexcept
0899             {
0900                 using batch_type = batch<double, A>;
0901                 using reducer_t = exp_reduction<double, A, Tag>;
0902                 batch_type hi, lo, x;
0903                 batch_type k = reducer_t::reduce(self, hi, lo, x);
0904                 batch_type c = reducer_t::approx(x);
0905                 c = reducer_t::finalize(x, c, hi, lo);
0906                 c = select(self <= reducer_t::minlog(), batch_type(0.), ldexp(c, to_int(k)));
0907                 c = select(self >= reducer_t::maxlog(), constants::infinity<batch_type>(), c);
0908                 return c;
0909             }
0910         }
0911 
0912         template <class A, class T>
0913         XSIMD_INLINE batch<T, A> exp(batch<T, A> const& self, requires_arch<generic>) noexcept
0914         {
0915             return detail::exp<detail::exp_tag>(self);
0916         }
0917 
0918         template <class A, class T>
0919         XSIMD_INLINE batch<std::complex<T>, A> exp(batch<std::complex<T>, A> const& self, requires_arch<generic>) noexcept
0920         {
0921             using batch_type = batch<std::complex<T>, A>;
0922             auto isincos = sincos(self.imag());
0923             return exp(self.real()) * batch_type(std::get<1>(isincos), std::get<0>(isincos));
0924         }
0925 
0926         // exp10
0927         template <class A, class T>
0928         XSIMD_INLINE batch<T, A> exp10(batch<T, A> const& self, requires_arch<generic>) noexcept
0929         {
0930             return detail::exp<detail::exp10_tag>(self);
0931         }
0932 
0933         // exp2
0934         template <class A, class T>
0935         XSIMD_INLINE batch<T, A> exp2(batch<T, A> const& self, requires_arch<generic>) noexcept
0936         {
0937             return detail::exp<detail::exp2_tag>(self);
0938         }
0939 
0940         // expm1
0941         namespace detail
0942         {
0943             /* origin: boost/simd/arch/common/detail/generic/expm1_kernel.hpp */
0944             /*
0945              * ====================================================
0946              * copyright 2016 NumScale SAS
0947              *
0948              * Distributed under the Boost Software License, Version 1.0.
0949              * (See copy at http://boost.org/LICENSE_1_0.txt)
0950              * ====================================================
0951              */
0952             template <class A>
0953             static XSIMD_INLINE batch<float, A> expm1(const batch<float, A>& a) noexcept
0954             {
0955                 using batch_type = batch<float, A>;
0956                 batch_type k = nearbyint(constants::invlog_2<batch_type>() * a);
0957                 batch_type x = fnma(k, constants::log_2hi<batch_type>(), a);
0958                 x = fnma(k, constants::log_2lo<batch_type>(), x);
0959                 batch_type hx = x * batch_type(0.5);
0960                 batch_type hxs = x * hx;
0961                 batch_type r = detail::horner<batch_type,
0962                                               0X3F800000UL, // 1
0963                                               0XBD08887FUL, // -3.3333298E-02
0964                                               0X3ACF6DB4UL // 1.582554
0965                                               >(hxs);
0966                 batch_type t = fnma(r, hx, batch_type(3.));
0967                 batch_type e = hxs * ((r - t) / (batch_type(6.) - x * t));
0968                 e = fms(x, e, hxs);
0969                 using i_type = as_integer_t<batch_type>;
0970                 i_type ik = to_int(k);
0971                 batch_type two2mk = ::xsimd::bitwise_cast<float>((constants::maxexponent<batch_type>() - ik) << constants::nmb<batch_type>());
0972                 batch_type y = batch_type(1.) - two2mk - (e - x);
0973                 return ldexp(y, ik);
0974             }
0975 
0976             template <class A>
0977             static XSIMD_INLINE batch<double, A> expm1(const batch<double, A>& a) noexcept
0978             {
0979                 using batch_type = batch<double, A>;
0980                 batch_type k = nearbyint(constants::invlog_2<batch_type>() * a);
0981                 batch_type hi = fnma(k, constants::log_2hi<batch_type>(), a);
0982                 batch_type lo = k * constants::log_2lo<batch_type>();
0983                 batch_type x = hi - lo;
0984                 batch_type hxs = x * x * batch_type(0.5);
0985                 batch_type r = detail::horner<batch_type,
0986                                               0X3FF0000000000000ULL,
0987                                               0XBFA11111111110F4ULL,
0988                                               0X3F5A01A019FE5585ULL,
0989                                               0XBF14CE199EAADBB7ULL,
0990                                               0X3ED0CFCA86E65239ULL,
0991                                               0XBE8AFDB76E09C32DULL>(hxs);
0992                 batch_type t = batch_type(3.) - r * batch_type(0.5) * x;
0993                 batch_type e = hxs * ((r - t) / (batch_type(6) - x * t));
0994                 batch_type c = (hi - x) - lo;
0995                 e = (x * (e - c) - c) - hxs;
0996                 using i_type = as_integer_t<batch_type>;
0997                 i_type ik = to_int(k);
0998                 batch_type two2mk = ::xsimd::bitwise_cast<double>((constants::maxexponent<batch_type>() - ik) << constants::nmb<batch_type>());
0999                 batch_type ct1 = batch_type(1.) - two2mk - (e - x);
1000                 batch_type ct2 = ++(x - (e + two2mk));
1001                 batch_type y = select(k < batch_type(20.), ct1, ct2);
1002                 return ldexp(y, ik);
1003             }
1004 
1005         }
1006 
1007         template <class A, class T>
1008         XSIMD_INLINE batch<T, A> expm1(batch<T, A> const& self, requires_arch<generic>) noexcept
1009         {
1010             using batch_type = batch<T, A>;
1011             return select(self < constants::logeps<batch_type>(),
1012                           batch_type(-1.),
1013                           select(self > constants::maxlog<batch_type>(),
1014                                  constants::infinity<batch_type>(),
1015                                  detail::expm1(self)));
1016         }
1017 
1018         template <class A, class T>
1019         XSIMD_INLINE batch<std::complex<T>, A> expm1(const batch<std::complex<T>, A>& z, requires_arch<generic>) noexcept
1020         {
1021             using batch_type = batch<std::complex<T>, A>;
1022             using real_batch = typename batch_type::real_batch;
1023             real_batch isin = sin(z.imag());
1024             real_batch rem1 = expm1(z.real());
1025             real_batch re = rem1 + 1.;
1026             real_batch si = sin(z.imag() * 0.5);
1027             return { rem1 - 2. * re * si * si, re * isin };
1028         }
1029 
1030         // polar
1031         template <class A, class T>
1032         XSIMD_INLINE batch<std::complex<T>, A> polar(const batch<T, A>& r, const batch<T, A>& theta, requires_arch<generic>) noexcept
1033         {
1034             auto sincosTheta = sincos(theta);
1035             return { r * sincosTheta.second, r * sincosTheta.first };
1036         }
1037 
1038         // fdim
1039         template <class A, class T>
1040         XSIMD_INLINE batch<T, A> fdim(batch<T, A> const& self, batch<T, A> const& other, requires_arch<generic>) noexcept
1041         {
1042             return fmax(batch<T, A>(0), self - other);
1043         }
1044 
1045         // fmod
1046         template <class A, class T>
1047         XSIMD_INLINE batch<T, A> fmod(batch<T, A> const& self, batch<T, A> const& other, requires_arch<generic>) noexcept
1048         {
1049             return fnma(trunc(self / other), other, self);
1050         }
1051 
1052         // frexp
1053         /* origin: boost/simd/arch/common/simd/function/ifrexp.hpp */
1054         /*
1055          * ====================================================
1056          * copyright 2016 NumScale SAS
1057          *
1058          * Distributed under the Boost Software License, Version 1.0.
1059          * (See copy at http://boost.org/LICENSE_1_0.txt)
1060          * ====================================================
1061          */
1062         template <class A, class T>
1063         XSIMD_INLINE batch<T, A> frexp(const batch<T, A>& self, batch<as_integer_t<T>, A>& exp, requires_arch<generic>) noexcept
1064         {
1065             using batch_type = batch<T, A>;
1066             using int_type = as_integer_t<T>;
1067             using i_type = batch<int_type, A>;
1068             i_type m1f = constants::mask1frexp<batch_type>();
1069             i_type r1 = m1f & ::xsimd::bitwise_cast<int_type>(self);
1070             batch_type x = self & ::xsimd::bitwise_cast<T>(~m1f);
1071             exp = (r1 >> constants::nmb<batch_type>()) - constants::maxexponentm1<batch_type>();
1072             exp = select(batch_bool_cast<typename i_type::value_type>(self != batch_type(0.)), exp, i_type(typename i_type::value_type(0)));
1073             return select((self != batch_type(0.)), x | ::xsimd::bitwise_cast<T>(constants::mask2frexp<batch_type>()), batch_type(0.));
1074         }
1075 
1076         // from bool
1077         template <class A, class T>
1078         XSIMD_INLINE batch<T, A> from_bool(batch_bool<T, A> const& self, requires_arch<generic>) noexcept
1079         {
1080             return batch<T, A>(self.data) & batch<T, A>(1);
1081         }
1082 
1083         // horner
1084         template <class T, class A, uint64_t... Coefs>
1085         XSIMD_INLINE batch<T, A> horner(const batch<T, A>& self) noexcept
1086         {
1087             return detail::horner<batch<T, A>, Coefs...>(self);
1088         }
1089 
1090         // hypot
1091         template <class A, class T>
1092         XSIMD_INLINE batch<T, A> hypot(batch<T, A> const& self, batch<T, A> const& other, requires_arch<generic>) noexcept
1093         {
1094             return sqrt(fma(self, self, other * other));
1095         }
1096 
1097         // ipow
1098         template <class A, class T, class ITy>
1099         XSIMD_INLINE batch<T, A> ipow(batch<T, A> const& self, ITy other, requires_arch<generic>) noexcept
1100         {
1101             return ::xsimd::detail::ipow(self, other);
1102         }
1103 
1104         // ldexp
1105         /* origin: boost/simd/arch/common/simd/function/ldexp.hpp */
1106         /*
1107          * ====================================================
1108          * copyright 2016 NumScale SAS
1109          *
1110          * Distributed under the Boost Software License, Version 1.0.
1111          * (See copy at http://boost.org/LICENSE_1_0.txt)
1112          * ====================================================
1113          */
1114         template <class A, class T>
1115         XSIMD_INLINE batch<T, A> ldexp(const batch<T, A>& self, const batch<as_integer_t<T>, A>& other, requires_arch<generic>) noexcept
1116         {
1117             using batch_type = batch<T, A>;
1118             using itype = as_integer_t<batch_type>;
1119             itype ik = other + constants::maxexponent<T>();
1120             ik = ik << constants::nmb<T>();
1121             return self * ::xsimd::bitwise_cast<T>(ik);
1122         }
1123 
1124         // lgamma
1125         template <class A, class T>
1126         XSIMD_INLINE batch<T, A> lgamma(batch<T, A> const& self, requires_arch<generic>) noexcept;
1127 
1128         namespace detail
1129         {
1130             /* origin: boost/simd/arch/common/detail/generic/gammaln_kernel.hpp */
1131             /*
1132              * ====================================================
1133              * copyright 2016 NumScale SAS
1134              *
1135              * Distributed under the Boost Software License, Version 1.0.
1136              * (See copy at http://boost.org/LICENSE_1_0.txt)
1137              * ====================================================
1138              */
1139             template <class A>
1140             static XSIMD_INLINE batch<float, A> gammalnB(const batch<float, A>& x) noexcept
1141             {
1142                 return horner<batch<float, A>,
1143                               0x3ed87730, //    4.227843421859038E-001
1144                               0x3ea51a64, //    3.224669577325661E-001,
1145                               0xbd89f07e, //   -6.735323259371034E-002,
1146                               0x3ca89ed8, //    2.058355474821512E-002,
1147                               0xbbf164fd, //   -7.366775108654962E-003,
1148                               0x3b3ba883, //    2.863437556468661E-003,
1149                               0xbaabeab1, //   -1.311620815545743E-003,
1150                               0x3a1ebb94 //    6.055172732649237E-004
1151                               >(x);
1152             }
1153 
1154             template <class A>
1155             static XSIMD_INLINE batch<float, A> gammalnC(const batch<float, A>& x) noexcept
1156             {
1157                 return horner<batch<float, A>,
1158                               0xbf13c468, //   -5.772156501719101E-001
1159                               0x3f528d34, //    8.224670749082976E-001,
1160                               0xbecd27a8, //   -4.006931650563372E-001,
1161                               0x3e8a898b, //    2.705806208275915E-001,
1162                               0xbe53c04f, //   -2.067882815621965E-001,
1163                               0x3e2d4dab, //    1.692415923504637E-001,
1164                               0xbe22d329, //   -1.590086327657347E-001,
1165                               0x3e0c3c4f //    1.369488127325832E-001
1166                               >(x);
1167             }
1168 
1169             template <class A>
1170             static XSIMD_INLINE batch<float, A> gammaln2(const batch<float, A>& x) noexcept
1171             {
1172                 return horner<batch<float, A>,
1173                               0x3daaaa94, //   8.333316229807355E-002f
1174                               0xbb358701, //  -2.769887652139868E-003f,
1175                               0x3a31fd69 //   6.789774945028216E-004f
1176                               >(x);
1177             }
1178 
1179             template <class A>
1180             static XSIMD_INLINE batch<double, A> gammaln1(const batch<double, A>& x) noexcept
1181             {
1182                 return horner<batch<double, A>,
1183                               0xc12a0c675418055eull, //  -8.53555664245765465627E5
1184                               0xc13a45890219f20bull, //  -1.72173700820839662146E6,
1185                               0xc131bc82f994db51ull, //  -1.16237097492762307383E6,
1186                               0xc1143d73f89089e5ull, //  -3.31612992738871184744E5,
1187                               0xc0e2f234355bb93eull, //  -3.88016315134637840924E4,
1188                               0xc09589018ff36761ull //  -1.37825152569120859100E3
1189                               >(x)
1190                     / horner<batch<double, A>,
1191                              0xc13ece4b6a11e14aull, //  -2.01889141433532773231E6
1192                              0xc1435255892ff34cull, //  -2.53252307177582951285E6,
1193                              0xc131628671950043ull, //  -1.13933444367982507207E6,
1194                              0xc10aeb84b9744c9bull, //  -2.20528590553854454839E5,
1195                              0xc0d0aa0d7b89d757ull, //  -1.70642106651881159223E4,
1196                              0xc075fd0d1cf312b2ull, //  -3.51815701436523470549E2,
1197                              0x3ff0000000000000ull //   1.00000000000000000000E0
1198                              >(x);
1199             }
1200 
1201             template <class A>
1202             static XSIMD_INLINE batch<double, A> gammalnA(const batch<double, A>& x) noexcept
1203             {
1204                 return horner<batch<double, A>,
1205                               0x3fb555555555554bull, //    8.33333333333331927722E-2
1206                               0xbf66c16c16b0a5a1ull, //   -2.77777777730099687205E-3,
1207                               0x3f4a019f20dc5ebbull, //    7.93650340457716943945E-4,
1208                               0xbf437fbdb580e943ull, //   -5.95061904284301438324E-4,
1209                               0x3f4a985027336661ull //    8.11614167470508450300E-4
1210                               >(x);
1211             }
1212 
1213             /* origin: boost/simd/arch/common/simd/function/gammaln.hpp */
1214             /*
1215              * ====================================================
1216              * copyright 2016 NumScale SAS
1217              *
1218              * Distributed under the Boost Software License, Version 1.0.
1219              * (See copy at http://boost.org/LICENSE_1_0.txt)
1220              * ====================================================
1221              */
1222             template <class B>
1223             struct lgamma_impl;
1224 
1225             template <class A>
1226             struct lgamma_impl<batch<float, A>>
1227             {
1228                 using batch_type = batch<float, A>;
1229                 static XSIMD_INLINE batch_type compute(const batch_type& a) noexcept
1230                 {
1231                     auto inf_result = (a <= batch_type(0.)) && is_flint(a);
1232                     batch_type x = select(inf_result, constants::nan<batch_type>(), a);
1233                     batch_type q = abs(x);
1234 #ifndef XSIMD_NO_INFINITIES
1235                     inf_result = (x == constants::infinity<batch_type>()) || inf_result;
1236 #endif
1237                     auto ltza = a < batch_type(0.);
1238                     batch_type r(0);
1239                     batch_type r1 = other(q);
1240                     if (any(ltza))
1241                     {
1242                         r = select(inf_result, constants::infinity<batch_type>(), negative(q, r1));
1243                         if (all(ltza))
1244                             return r;
1245                     }
1246                     batch_type r2 = select(ltza, r, r1);
1247                     return select(a == constants::minusinfinity<batch_type>(), constants::nan<batch_type>(), select(inf_result, constants::infinity<batch_type>(), r2));
1248                 }
1249 
1250             private:
1251                 static XSIMD_INLINE batch_type negative(const batch_type& q, const batch_type& w) noexcept
1252                 {
1253                     batch_type p = floor(q);
1254                     batch_type z = q - p;
1255                     auto test2 = z < batch_type(0.5);
1256                     z = select(test2, z - batch_type(1.), z);
1257                     z = q * sin(z, trigo_pi_tag());
1258                     return -log(constants::invpi<batch_type>() * abs(z)) - w;
1259                 }
1260 
1261                 static XSIMD_INLINE batch_type other(const batch_type& x) noexcept
1262                 {
1263                     auto xlt650 = (x < batch_type(6.5));
1264                     batch_type r0x = x;
1265                     batch_type r0z = x;
1266                     batch_type r0s = batch_type(1.);
1267                     batch_type r1 = batch_type(0.);
1268                     batch_type p = constants::nan<batch_type>();
1269                     if (any(xlt650))
1270                     {
1271                         batch_type z = batch_type(1.);
1272                         batch_type tx = select(xlt650, x, batch_type(0.));
1273                         batch_type nx = batch_type(0.);
1274                         const batch_type _075 = batch_type(0.75);
1275                         const batch_type _150 = batch_type(1.50);
1276                         const batch_type _125 = batch_type(1.25);
1277                         const batch_type _250 = batch_type(2.50);
1278                         auto xge150 = (x >= _150);
1279                         auto txgt250 = (tx > _250);
1280 
1281                         // x >= 1.5
1282                         while (any(xge150 && txgt250))
1283                         {
1284                             nx = select(txgt250, nx - batch_type(1.), nx);
1285                             tx = select(txgt250, x + nx, tx);
1286                             z = select(txgt250, z * tx, z);
1287                             txgt250 = (tx > _250);
1288                         }
1289                         r0x = select(xge150, x + nx - batch_type(2.), x);
1290                         r0z = select(xge150, z, r0z);
1291                         r0s = select(xge150, batch_type(1.), r0s);
1292 
1293                         // x >= 1.25 && x < 1.5
1294                         auto xge125 = (x >= _125);
1295                         auto xge125t = xge125 && !xge150;
1296                         if (any(xge125))
1297                         {
1298                             r0x = select(xge125t, x - batch_type(1.), r0x);
1299                             r0z = select(xge125t, z * x, r0z);
1300                             r0s = select(xge125t, batch_type(-1.), r0s);
1301                         }
1302 
1303                         // x >= 0.75 && x < 1.5
1304                         batch_bool<float, A> kernelC(false);
1305                         auto xge075 = (x >= _075);
1306                         auto xge075t = xge075 && !xge125;
1307                         if (any(xge075t))
1308                         {
1309                             kernelC = xge075t;
1310                             r0x = select(xge075t, x - batch_type(1.), x);
1311                             r0z = select(xge075t, batch_type(1.), r0z);
1312                             r0s = select(xge075t, batch_type(-1.), r0s);
1313                             p = gammalnC(r0x);
1314                         }
1315 
1316                         // tx < 1.5 && x < 0.75
1317                         auto txlt150 = (tx < _150) && !xge075;
1318                         if (any(txlt150))
1319                         {
1320                             auto orig = txlt150;
1321                             while (any(txlt150))
1322                             {
1323                                 z = select(txlt150, z * tx, z);
1324                                 nx = select(txlt150, nx + batch_type(1.), nx);
1325                                 tx = select(txlt150, x + nx, tx);
1326                                 txlt150 = (tx < _150) && !xge075;
1327                             }
1328                             r0x = select(orig, r0x + nx - batch_type(2.), r0x);
1329                             r0z = select(orig, z, r0z);
1330                             r0s = select(orig, batch_type(-1.), r0s);
1331                         }
1332                         p = select(kernelC, p, gammalnB(r0x));
1333                         if (all(xlt650))
1334                             return fma(r0x, p, r0s * log(abs(r0z)));
1335                     }
1336                     r0z = select(xlt650, abs(r0z), x);
1337                     batch_type m = log(r0z);
1338                     r1 = fma(r0x, p, r0s * m);
1339                     batch_type r2 = fma(x - batch_type(0.5), m, constants::logsqrt2pi<batch_type>() - x);
1340                     r2 += gammaln2(batch_type(1.) / (x * x)) / x;
1341                     return select(xlt650, r1, r2);
1342                 }
1343             };
1344 
1345             template <class A>
1346             struct lgamma_impl<batch<double, A>>
1347             {
1348                 using batch_type = batch<double, A>;
1349 
1350                 static XSIMD_INLINE batch_type compute(const batch_type& a) noexcept
1351                 {
1352                     auto inf_result = (a <= batch_type(0.)) && is_flint(a);
1353                     batch_type x = select(inf_result, constants::nan<batch_type>(), a);
1354                     batch_type q = abs(x);
1355 #ifndef XSIMD_NO_INFINITIES
1356                     inf_result = (q == constants::infinity<batch_type>());
1357 #endif
1358                     auto test = (a < batch_type(-34.));
1359                     batch_type r = constants::nan<batch_type>();
1360                     if (any(test))
1361                     {
1362                         r = large_negative(q);
1363                         if (all(test))
1364                             return select(inf_result, constants::nan<batch_type>(), r);
1365                     }
1366                     batch_type r1 = other(a);
1367                     batch_type r2 = select(test, r, r1);
1368                     return select(a == constants::minusinfinity<batch_type>(), constants::nan<batch_type>(), select(inf_result, constants::infinity<batch_type>(), r2));
1369                 }
1370 
1371             private:
1372                 // FIXME: cannot mark this one as XSIMD_INLINE because there's a
1373                 // recursive loop on `lgamma'.
1374                 static inline batch_type large_negative(const batch_type& q) noexcept
1375                 {
1376                     batch_type w = lgamma(q);
1377                     batch_type p = floor(q);
1378                     batch_type z = q - p;
1379                     auto test2 = (z < batch_type(0.5));
1380                     z = select(test2, z - batch_type(1.), z);
1381                     z = q * sin(z, trigo_pi_tag());
1382                     z = abs(z);
1383                     return constants::logpi<batch_type>() - log(z) - w;
1384                 }
1385 
1386                 static XSIMD_INLINE batch_type other(const batch_type& xx) noexcept
1387                 {
1388                     batch_type x = xx;
1389                     auto test = (x < batch_type(13.));
1390                     batch_type r1 = batch_type(0.);
1391                     if (any(test))
1392                     {
1393                         batch_type z = batch_type(1.);
1394                         batch_type p = batch_type(0.);
1395                         batch_type u = select(test, x, batch_type(0.));
1396                         auto test1 = (u >= batch_type(3.));
1397                         while (any(test1))
1398                         {
1399                             p = select(test1, p - batch_type(1.), p);
1400                             u = select(test1, x + p, u);
1401                             z = select(test1, z * u, z);
1402                             test1 = (u >= batch_type(3.));
1403                         }
1404 
1405                         auto test2 = (u < batch_type(2.));
1406                         while (any(test2))
1407                         {
1408                             z = select(test2, z / u, z);
1409                             p = select(test2, p + batch_type(1.), p);
1410                             u = select(test2, x + p, u);
1411                             test2 = (u < batch_type(2.));
1412                         }
1413 
1414                         z = abs(z);
1415                         x += p - batch_type(2.);
1416                         r1 = x * gammaln1(x) + log(z);
1417                         if (all(test))
1418                             return r1;
1419                     }
1420                     batch_type r2 = fma(xx - batch_type(0.5), log(xx), constants::logsqrt2pi<batch_type>() - xx);
1421                     batch_type p = batch_type(1.) / (xx * xx);
1422                     r2 += gammalnA(p) / xx;
1423                     return select(test, r1, r2);
1424                 }
1425             };
1426         }
1427 
1428         template <class A, class T>
1429         XSIMD_INLINE batch<T, A> lgamma(batch<T, A> const& self, requires_arch<generic>) noexcept
1430         {
1431             return detail::lgamma_impl<batch<T, A>>::compute(self);
1432         }
1433 
1434         // log
1435         /* origin: boost/simd/arch/common/simd/function/log.hpp */
1436         /*
1437          * ====================================================
1438          * copyright 2016 NumScale SAS
1439          *
1440          * Distributed under the Boost Software License, Version 1.0.
1441          * (See copy at http://boost.org/LICENSE_1_0.txt)
1442          * ====================================================
1443          */
1444         template <class A>
1445         XSIMD_INLINE batch<float, A> log(batch<float, A> const& self, requires_arch<generic>) noexcept
1446         {
1447             using batch_type = batch<float, A>;
1448             using int_type = as_integer_t<float>;
1449             using i_type = batch<int_type, A>;
1450             batch_type x = self;
1451             i_type k(0);
1452             auto isnez = (self != batch_type(0.));
1453 #ifndef XSIMD_NO_DENORMALS
1454             auto test = (self < constants::smallestposval<batch_type>()) && isnez;
1455             if (any(test))
1456             {
1457                 k = select(batch_bool_cast<int_type>(test), k - i_type(23), k);
1458                 x = select(test, x * batch_type(8388608ul), x);
1459             }
1460 #endif
1461             i_type ix = ::xsimd::bitwise_cast<int_type>(x);
1462             ix += 0x3f800000 - 0x3f3504f3;
1463             k += (ix >> 23) - 0x7f;
1464             ix = (ix & i_type(0x007fffff)) + 0x3f3504f3;
1465             x = ::xsimd::bitwise_cast<float>(ix);
1466             batch_type f = --x;
1467             batch_type s = f / (batch_type(2.) + f);
1468             batch_type z = s * s;
1469             batch_type w = z * z;
1470             batch_type t1 = w * detail::horner<batch_type, 0x3eccce13, 0x3e789e26>(w);
1471             batch_type t2 = z * detail::horner<batch_type, 0x3f2aaaaa, 0x3e91e9ee>(w);
1472             batch_type R = t2 + t1;
1473             batch_type hfsq = batch_type(0.5) * f * f;
1474             batch_type dk = to_float(k);
1475             batch_type r = fma(dk, constants::log_2hi<batch_type>(), fma(s, (hfsq + R), dk * constants::log_2lo<batch_type>()) - hfsq + f);
1476 #ifndef XSIMD_NO_INFINITIES
1477             batch_type zz = select(isnez, select(self == constants::infinity<batch_type>(), constants::infinity<batch_type>(), r), constants::minusinfinity<batch_type>());
1478 #else
1479             batch_type zz = select(isnez, r, constants::minusinfinity<batch_type>());
1480 #endif
1481             return select(!(self >= batch_type(0.)), constants::nan<batch_type>(), zz);
1482         }
1483 
1484         template <class A>
1485         XSIMD_INLINE batch<double, A> log(batch<double, A> const& self, requires_arch<generic>) noexcept
1486         {
1487             using batch_type = batch<double, A>;
1488             using int_type = as_integer_t<double>;
1489             using i_type = batch<int_type, A>;
1490 
1491             batch_type x = self;
1492             i_type hx = ::xsimd::bitwise_cast<int_type>(x) >> 32;
1493             i_type k(0);
1494             auto isnez = (self != batch_type(0.));
1495 #ifndef XSIMD_NO_DENORMALS
1496             auto test = (self < constants::smallestposval<batch_type>()) && isnez;
1497             if (any(test))
1498             {
1499                 k = select(batch_bool_cast<int_type>(test), k - i_type(54), k);
1500                 x = select(test, x * batch_type(18014398509481984ull), x);
1501             }
1502 #endif
1503             hx += 0x3ff00000 - 0x3fe6a09e;
1504             k += (hx >> 20) - 0x3ff;
1505             batch_type dk = to_float(k);
1506             hx = (hx & i_type(0x000fffff)) + 0x3fe6a09e;
1507             x = ::xsimd::bitwise_cast<double>(hx << 32 | (i_type(0xffffffff) & ::xsimd::bitwise_cast<int_type>(x)));
1508 
1509             batch_type f = --x;
1510             batch_type hfsq = batch_type(0.5) * f * f;
1511             batch_type s = f / (batch_type(2.) + f);
1512             batch_type z = s * s;
1513             batch_type w = z * z;
1514 
1515             batch_type t1 = w * detail::horner<batch_type, 0x3fd999999997fa04ll, 0x3fcc71c51d8e78afll, 0x3fc39a09d078c69fll>(w);
1516             batch_type t2 = z * detail::horner<batch_type, 0x3fe5555555555593ll, 0x3fd2492494229359ll, 0x3fc7466496cb03dell, 0x3fc2f112df3e5244ll>(w);
1517             batch_type R = t2 + t1;
1518             batch_type r = fma(dk, constants::log_2hi<batch_type>(), fma(s, (hfsq + R), dk * constants::log_2lo<batch_type>()) - hfsq + f);
1519 #ifndef XSIMD_NO_INFINITIES
1520             batch_type zz = select(isnez, select(self == constants::infinity<batch_type>(), constants::infinity<batch_type>(), r), constants::minusinfinity<batch_type>());
1521 #else
1522             batch_type zz = select(isnez, r, constants::minusinfinity<batch_type>());
1523 #endif
1524             return select(!(self >= batch_type(0.)), constants::nan<batch_type>(), zz);
1525         }
1526 
1527         template <class A, class T>
1528         XSIMD_INLINE batch<std::complex<T>, A> log(const batch<std::complex<T>, A>& z, requires_arch<generic>) noexcept
1529         {
1530             return batch<std::complex<T>, A>(log(abs(z)), atan2(z.imag(), z.real()));
1531         }
1532 
1533         // log2
1534         template <class A>
1535         XSIMD_INLINE batch<float, A> log2(batch<float, A> const& self, requires_arch<generic>) noexcept
1536         {
1537             using batch_type = batch<float, A>;
1538             using int_type = as_integer_t<float>;
1539             using i_type = batch<int_type, A>;
1540             batch_type x = self;
1541             i_type k(0);
1542             auto isnez = (self != batch_type(0.));
1543 #ifndef XSIMD_NO_DENORMALS
1544             auto test = (self < constants::smallestposval<batch_type>()) && isnez;
1545             if (any(test))
1546             {
1547                 k = select(batch_bool_cast<int_type>(test), k - i_type(25), k);
1548                 x = select(test, x * batch_type(33554432ul), x);
1549             }
1550 #endif
1551             i_type ix = ::xsimd::bitwise_cast<int_type>(x);
1552             ix += 0x3f800000 - 0x3f3504f3;
1553             k += (ix >> 23) - 0x7f;
1554             ix = (ix & i_type(0x007fffff)) + 0x3f3504f3;
1555             x = ::xsimd::bitwise_cast<float>(ix);
1556             batch_type f = --x;
1557             batch_type s = f / (batch_type(2.) + f);
1558             batch_type z = s * s;
1559             batch_type w = z * z;
1560             batch_type t1 = w * detail::horner<batch_type, 0x3eccce13, 0x3e789e26>(w);
1561             batch_type t2 = z * detail::horner<batch_type, 0x3f2aaaaa, 0x3e91e9ee>(w);
1562             batch_type R = t1 + t2;
1563             batch_type hfsq = batch_type(0.5) * f * f;
1564             batch_type dk = to_float(k);
1565             batch_type r = fma(fms(s, hfsq + R, hfsq) + f, constants::invlog_2<batch_type>(), dk);
1566 #ifndef XSIMD_NO_INFINITIES
1567             batch_type zz = select(isnez, select(self == constants::infinity<batch_type>(), constants::infinity<batch_type>(), r), constants::minusinfinity<batch_type>());
1568 #else
1569             batch_type zz = select(isnez, r, constants::minusinfinity<batch_type>());
1570 #endif
1571             return select(!(self >= batch_type(0.)), constants::nan<batch_type>(), zz);
1572         }
1573 
1574         template <class A>
1575         XSIMD_INLINE batch<double, A> log2(batch<double, A> const& self, requires_arch<generic>) noexcept
1576         {
1577             using batch_type = batch<double, A>;
1578             using int_type = as_integer_t<double>;
1579             using i_type = batch<int_type, A>;
1580             batch_type x = self;
1581             i_type hx = ::xsimd::bitwise_cast<int_type>(x) >> 32;
1582             i_type k(0);
1583             auto isnez = (self != batch_type(0.));
1584 #ifndef XSIMD_NO_DENORMALS
1585             auto test = (self < constants::smallestposval<batch_type>()) && isnez;
1586             if (any(test))
1587             {
1588                 k = select(batch_bool_cast<typename i_type::value_type>(test), k - i_type(54), k);
1589                 x = select(test, x * batch_type(18014398509481984ull), x);
1590             }
1591 #endif
1592             hx += 0x3ff00000 - 0x3fe6a09e;
1593             k += (hx >> 20) - 0x3ff;
1594             hx = (hx & i_type(0x000fffff)) + 0x3fe6a09e;
1595             x = ::xsimd::bitwise_cast<double>(hx << 32 | (i_type(0xffffffff) & ::xsimd::bitwise_cast<int_type>(x)));
1596             batch_type f = --x;
1597             batch_type s = f / (batch_type(2.) + f);
1598             batch_type z = s * s;
1599             batch_type w = z * z;
1600             batch_type t1 = w * detail::horner<batch_type, 0x3fd999999997fa04ll, 0x3fcc71c51d8e78afll, 0x3fc39a09d078c69fll>(w);
1601             batch_type t2 = z * detail::horner<batch_type, 0x3fe5555555555593ll, 0x3fd2492494229359ll, 0x3fc7466496cb03dell, 0x3fc2f112df3e5244ll>(w);
1602             batch_type R = t2 + t1;
1603             batch_type hfsq = batch_type(0.5) * f * f;
1604             batch_type hi = f - hfsq;
1605             hi = hi & ::xsimd::bitwise_cast<double>((constants::allbits<i_type>() << 32));
1606             batch_type lo = fma(s, hfsq + R, f - hi - hfsq);
1607             batch_type val_hi = hi * constants::invlog_2hi<batch_type>();
1608             batch_type val_lo = fma(lo + hi, constants::invlog_2lo<batch_type>(), lo * constants::invlog_2hi<batch_type>());
1609             batch_type dk = to_float(k);
1610             batch_type w1 = dk + val_hi;
1611             val_lo += (dk - w1) + val_hi;
1612             val_hi = w1;
1613             batch_type r = val_lo + val_hi;
1614 #ifndef XSIMD_NO_INFINITIES
1615             batch_type zz = select(isnez, select(self == constants::infinity<batch_type>(), constants::infinity<batch_type>(), r), constants::minusinfinity<batch_type>());
1616 #else
1617             batch_type zz = select(isnez, r, constants::minusinfinity<batch_type>());
1618 #endif
1619             return select(!(self >= batch_type(0.)), constants::nan<batch_type>(), zz);
1620         }
1621 
1622         namespace detail
1623         {
1624             template <class T, class A>
1625             XSIMD_INLINE batch<T, A> logN_complex_impl(const batch<T, A>& z, typename batch<T, A>::value_type base) noexcept
1626             {
1627                 using batch_type = batch<T, A>;
1628                 using rv_type = typename batch_type::value_type;
1629                 return log(z) / batch_type(rv_type(base));
1630             }
1631         }
1632 
1633         template <class A, class T>
1634         XSIMD_INLINE batch<std::complex<T>, A> log2(batch<std::complex<T>, A> const& self, requires_arch<generic>) noexcept
1635         {
1636             return detail::logN_complex_impl(self, std::log(2));
1637         }
1638 
1639         // log10
1640         /* origin: FreeBSD /usr/src/lib/msun/src/e_log10f.c */
1641         /*
1642          * ====================================================
1643          * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
1644          *
1645          * Developed at SunPro, a Sun Microsystems, Inc. business.
1646          * Permission to use, copy, modify, and distribute this
1647          * software is freely granted, provided that this notice
1648          * is preserved.
1649          * ====================================================
1650          */
1651         template <class A>
1652         XSIMD_INLINE batch<float, A> log10(batch<float, A> const& self, requires_arch<generic>) noexcept
1653         {
1654             using batch_type = batch<float, A>;
1655             const batch_type
1656                 ivln10hi(4.3432617188e-01f),
1657                 ivln10lo(-3.1689971365e-05f),
1658                 log10_2hi(3.0102920532e-01f),
1659                 log10_2lo(7.9034151668e-07f);
1660             using int_type = as_integer_t<float>;
1661             using i_type = batch<int_type, A>;
1662             batch_type x = self;
1663             i_type k(0);
1664             auto isnez = (self != batch_type(0.));
1665 #ifndef XSIMD_NO_DENORMALS
1666             auto test = (self < constants::smallestposval<batch_type>()) && isnez;
1667             if (any(test))
1668             {
1669                 k = select(batch_bool_cast<int_type>(test), k - i_type(25), k);
1670                 x = select(test, x * batch_type(33554432ul), x);
1671             }
1672 #endif
1673             i_type ix = ::xsimd::bitwise_cast<int_type>(x);
1674             ix += 0x3f800000 - 0x3f3504f3;
1675             k += (ix >> 23) - 0x7f;
1676             ix = (ix & i_type(0x007fffff)) + 0x3f3504f3;
1677             x = ::xsimd::bitwise_cast<float>(ix);
1678             batch_type f = --x;
1679             batch_type s = f / (batch_type(2.) + f);
1680             batch_type z = s * s;
1681             batch_type w = z * z;
1682             batch_type t1 = w * detail::horner<batch_type, 0x3eccce13, 0x3e789e26>(w);
1683             batch_type t2 = z * detail::horner<batch_type, 0x3f2aaaaa, 0x3e91e9ee>(w);
1684             batch_type R = t2 + t1;
1685             batch_type dk = to_float(k);
1686             batch_type hfsq = batch_type(0.5) * f * f;
1687             batch_type hibits = f - hfsq;
1688             hibits &= ::xsimd::bitwise_cast<float>(i_type(0xfffff000));
1689             batch_type lobits = fma(s, hfsq + R, f - hibits - hfsq);
1690             batch_type r = fma(dk, log10_2hi,
1691                                fma(hibits, ivln10hi,
1692                                    fma(lobits, ivln10hi,
1693                                        fma(lobits + hibits, ivln10lo, dk * log10_2lo))));
1694 #ifndef XSIMD_NO_INFINITIES
1695             batch_type zz = select(isnez, select(self == constants::infinity<batch_type>(), constants::infinity<batch_type>(), r), constants::minusinfinity<batch_type>());
1696 #else
1697             batch_type zz = select(isnez, r, constants::minusinfinity<batch_type>());
1698 #endif
1699             return select(!(self >= batch_type(0.)), constants::nan<batch_type>(), zz);
1700         }
1701 
1702         template <class A>
1703         XSIMD_INLINE batch<double, A> log10(batch<double, A> const& self, requires_arch<generic>) noexcept
1704         {
1705             using batch_type = batch<double, A>;
1706             const batch_type
1707                 ivln10hi(4.34294481878168880939e-01),
1708                 ivln10lo(2.50829467116452752298e-11),
1709                 log10_2hi(3.01029995663611771306e-01),
1710                 log10_2lo(3.69423907715893078616e-13);
1711             using int_type = as_integer_t<double>;
1712             using i_type = batch<int_type, A>;
1713             batch_type x = self;
1714             i_type hx = ::xsimd::bitwise_cast<int_type>(x) >> 32;
1715             i_type k(0);
1716             auto isnez = (self != batch_type(0.));
1717 #ifndef XSIMD_NO_DENORMALS
1718             auto test = (self < constants::smallestposval<batch_type>()) && isnez;
1719             if (any(test))
1720             {
1721                 k = select(batch_bool_cast<int_type>(test), k - i_type(54), k);
1722                 x = select(test, x * batch_type(18014398509481984ull), x);
1723             }
1724 #endif
1725             hx += 0x3ff00000 - 0x3fe6a09e;
1726             k += (hx >> 20) - 0x3ff;
1727             hx = (hx & i_type(0x000fffff)) + 0x3fe6a09e;
1728             x = ::xsimd::bitwise_cast<double>(hx << 32 | (i_type(0xffffffff) & ::xsimd::bitwise_cast<int_type>(x)));
1729             batch_type f = --x;
1730             batch_type dk = to_float(k);
1731             batch_type s = f / (batch_type(2.) + f);
1732             batch_type z = s * s;
1733             batch_type w = z * z;
1734             batch_type t1 = w * detail::horner<batch_type, 0x3fd999999997fa04ll, 0x3fcc71c51d8e78afll, 0x3fc39a09d078c69fll>(w);
1735             batch_type t2 = z * detail::horner<batch_type, 0x3fe5555555555593ll, 0x3fd2492494229359ll, 0x3fc7466496cb03dell, 0x3fc2f112df3e5244ll>(w);
1736             batch_type R = t2 + t1;
1737             batch_type hfsq = batch_type(0.5) * f * f;
1738             batch_type hi = f - hfsq;
1739             hi = hi & ::xsimd::bitwise_cast<double>(constants::allbits<i_type>() << 32);
1740             batch_type lo = f - hi - hfsq + s * (hfsq + R);
1741             batch_type val_hi = hi * ivln10hi;
1742             batch_type y = dk * log10_2hi;
1743             batch_type val_lo = dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi;
1744             batch_type w1 = y + val_hi;
1745             val_lo += (y - w1) + val_hi;
1746             val_hi = w1;
1747             batch_type r = val_lo + val_hi;
1748 #ifndef XSIMD_NO_INFINITIES
1749             batch_type zz = select(isnez, select(self == constants::infinity<batch_type>(), constants::infinity<batch_type>(), r), constants::minusinfinity<batch_type>());
1750 #else
1751             batch_type zz = select(isnez, r, constants::minusinfinity<batch_type>());
1752 #endif
1753             return select(!(self >= batch_type(0.)), constants::nan<batch_type>(), zz);
1754         }
1755 
1756         template <class A, class T>
1757         XSIMD_INLINE batch<std::complex<T>, A> log10(const batch<std::complex<T>, A>& z, requires_arch<generic>) noexcept
1758         {
1759             return detail::logN_complex_impl(z, std::log(10));
1760         }
1761 
1762         // log1p
1763         /* origin: boost/simd/arch/common/simd/function/log1p.hpp */
1764         /*
1765          * ====================================================
1766          * copyright 2016 NumScale SAS
1767          *
1768          * Distributed under the Boost Software License, Version 1.0.
1769          * (See copy at http://boost.org/LICENSE_1_0.txt)
1770          * ====================================================
1771          */
1772         template <class A>
1773         XSIMD_INLINE batch<float, A> log1p(batch<float, A> const& self, requires_arch<generic>) noexcept
1774         {
1775             using batch_type = batch<float, A>;
1776             using int_type = as_integer_t<float>;
1777             using i_type = batch<int_type, A>;
1778             const batch_type uf = self + batch_type(1.);
1779             auto isnez = (uf != batch_type(0.));
1780             i_type iu = ::xsimd::bitwise_cast<int_type>(uf);
1781             iu += 0x3f800000 - 0x3f3504f3;
1782             i_type k = (iu >> 23) - 0x7f;
1783             iu = (iu & i_type(0x007fffff)) + 0x3f3504f3;
1784             batch_type f = --(::xsimd::bitwise_cast<float>(iu));
1785             batch_type s = f / (batch_type(2.) + f);
1786             batch_type z = s * s;
1787             batch_type w = z * z;
1788             batch_type t1 = w * detail::horner<batch_type, 0x3eccce13, 0x3e789e26>(w);
1789             batch_type t2 = z * detail::horner<batch_type, 0x3f2aaaaa, 0x3e91e9ee>(w);
1790             batch_type R = t2 + t1;
1791             batch_type hfsq = batch_type(0.5) * f * f;
1792             batch_type dk = to_float(k);
1793             /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
1794             batch_type c = select(batch_bool_cast<float>(k >= i_type(2)), batch_type(1.) - (uf - self), self - (uf - batch_type(1.))) / uf;
1795             batch_type r = fma(dk, constants::log_2hi<batch_type>(), fma(s, (hfsq + R), dk * constants::log_2lo<batch_type>() + c) - hfsq + f);
1796 #ifndef XSIMD_NO_INFINITIES
1797             batch_type zz = select(isnez, select(self == constants::infinity<batch_type>(), constants::infinity<batch_type>(), r), constants::minusinfinity<batch_type>());
1798 #else
1799             batch_type zz = select(isnez, r, constants::minusinfinity<batch_type>());
1800 #endif
1801             return select(!(uf >= batch_type(0.)), constants::nan<batch_type>(), zz);
1802         }
1803 
1804         template <class A>
1805         XSIMD_INLINE batch<double, A> log1p(batch<double, A> const& self, requires_arch<generic>) noexcept
1806         {
1807             using batch_type = batch<double, A>;
1808             using int_type = as_integer_t<double>;
1809             using i_type = batch<int_type, A>;
1810             const batch_type uf = self + batch_type(1.);
1811             auto isnez = (uf != batch_type(0.));
1812             i_type hu = ::xsimd::bitwise_cast<int_type>(uf) >> 32;
1813             hu += 0x3ff00000 - 0x3fe6a09e;
1814             i_type k = (hu >> 20) - 0x3ff;
1815             /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
1816             batch_type c = select(batch_bool_cast<double>(k >= i_type(2)), batch_type(1.) - (uf - self), self - (uf - batch_type(1.))) / uf;
1817             hu = (hu & i_type(0x000fffff)) + 0x3fe6a09e;
1818             batch_type f = ::xsimd::bitwise_cast<double>((hu << 32) | (i_type(0xffffffff) & ::xsimd::bitwise_cast<int_type>(uf)));
1819             f = --f;
1820             batch_type hfsq = batch_type(0.5) * f * f;
1821             batch_type s = f / (batch_type(2.) + f);
1822             batch_type z = s * s;
1823             batch_type w = z * z;
1824             batch_type t1 = w * detail::horner<batch_type, 0x3fd999999997fa04ll, 0x3fcc71c51d8e78afll, 0x3fc39a09d078c69fll>(w);
1825             batch_type t2 = z * detail::horner<batch_type, 0x3fe5555555555593ll, 0x3fd2492494229359ll, 0x3fc7466496cb03dell, 0x3fc2f112df3e5244ll>(w);
1826             batch_type R = t2 + t1;
1827             batch_type dk = to_float(k);
1828             batch_type r = fma(dk, constants::log_2hi<batch_type>(), fma(s, hfsq + R, dk * constants::log_2lo<batch_type>() + c) - hfsq + f);
1829 #ifndef XSIMD_NO_INFINITIES
1830             batch_type zz = select(isnez, select(self == constants::infinity<batch_type>(), constants::infinity<batch_type>(), r), constants::minusinfinity<batch_type>());
1831 #else
1832             batch_type zz = select(isnez, r, constants::minusinfinity<batch_type>());
1833 #endif
1834             return select(!(uf >= batch_type(0.)), constants::nan<batch_type>(), zz);
1835         }
1836 
1837         template <class A, class T>
1838         XSIMD_INLINE batch<std::complex<T>, A> log1p(batch<std::complex<T>, A> const& self, requires_arch<generic>) noexcept
1839         {
1840             using batch_type = batch<std::complex<T>, A>;
1841             using real_batch = typename batch_type::real_batch;
1842             batch_type u = 1 + self;
1843             batch_type logu = log(u);
1844             return select(u == batch_type(1.),
1845                           self,
1846                           select(u.real() <= real_batch(0.),
1847                                  logu,
1848                                  logu * self / (u - batch_type(1.))));
1849         }
1850 
1851         // mod
1852         template <class A, class T, class = typename std::enable_if<std::is_integral<T>::value, void>::type>
1853         XSIMD_INLINE batch<T, A> mod(batch<T, A> const& self, batch<T, A> const& other, requires_arch<generic>) noexcept
1854         {
1855             return detail::apply([](T x, T y) noexcept -> T
1856                                  { return x % y; },
1857                                  self, other);
1858         }
1859 
1860         // nearbyint
1861         template <class A, class T, class = typename std::enable_if<std::is_integral<T>::value, void>::type>
1862         XSIMD_INLINE batch<T, A> nearbyint(batch<T, A> const& self, requires_arch<generic>) noexcept
1863         {
1864             return self;
1865         }
1866         namespace detail
1867         {
1868             template <class A, class T>
1869             XSIMD_INLINE batch<T, A> nearbyintf(batch<T, A> const& self) noexcept
1870             {
1871                 using batch_type = batch<T, A>;
1872                 batch_type s = bitofsign(self);
1873                 batch_type v = self ^ s;
1874                 batch_type t2n = constants::twotonmb<batch_type>();
1875                 // Under fast-math, reordering is possible and the compiler optimizes d
1876                 // to v. That's not what we want, so prevent compiler optimization here.
1877                 // FIXME: it may be better to emit a memory barrier here (?).
1878 #ifdef __FAST_MATH__
1879                 volatile batch_type d0 = v + t2n;
1880                 batch_type d = *(batch_type*)(void*)(&d0) - t2n;
1881 #else
1882                 batch_type d0 = v + t2n;
1883                 batch_type d = d0 - t2n;
1884 #endif
1885                 return s ^ select(v < t2n, d, v);
1886             }
1887         }
1888         template <class A>
1889         XSIMD_INLINE batch<float, A> nearbyint(batch<float, A> const& self, requires_arch<generic>) noexcept
1890         {
1891             return detail::nearbyintf(self);
1892         }
1893         template <class A>
1894         XSIMD_INLINE batch<double, A> nearbyint(batch<double, A> const& self, requires_arch<generic>) noexcept
1895         {
1896             return detail::nearbyintf(self);
1897         }
1898 
1899         // nearbyint_as_int
1900         template <class T, class A, class = typename std::enable_if<std::is_integral<T>::value, void>::type>
1901         XSIMD_INLINE batch<T, A> nearbyint_as_int(batch<T, A> const& self, requires_arch<generic>) noexcept
1902         {
1903             return self;
1904         }
1905 
1906         // nearbyint_as_int
1907         template <class A>
1908         XSIMD_INLINE batch<as_integer_t<float>, A>
1909         nearbyint_as_int(batch<float, A> const& self, requires_arch<generic>) noexcept
1910         {
1911             using U = as_integer_t<float>;
1912             return kernel::detail::apply_transform<U>([](float x) noexcept -> U
1913                                                       { return std::nearbyintf(x); },
1914                                                       self);
1915         }
1916 
1917         template <class A>
1918         XSIMD_INLINE batch<as_integer_t<double>, A>
1919         nearbyint_as_int(batch<double, A> const& self, requires_arch<generic>) noexcept
1920         {
1921             using U = as_integer_t<double>;
1922             return kernel::detail::apply_transform<U>([](double x) noexcept -> U
1923                                                       { return std::nearbyint(x); },
1924                                                       self);
1925         }
1926 
1927         // nextafter
1928         namespace detail
1929         {
1930             template <class T, class A, bool is_int = std::is_integral<T>::value>
1931             struct nextafter_kernel
1932             {
1933                 using batch_type = batch<T, A>;
1934 
1935                 static XSIMD_INLINE batch_type next(batch_type const& b) noexcept
1936                 {
1937                     return b;
1938                 }
1939 
1940                 static XSIMD_INLINE batch_type prev(batch_type const& b) noexcept
1941                 {
1942                     return b;
1943                 }
1944             };
1945 
1946             template <class T, class A>
1947             struct bitwise_cast_batch;
1948 
1949             template <class A>
1950             struct bitwise_cast_batch<float, A>
1951             {
1952                 using type = batch<int32_t, A>;
1953             };
1954 
1955             template <class A>
1956             struct bitwise_cast_batch<double, A>
1957             {
1958                 using type = batch<int64_t, A>;
1959             };
1960 
1961             template <class T, class A>
1962             struct nextafter_kernel<T, A, false>
1963             {
1964                 using batch_type = batch<T, A>;
1965                 using int_batch = typename bitwise_cast_batch<T, A>::type;
1966                 using int_type = typename int_batch::value_type;
1967 
1968                 static XSIMD_INLINE batch_type next(const batch_type& b) noexcept
1969                 {
1970                     batch_type n = ::xsimd::bitwise_cast<T>(::xsimd::bitwise_cast<int_type>(b) + int_type(1));
1971                     return select(b == constants::infinity<batch_type>(), b, n);
1972                 }
1973 
1974                 static XSIMD_INLINE batch_type prev(const batch_type& b) noexcept
1975                 {
1976                     batch_type p = ::xsimd::bitwise_cast<T>(::xsimd::bitwise_cast<int_type>(b) - int_type(1));
1977                     return select(b == constants::minusinfinity<batch_type>(), b, p);
1978                 }
1979             };
1980         }
1981         template <class A, class T>
1982         XSIMD_INLINE batch<T, A> nextafter(batch<T, A> const& from, batch<T, A> const& to, requires_arch<generic>) noexcept
1983         {
1984             using kernel = detail::nextafter_kernel<T, A>;
1985             return select(from == to, from,
1986                           select(to > from, kernel::next(from), kernel::prev(from)));
1987         }
1988 
1989         // pow
1990         /* origin: boost/simd/arch/common/simd/function/pow.hpp*/
1991         /*
1992          * ====================================================
1993          * copyright 2016 NumScale SAS
1994          *
1995          * Distributed under the Boost Software License, Version 1.0.
1996          * (See copy at http://boost.org/LICENSE_1_0.txt)
1997          * ====================================================
1998          */
1999         template <class A, class T>
2000         XSIMD_INLINE batch<T, A> pow(batch<T, A> const& self, batch<T, A> const& other, requires_arch<generic>) noexcept
2001         {
2002             using batch_type = batch<T, A>;
2003             const auto zero = batch_type(0.);
2004             auto negself = self < zero;
2005             auto iszeropowpos = self == zero && other >= zero;
2006             auto adj_self = select(iszeropowpos, batch_type(1), abs(self));
2007             batch_type z = exp(other * log(adj_self));
2008             z = select(iszeropowpos, zero, z);
2009             z = select(is_odd(other) && negself, -z, z);
2010             auto invalid = negself && !(is_flint(other) || isinf(other));
2011             return select(invalid, constants::nan<batch_type>(), z);
2012         }
2013 
2014         template <class A, class T>
2015         XSIMD_INLINE batch<std::complex<T>, A> pow(const batch<std::complex<T>, A>& a, const batch<std::complex<T>, A>& z, requires_arch<generic>) noexcept
2016         {
2017             using cplx_batch = batch<std::complex<T>, A>;
2018             using real_batch = typename cplx_batch::real_batch;
2019             real_batch absa = abs(a);
2020             real_batch arga = arg(a);
2021             real_batch x = z.real();
2022             real_batch y = z.imag();
2023             real_batch r = pow(absa, x);
2024             real_batch theta = x * arga;
2025             real_batch ze(0);
2026             auto cond = (y == ze);
2027             r = select(cond, r, r * exp(-y * arga));
2028             theta = select(cond, theta, theta + y * log(absa));
2029             auto sincosTheta = xsimd::sincos(theta);
2030             return select(absa == ze, cplx_batch(ze), cplx_batch(r * sincosTheta.second, r * sincosTheta.first));
2031         }
2032 
2033         template <class A, class T>
2034         inline batch<std::complex<T>, A> pow(const batch<std::complex<T>, A>& a, const batch<T, A>& z, requires_arch<generic>) noexcept
2035         {
2036             using cplx_batch = batch<std::complex<T>, A>;
2037 
2038             auto absa = abs(a);
2039             auto arga = arg(a);
2040             auto r = pow(absa, z);
2041 
2042             auto theta = z * arga;
2043             auto sincosTheta = xsimd::sincos(theta);
2044             return select(absa == 0, cplx_batch(0), cplx_batch(r * sincosTheta.second, r * sincosTheta.first));
2045         }
2046 
2047         template <class A, class T>
2048         inline batch<std::complex<T>, A> pow(const batch<T, A>& a, const batch<std::complex<T>, A>& z, requires_arch<generic>) noexcept
2049         {
2050             return pow(batch<std::complex<T>, A> { a, batch<T, A> {} }, z);
2051         }
2052 
2053         // reciprocal
2054         template <class T, class A, class = typename std::enable_if<std::is_floating_point<T>::value, void>::type>
2055         XSIMD_INLINE batch<T, A> reciprocal(batch<T, A> const& self,
2056                                             requires_arch<generic>) noexcept
2057         {
2058             using batch_type = batch<T, A>;
2059             return div(batch_type(1), self);
2060         }
2061 
2062         // reduce_add
2063         template <class A, class T>
2064         XSIMD_INLINE std::complex<T> reduce_add(batch<std::complex<T>, A> const& self, requires_arch<generic>) noexcept
2065         {
2066             return { reduce_add(self.real()), reduce_add(self.imag()) };
2067         }
2068 
2069         namespace detail
2070         {
2071             template <class T, T N>
2072             struct split_high
2073             {
2074                 static constexpr T get(T i, T)
2075                 {
2076                     return i >= N ? (i % 2) : i + N;
2077                 }
2078             };
2079 
2080             template <class Op, class A, class T>
2081             XSIMD_INLINE T reduce(Op, batch<T, A> const& self, std::integral_constant<unsigned, 1>) noexcept
2082             {
2083                 return self.get(0);
2084             }
2085 
2086             template <class Op, class A, class T, unsigned Lvl>
2087             XSIMD_INLINE T reduce(Op op, batch<T, A> const& self, std::integral_constant<unsigned, Lvl>) noexcept
2088             {
2089                 using index_type = as_unsigned_integer_t<T>;
2090                 batch<T, A> split = swizzle(self, make_batch_constant<index_type, A, split_high<index_type, Lvl / 2>>());
2091                 return reduce(op, op(split, self), std::integral_constant<unsigned, Lvl / 2>());
2092             }
2093         }
2094 
2095         // reduce_max
2096         template <class A, class T>
2097         XSIMD_INLINE T reduce_max(batch<T, A> const& self, requires_arch<generic>) noexcept
2098         {
2099             return detail::reduce([](batch<T, A> const& x, batch<T, A> const& y)
2100                                   { return max(x, y); },
2101                                   self, std::integral_constant<unsigned, batch<T, A>::size>());
2102         }
2103 
2104         // reduce_min
2105         template <class A, class T>
2106         XSIMD_INLINE T reduce_min(batch<T, A> const& self, requires_arch<generic>) noexcept
2107         {
2108             return detail::reduce([](batch<T, A> const& x, batch<T, A> const& y)
2109                                   { return min(x, y); },
2110                                   self, std::integral_constant<unsigned, batch<T, A>::size>());
2111         }
2112 
2113         // remainder
2114         template <class A>
2115         XSIMD_INLINE batch<float, A> remainder(batch<float, A> const& self, batch<float, A> const& other, requires_arch<generic>) noexcept
2116         {
2117             return fnma(nearbyint(self / other), other, self);
2118         }
2119         template <class A>
2120         XSIMD_INLINE batch<double, A> remainder(batch<double, A> const& self, batch<double, A> const& other, requires_arch<generic>) noexcept
2121         {
2122             return fnma(nearbyint(self / other), other, self);
2123         }
2124         template <class A, class T, class = typename std::enable_if<std::is_integral<T>::value, void>::type>
2125         XSIMD_INLINE batch<T, A> remainder(batch<T, A> const& self, batch<T, A> const& other, requires_arch<generic>) noexcept
2126         {
2127             auto mod = self % other;
2128             return select(mod <= other / 2, mod, mod - other);
2129         }
2130 
2131         // select
2132         template <class A, class T>
2133         XSIMD_INLINE batch<std::complex<T>, A> select(batch_bool<T, A> const& cond, batch<std::complex<T>, A> const& true_br, batch<std::complex<T>, A> const& false_br, requires_arch<generic>) noexcept
2134         {
2135             return { select(cond, true_br.real(), false_br.real()), select(cond, true_br.imag(), false_br.imag()) };
2136         }
2137 
2138         // sign
2139         template <class A, class T, class = typename std::enable_if<std::is_integral<T>::value, void>::type>
2140         XSIMD_INLINE batch<T, A> sign(batch<T, A> const& self, requires_arch<generic>) noexcept
2141         {
2142             using batch_type = batch<T, A>;
2143             batch_type res = select(self > batch_type(0), batch_type(1), batch_type(0)) - select(self < batch_type(0), batch_type(1), batch_type(0));
2144             return res;
2145         }
2146 
2147         namespace detail
2148         {
2149             template <class T, class A>
2150             XSIMD_INLINE batch<T, A> signf(batch<T, A> const& self) noexcept
2151             {
2152                 using batch_type = batch<T, A>;
2153                 batch_type res = select(self > batch_type(0.f), batch_type(1.f), batch_type(0.f)) - select(self < batch_type(0.f), batch_type(1.f), batch_type(0.f));
2154 #ifdef XSIMD_NO_NANS
2155                 return res;
2156 #else
2157                 return select(isnan(self), constants::nan<batch_type>(), res);
2158 #endif
2159             }
2160         }
2161 
2162         template <class A>
2163         XSIMD_INLINE batch<float, A> sign(batch<float, A> const& self, requires_arch<generic>) noexcept
2164         {
2165             return detail::signf(self);
2166         }
2167         template <class A>
2168         XSIMD_INLINE batch<double, A> sign(batch<double, A> const& self, requires_arch<generic>) noexcept
2169         {
2170             return detail::signf(self);
2171         }
2172         template <class A, class T>
2173         XSIMD_INLINE batch<std::complex<T>, A> sign(const batch<std::complex<T>, A>& z, requires_arch<generic>) noexcept
2174         {
2175             using batch_type = batch<std::complex<T>, A>;
2176             using real_batch = typename batch_type::real_batch;
2177             auto rz = z.real();
2178             auto iz = z.imag();
2179             return select(rz != real_batch(0.),
2180                           batch_type(sign(rz)),
2181                           batch_type(sign(iz)));
2182         }
2183 
2184         // signnz
2185         template <class A, class T, class = typename std::enable_if<std::is_integral<T>::value, void>::type>
2186         XSIMD_INLINE batch<T, A> signnz(batch<T, A> const& self, requires_arch<generic>) noexcept
2187         {
2188             using batch_type = batch<T, A>;
2189             return (self >> (sizeof(T) * 8 - 1)) | batch_type(1.);
2190         }
2191 
2192         namespace detail
2193         {
2194             template <class T, class A>
2195             XSIMD_INLINE batch<T, A> signnzf(batch<T, A> const& self) noexcept
2196             {
2197                 using batch_type = batch<T, A>;
2198 #ifndef XSIMD_NO_NANS
2199                 return select(isnan(self), constants::nan<batch_type>(), batch_type(1.) | (constants::signmask<batch_type>() & self));
2200 #else
2201                 return batch_type(1.) | (constants::signmask<batch_type>() & self);
2202 #endif
2203             }
2204         }
2205 
2206         template <class A>
2207         XSIMD_INLINE batch<float, A> signnz(batch<float, A> const& self, requires_arch<generic>) noexcept
2208         {
2209             return detail::signnzf(self);
2210         }
2211         template <class A>
2212         XSIMD_INLINE batch<double, A> signnz(batch<double, A> const& self, requires_arch<generic>) noexcept
2213         {
2214             return detail::signnzf(self);
2215         }
2216 
2217         // sqrt
2218         template <class A, class T>
2219         XSIMD_INLINE batch<std::complex<T>, A> sqrt(batch<std::complex<T>, A> const& z, requires_arch<generic>) noexcept
2220         {
2221 
2222             constexpr T csqrt_scale_factor = std::is_same<T, float>::value ? 6.7108864e7f : 1.8014398509481984e16;
2223             constexpr T csqrt_scale = std::is_same<T, float>::value ? 1.220703125e-4f : 7.450580596923828125e-9;
2224             using batch_type = batch<std::complex<T>, A>;
2225             using real_batch = batch<T, A>;
2226             real_batch x = z.real();
2227             real_batch y = z.imag();
2228             real_batch sqrt_x = sqrt(fabs(x));
2229             real_batch sqrt_hy = sqrt(0.5 * fabs(y));
2230             auto cond = (fabs(x) > real_batch(4.) || fabs(y) > real_batch(4.));
2231             x = select(cond, x * 0.25, x * csqrt_scale_factor);
2232             y = select(cond, y * 0.25, y * csqrt_scale_factor);
2233             real_batch scale = select(cond, real_batch(2.), real_batch(csqrt_scale));
2234             real_batch r = abs(batch_type(x, y));
2235 
2236             auto condxp = x > real_batch(0.);
2237             real_batch t0 = select(condxp, xsimd::sqrt(0.5 * (r + x)), xsimd::sqrt(0.5 * (r - x)));
2238             real_batch r0 = scale * fabs((0.5 * y) / t0);
2239             t0 *= scale;
2240             real_batch t = select(condxp, t0, r0);
2241             r = select(condxp, r0, t0);
2242             batch_type resg = select(y < real_batch(0.), batch_type(t, -r), batch_type(t, r));
2243             real_batch ze(0.);
2244 
2245             return select(y == ze,
2246                           select(x == ze,
2247                                  batch_type(ze, ze),
2248                                  select(x < ze, batch_type(ze, sqrt_x), batch_type(sqrt_x, ze))),
2249                           select(x == ze,
2250                                  select(y > ze, batch_type(sqrt_hy, sqrt_hy), batch_type(sqrt_hy, -sqrt_hy)),
2251                                  resg));
2252         }
2253 
2254         // tgamma
2255 
2256         namespace detail
2257         {
2258             /* origin: boost/simd/arch/common/detail/generic/stirling_kernel.hpp */
2259             /*
2260              * ====================================================
2261              * copyright 2016 NumScale SAS
2262              *
2263              * Distributed under the Boost Software License, Version 1.0.
2264              * (See copy at http://boost.org/LICENSE_1_0.txt)
2265              * ====================================================
2266              */
2267             template <class B>
2268             struct stirling_kernel;
2269 
2270             template <class A>
2271             struct stirling_kernel<batch<float, A>>
2272             {
2273                 using batch_type = batch<float, A>;
2274                 static XSIMD_INLINE batch_type compute(const batch_type& x) noexcept
2275                 {
2276                     return horner<batch_type,
2277                                   0x3daaaaab,
2278                                   0x3b638e39,
2279                                   0xbb2fb930,
2280                                   0xb970b359>(x);
2281                 }
2282 
2283                 static XSIMD_INLINE batch_type split_limit() noexcept
2284                 {
2285                     return batch_type(bit_cast<float>(uint32_t(0x41d628f6)));
2286                 }
2287 
2288                 static XSIMD_INLINE batch_type large_limit() noexcept
2289                 {
2290                     return batch_type(bit_cast<float>(uint32_t(0x420c28f3)));
2291                 }
2292             };
2293 
2294             template <class A>
2295             struct stirling_kernel<batch<double, A>>
2296             {
2297                 using batch_type = batch<double, A>;
2298                 static XSIMD_INLINE batch_type compute(const batch_type& x) noexcept
2299                 {
2300                     return horner<batch_type,
2301                                   0x3fb5555555555986ull, //   8.33333333333482257126E-2
2302                                   0x3f6c71c71b98c5fdull, //   3.47222221605458667310E-3
2303                                   0xbf65f72607d44fd7ull, //  -2.68132617805781232825E-3
2304                                   0xbf2e166b27e61d7cull, //  -2.29549961613378126380E-4
2305                                   0x3f49cc72592d7293ull //   7.87311395793093628397E-4
2306                                   >(x);
2307                 }
2308 
2309                 static XSIMD_INLINE batch_type split_limit() noexcept
2310                 {
2311                     return batch_type(bit_cast<double>(uint64_t(0x4061e083ba3443d4)));
2312                 }
2313 
2314                 static XSIMD_INLINE batch_type large_limit() noexcept
2315                 {
2316                     return batch_type(bit_cast<double>(uint64_t(0x4065800000000000)));
2317                 }
2318             };
2319 
2320             /* origin: boost/simd/arch/common/simd/function/stirling.hpp */
2321             /*
2322              * ====================================================
2323              * copyright 2016 NumScale SAS
2324              *
2325              * Distributed under the Boost Software License, Version 1.0.
2326              * (See copy at http://boost.org/LICENSE_1_0.txt)
2327              * ====================================================
2328              */
2329             template <class T, class A>
2330             XSIMD_INLINE batch<T, A> stirling(const batch<T, A>& a) noexcept
2331             {
2332                 using batch_type = batch<T, A>;
2333                 const batch_type stirlingsplitlim = stirling_kernel<batch_type>::split_limit();
2334                 const batch_type stirlinglargelim = stirling_kernel<batch_type>::large_limit();
2335                 batch_type x = select(a >= batch_type(0.), a, constants::nan<batch_type>());
2336                 batch_type w = batch_type(1.) / x;
2337                 w = fma(w, stirling_kernel<batch_type>::compute(w), batch_type(1.));
2338                 batch_type y = exp(-x);
2339                 auto test = (x < stirlingsplitlim);
2340                 batch_type z = x - batch_type(0.5);
2341                 z = select(test, z, batch_type(0.5) * z);
2342                 batch_type v = exp(z * log(abs(x)));
2343                 y *= v;
2344                 y = select(test, y, y * v);
2345                 y *= constants::sqrt_2pi<batch_type>() * w;
2346 #ifndef XSIMD_NO_INFINITIES
2347                 y = select(isinf(x), x, y);
2348 #endif
2349                 return select(x > stirlinglargelim, constants::infinity<batch_type>(), y);
2350             }
2351 
2352             /* origin: boost/simd/arch/common/detail/generic/gamma_kernel.hpp */
2353             /*
2354              * ====================================================
2355              * copyright 2016 NumScale SAS
2356              *
2357              * Distributed under the Boost Software License, Version 1.0.
2358              * (See copy at http://boost.org/LICENSE_1_0.txt)
2359              * ====================================================
2360              */
2361             template <class B>
2362             struct tgamma_kernel;
2363 
2364             template <class A>
2365             struct tgamma_kernel<batch<float, A>>
2366             {
2367                 using batch_type = batch<float, A>;
2368                 static XSIMD_INLINE batch_type compute(const batch_type& x) noexcept
2369                 {
2370                     return horner<batch_type,
2371                                   0x3f800000UL, //  9.999999757445841E-01
2372                                   0x3ed87799UL, //  4.227874605370421E-01
2373                                   0x3ed2d411UL, //  4.117741948434743E-01
2374                                   0x3da82a34UL, //  8.211174403261340E-02
2375                                   0x3d93ae7cUL, //  7.211014349068177E-02
2376                                   0x3b91db14UL, //  4.451165155708328E-03
2377                                   0x3ba90c99UL, //  5.158972571345137E-03
2378                                   0x3ad28b22UL //  1.606319369134976E-03
2379                                   >(x);
2380                 }
2381             };
2382 
2383             template <class A>
2384             struct tgamma_kernel<batch<double, A>>
2385             {
2386                 using batch_type = batch<double, A>;
2387                 static XSIMD_INLINE batch_type compute(const batch_type& x) noexcept
2388                 {
2389                     return horner<batch_type,
2390                                   0x3ff0000000000000ULL, // 9.99999999999999996796E-1
2391                                   0x3fdfa1373993e312ULL, // 4.94214826801497100753E-1
2392                                   0x3fca8da9dcae7d31ULL, // 2.07448227648435975150E-1
2393                                   0x3fa863d918c423d3ULL, // 4.76367800457137231464E-2
2394                                   0x3f8557cde9db14b0ULL, // 1.04213797561761569935E-2
2395                                   0x3f5384e3e686bfabULL, // 1.19135147006586384913E-3
2396                                   0x3f24fcb839982153ULL // 1.60119522476751861407E-4
2397                                   >(x)
2398                         / horner<batch_type,
2399                                  0x3ff0000000000000ULL, //  1.00000000000000000320E00
2400                                  0x3fb24944c9cd3c51ULL, //  7.14304917030273074085E-2
2401                                  0xbfce071a9d4287c2ULL, // -2.34591795718243348568E-1
2402                                  0x3fa25779e33fde67ULL, //  3.58236398605498653373E-2
2403                                  0x3f8831ed5b1bb117ULL, //  1.18139785222060435552E-2
2404                                  0xBf7240e4e750b44aULL, // -4.45641913851797240494E-3
2405                                  0x3f41ae8a29152573ULL, //  5.39605580493303397842E-4
2406                                  0xbef8487a8400d3aFULL // -2.31581873324120129819E-5
2407                                  >(x);
2408                 }
2409             };
2410 
2411             /* origin: boost/simd/arch/common/simd/function/gamma.hpp */
2412             /*
2413              * ====================================================
2414              * copyright 2016 NumScale SAS
2415              *
2416              * Distributed under the Boost Software License, Version 1.0.
2417              * (See copy at http://boost.org/LICENSE_1_0.txt)
2418              * ====================================================
2419              */
2420             template <class B>
2421             XSIMD_INLINE B tgamma_large_negative(const B& a) noexcept
2422             {
2423                 B st = stirling(a);
2424                 B p = floor(a);
2425                 B sgngam = select(is_even(p), -B(1.), B(1.));
2426                 B z = a - p;
2427                 auto test2 = z < B(0.5);
2428                 z = select(test2, z - B(1.), z);
2429                 z = a * sin(z, trigo_pi_tag());
2430                 z = abs(z);
2431                 return sgngam * constants::pi<B>() / (z * st);
2432             }
2433 
2434             template <class B, class BB>
2435             XSIMD_INLINE B tgamma_other(const B& a, const BB& test) noexcept
2436             {
2437                 B x = select(test, B(2.), a);
2438 #ifndef XSIMD_NO_INFINITIES
2439                 auto inf_result = (a == constants::infinity<B>());
2440                 x = select(inf_result, B(2.), x);
2441 #endif
2442                 B z = B(1.);
2443                 auto test1 = (x >= B(3.));
2444                 while (any(test1))
2445                 {
2446                     x = select(test1, x - B(1.), x);
2447                     z = select(test1, z * x, z);
2448                     test1 = (x >= B(3.));
2449                 }
2450                 test1 = (x < B(0.));
2451                 while (any(test1))
2452                 {
2453                     z = select(test1, z / x, z);
2454                     x = select(test1, x + B(1.), x);
2455                     test1 = (x < B(0.));
2456                 }
2457                 auto test2 = (x < B(2.));
2458                 while (any(test2))
2459                 {
2460                     z = select(test2, z / x, z);
2461                     x = select(test2, x + B(1.), x);
2462                     test2 = (x < B(2.));
2463                 }
2464                 x = z * tgamma_kernel<B>::compute(x - B(2.));
2465 #ifndef XSIMD_NO_INFINITIES
2466                 return select(inf_result, a, x);
2467 #else
2468                 return x;
2469 #endif
2470             }
2471         }
2472 
2473         template <class A, class T>
2474         XSIMD_INLINE batch<T, A> tgamma(batch<T, A> const& self, requires_arch<generic>) noexcept
2475         {
2476             using batch_type = batch<T, A>;
2477             auto nan_result = (self < batch_type(0.) && is_flint(self));
2478 #ifndef XSIMD_NO_INVALIDS
2479             nan_result = isnan(self) || nan_result;
2480 #endif
2481             batch_type q = abs(self);
2482             auto test = (self < batch_type(-33.));
2483             batch_type r = constants::nan<batch_type>();
2484             if (any(test))
2485             {
2486                 r = detail::tgamma_large_negative(q);
2487                 if (all(test))
2488                     return select(nan_result, constants::nan<batch_type>(), r);
2489             }
2490             batch_type r1 = detail::tgamma_other(self, test);
2491             batch_type r2 = select(test, r, r1);
2492             return select(self == batch_type(0.), copysign(constants::infinity<batch_type>(), self), select(nan_result, constants::nan<batch_type>(), r2));
2493         }
2494 
2495     }
2496 
2497 }
2498 
2499 #endif