![]() |
|
|||
File indexing completed on 2025-09-17 09:14:18
0001 // Author: Enrico Guiraud, Danilo Piparo CERN 03/2017 0002 0003 /************************************************************************* 0004 * Copyright (C) 1995-2021, Rene Brun and Fons Rademakers. * 0005 * All rights reserved. * 0006 * * 0007 * For the licensing terms see $ROOTSYS/LICENSE. * 0008 * For the list of contributors see $ROOTSYS/README/CREDITS. * 0009 *************************************************************************/ 0010 0011 #ifndef ROOT_RDF_TINTERFACE 0012 #define ROOT_RDF_TINTERFACE 0013 0014 #include "ROOT/RDataSource.hxx" 0015 #include "ROOT/RDF/ActionHelpers.hxx" 0016 #include "ROOT/RDF/HistoModels.hxx" 0017 #include "ROOT/RDF/InterfaceUtils.hxx" 0018 #include "ROOT/RDF/RColumnRegister.hxx" 0019 #include "ROOT/RDF/RDefaultValueFor.hxx" 0020 #include "ROOT/RDF/RDefine.hxx" 0021 #include "ROOT/RDF/RDefinePerSample.hxx" 0022 #include "ROOT/RDF/RFilter.hxx" 0023 #include "ROOT/RDF/RInterfaceBase.hxx" 0024 #include "ROOT/RDF/RVariation.hxx" 0025 #include "ROOT/RDF/RLazyDSImpl.hxx" 0026 #include "ROOT/RDF/RLoopManager.hxx" 0027 #include "ROOT/RDF/RRange.hxx" 0028 #include "ROOT/RDF/RFilterWithMissingValues.hxx" 0029 #include "ROOT/RDF/Utils.hxx" 0030 #include "ROOT/RDF/RDFDescription.hxx" 0031 #include "ROOT/RDF/RVariationsDescription.hxx" 0032 #include "ROOT/RResultPtr.hxx" 0033 #include "ROOT/RSnapshotOptions.hxx" 0034 #include <string_view> 0035 #include "ROOT/RVec.hxx" 0036 #include "ROOT/TypeTraits.hxx" 0037 #include "RtypesCore.h" // for ULong64_t 0038 #include "TDirectory.h" 0039 #include "TH1.h" // For Histo actions 0040 #include "TH2.h" // For Histo actions 0041 #include "TH3.h" // For Histo actions 0042 #include "THn.h" 0043 #include "TProfile.h" 0044 #include "TProfile2D.h" 0045 #include "TStatistic.h" 0046 0047 #include <algorithm> 0048 #include <cstddef> 0049 #include <initializer_list> 0050 #include <iterator> // std::back_insterter 0051 #include <limits> 0052 #include <memory> 0053 #include <set> 0054 #include <sstream> 0055 #include <stdexcept> 0056 #include <string> 0057 #include <type_traits> // is_same, enable_if 0058 #include <typeinfo> 0059 #include <unordered_set> 0060 #include <utility> // std::index_sequence 0061 #include <vector> 0062 #include <any> 0063 0064 class TGraph; 0065 0066 // Windows requires a forward decl of printValue to accept it as a valid friend function in RInterface 0067 namespace ROOT { 0068 void DisableImplicitMT(); 0069 bool IsImplicitMTEnabled(); 0070 void EnableImplicitMT(UInt_t numthreads); 0071 class RDataFrame; 0072 } // namespace ROOT 0073 namespace cling { 0074 std::string printValue(ROOT::RDataFrame *tdf); 0075 } 0076 0077 namespace ROOT { 0078 namespace RDF { 0079 namespace RDFDetail = ROOT::Detail::RDF; 0080 namespace RDFInternal = ROOT::Internal::RDF; 0081 namespace TTraits = ROOT::TypeTraits; 0082 0083 template <typename Proxied, typename DataSource> 0084 class RInterface; 0085 0086 using RNode = RInterface<::ROOT::Detail::RDF::RNodeBase, void>; 0087 } // namespace RDF 0088 0089 namespace Internal { 0090 namespace RDF { 0091 class GraphCreatorHelper; 0092 void ChangeEmptyEntryRange(const ROOT::RDF::RNode &node, std::pair<ULong64_t, ULong64_t> &&newRange); 0093 void ChangeBeginAndEndEntries(const RNode &node, Long64_t begin, Long64_t end); 0094 void ChangeSpec(const ROOT::RDF::RNode &node, ROOT::RDF::Experimental::RDatasetSpec &&spec); 0095 void TriggerRun(ROOT::RDF::RNode node); 0096 std::string GetDataSourceLabel(const ROOT::RDF::RNode &node); 0097 void SetTTreeLifeline(ROOT::RDF::RNode &node, std::any lifeline); 0098 } // namespace RDF 0099 } // namespace Internal 0100 0101 namespace RDF { 0102 0103 // clang-format off 0104 /** 0105 * \class ROOT::RDF::RInterface 0106 * \ingroup dataframe 0107 * \brief The public interface to the RDataFrame federation of classes. 0108 * \tparam Proxied One of the "node" base types (e.g. RLoopManager, RFilterBase). The user never specifies this type manually. 0109 * \tparam DataSource The type of the RDataSource which is providing the data to the data frame. There is no source by default. 0110 * 0111 * The documentation of each method features a one liner illustrating how to use the method, for example showing how 0112 * the majority of the template parameters are automatically deduced requiring no or very little effort by the user. 0113 */ 0114 // clang-format on 0115 template <typename Proxied, typename DataSource = void> 0116 class RInterface : public RInterfaceBase { 0117 using DS_t = DataSource; 0118 using RFilterBase = RDFDetail::RFilterBase; 0119 using RRangeBase = RDFDetail::RRangeBase; 0120 using RLoopManager = RDFDetail::RLoopManager; 0121 friend std::string cling::printValue(::ROOT::RDataFrame *tdf); // For a nice printing at the prompt 0122 friend class RDFInternal::GraphDrawing::GraphCreatorHelper; 0123 0124 template <typename T, typename W> 0125 friend class RInterface; 0126 0127 friend void RDFInternal::TriggerRun(RNode node); 0128 friend void RDFInternal::ChangeEmptyEntryRange(const RNode &node, std::pair<ULong64_t, ULong64_t> &&newRange); 0129 friend void RDFInternal::ChangeBeginAndEndEntries(const RNode &node, Long64_t start, Long64_t end); 0130 friend void RDFInternal::ChangeSpec(const RNode &node, ROOT::RDF::Experimental::RDatasetSpec &&spec); 0131 friend std::string ROOT::Internal::RDF::GetDataSourceLabel(const RNode &node); 0132 friend void ROOT::Internal::RDF::SetTTreeLifeline(ROOT::RDF::RNode &node, std::any lifeline); 0133 std::shared_ptr<Proxied> fProxiedPtr; ///< Smart pointer to the graph node encapsulated by this RInterface. 0134 0135 public: 0136 //////////////////////////////////////////////////////////////////////////// 0137 /// \brief Copy-assignment operator for RInterface. 0138 RInterface &operator=(const RInterface &) = default; 0139 0140 //////////////////////////////////////////////////////////////////////////// 0141 /// \brief Copy-ctor for RInterface. 0142 RInterface(const RInterface &) = default; 0143 0144 //////////////////////////////////////////////////////////////////////////// 0145 /// \brief Move-ctor for RInterface. 0146 RInterface(RInterface &&) = default; 0147 0148 //////////////////////////////////////////////////////////////////////////// 0149 /// \brief Move-assignment operator for RInterface. 0150 RInterface &operator=(RInterface &&) = default; 0151 0152 //////////////////////////////////////////////////////////////////////////// 0153 /// \brief Build a RInterface from a RLoopManager. 0154 /// This constructor is only available for RInterface<RLoopManager>. 0155 template <typename T = Proxied, typename = std::enable_if_t<std::is_same<T, RLoopManager>::value, int>> 0156 RInterface(const std::shared_ptr<RLoopManager> &proxied) : RInterfaceBase(proxied), fProxiedPtr(proxied) 0157 { 0158 } 0159 0160 //////////////////////////////////////////////////////////////////////////// 0161 /// \brief Cast any RDataFrame node to a common type ROOT::RDF::RNode. 0162 /// Different RDataFrame methods return different C++ types. All nodes, however, 0163 /// can be cast to this common type at the cost of a small performance penalty. 0164 /// This allows, for example, storing RDataFrame nodes in a vector, or passing them 0165 /// around via (non-template, C++11) helper functions. 0166 /// Example usage: 0167 /// ~~~{.cpp} 0168 /// // a function that conditionally adds a Range to a RDataFrame node. 0169 /// RNode MaybeAddRange(RNode df, bool mustAddRange) 0170 /// { 0171 /// return mustAddRange ? df.Range(1) : df; 0172 /// } 0173 /// // use as : 0174 /// ROOT::RDataFrame df(10); 0175 /// auto maybeRanged = MaybeAddRange(df, true); 0176 /// ~~~ 0177 /// Note that it is not a problem to pass RNode's by value. 0178 operator RNode() const 0179 { 0180 return RNode(std::static_pointer_cast<::ROOT::Detail::RDF::RNodeBase>(fProxiedPtr), *fLoopManager, fColRegister); 0181 } 0182 0183 //////////////////////////////////////////////////////////////////////////// 0184 /// \brief Append a filter to the call graph. 0185 /// \param[in] f Function, lambda expression, functor class or any other callable object. It must return a `bool` 0186 /// signalling whether the event has passed the selection (true) or not (false). 0187 /// \param[in] columns Names of the columns/branches in input to the filter function. 0188 /// \param[in] name Optional name of this filter. See `Report`. 0189 /// \return the filter node of the computation graph. 0190 /// 0191 /// Append a filter node at the point of the call graph corresponding to the 0192 /// object this method is called on. 0193 /// The callable `f` should not have side-effects (e.g. modification of an 0194 /// external or static variable) to ensure correct results when implicit 0195 /// multi-threading is active. 0196 /// 0197 /// RDataFrame only evaluates filters when necessary: if multiple filters 0198 /// are chained one after another, they are executed in order and the first 0199 /// one returning false causes the event to be discarded. 0200 /// Even if multiple actions or transformations depend on the same filter, 0201 /// it is executed once per entry. If its result is requested more than 0202 /// once, the cached result is served. 0203 /// 0204 /// ### Example usage: 0205 /// ~~~{.cpp} 0206 /// // C++ callable (function, functor class, lambda...) that takes two parameters of the types of "x" and "y" 0207 /// auto filtered = df.Filter(myCut, {"x", "y"}); 0208 /// 0209 /// // String: it must contain valid C++ except that column names can be used instead of variable names 0210 /// auto filtered = df.Filter("x*y > 0"); 0211 /// ~~~ 0212 /// 0213 /// \note If the body of the string expression contains an explicit `return` statement (even if it is in a nested 0214 /// scope), RDataFrame _will not_ add another one in front of the expression. So this will not work: 0215 /// ~~~{.cpp} 0216 /// df.Filter("Sum(Map(vec, [](float e) { return e*e > 0.5; }))") 0217 /// ~~~ 0218 /// but instead this will: 0219 /// ~~~{.cpp} 0220 /// df.Filter("return Sum(Map(vec, [](float e) { return e*e > 0.5; }))") 0221 /// ~~~ 0222 template <typename F, std::enable_if_t<!std::is_convertible<F, std::string>::value, int> = 0> 0223 RInterface<RDFDetail::RFilter<F, Proxied>, DS_t> 0224 Filter(F f, const ColumnNames_t &columns = {}, std::string_view name = "") 0225 { 0226 RDFInternal::CheckFilter(f); 0227 using ColTypes_t = typename TTraits::CallableTraits<F>::arg_types; 0228 constexpr auto nColumns = ColTypes_t::list_size; 0229 const auto validColumnNames = GetValidatedColumnNames(nColumns, columns); 0230 CheckAndFillDSColumns(validColumnNames, ColTypes_t()); 0231 0232 using F_t = RDFDetail::RFilter<F, Proxied>; 0233 0234 auto filterPtr = std::make_shared<F_t>(std::move(f), validColumnNames, fProxiedPtr, fColRegister, name); 0235 return RInterface<F_t, DS_t>(std::move(filterPtr), *fLoopManager, fColRegister); 0236 } 0237 0238 //////////////////////////////////////////////////////////////////////////// 0239 /// \brief Append a filter to the call graph. 0240 /// \param[in] f Function, lambda expression, functor class or any other callable object. It must return a `bool` 0241 /// signalling whether the event has passed the selection (true) or not (false). 0242 /// \param[in] name Optional name of this filter. See `Report`. 0243 /// \return the filter node of the computation graph. 0244 /// 0245 /// Refer to the first overload of this method for the full documentation. 0246 template <typename F, std::enable_if_t<!std::is_convertible<F, std::string>::value, int> = 0> 0247 RInterface<RDFDetail::RFilter<F, Proxied>, DS_t> Filter(F f, std::string_view name) 0248 { 0249 // The sfinae is there in order to pick up the overloaded method which accepts two strings 0250 // rather than this template method. 0251 return Filter(f, {}, name); 0252 } 0253 0254 //////////////////////////////////////////////////////////////////////////// 0255 /// \brief Append a filter to the call graph. 0256 /// \param[in] f Function, lambda expression, functor class or any other callable object. It must return a `bool` 0257 /// signalling whether the event has passed the selection (true) or not (false). 0258 /// \param[in] columns Names of the columns/branches in input to the filter function. 0259 /// \return the filter node of the computation graph. 0260 /// 0261 /// Refer to the first overload of this method for the full documentation. 0262 template <typename F> 0263 RInterface<RDFDetail::RFilter<F, Proxied>, DS_t> Filter(F f, const std::initializer_list<std::string> &columns) 0264 { 0265 return Filter(f, ColumnNames_t{columns}); 0266 } 0267 0268 //////////////////////////////////////////////////////////////////////////// 0269 /// \brief Append a filter to the call graph. 0270 /// \param[in] expression The filter expression in C++ 0271 /// \param[in] name Optional name of this filter. See `Report`. 0272 /// \return the filter node of the computation graph. 0273 /// 0274 /// The expression is just-in-time compiled and used to filter entries. It must 0275 /// be valid C++ syntax in which variable names are substituted with the names 0276 /// of branches/columns. 0277 /// 0278 /// ### Example usage: 0279 /// ~~~{.cpp} 0280 /// auto filtered_df = df.Filter("myCollection.size() > 3"); 0281 /// auto filtered_name_df = df.Filter("myCollection.size() > 3", "Minumum collection size"); 0282 /// ~~~ 0283 /// 0284 /// \note If the body of the string expression contains an explicit `return` statement (even if it is in a nested 0285 /// scope), RDataFrame _will not_ add another one in front of the expression. So this will not work: 0286 /// ~~~{.cpp} 0287 /// df.Filter("Sum(Map(vec, [](float e) { return e*e > 0.5; }))") 0288 /// ~~~ 0289 /// but instead this will: 0290 /// ~~~{.cpp} 0291 /// df.Filter("return Sum(Map(vec, [](float e) { return e*e > 0.5; }))") 0292 /// ~~~ 0293 RInterface<RDFDetail::RJittedFilter, DS_t> Filter(std::string_view expression, std::string_view name = "") 0294 { 0295 // deleted by the jitted call to JitFilterHelper 0296 auto upcastNodeOnHeap = RDFInternal::MakeSharedOnHeap(RDFInternal::UpcastNode(fProxiedPtr)); 0297 using BaseNodeType_t = typename std::remove_pointer_t<decltype(upcastNodeOnHeap)>::element_type; 0298 RInterface<BaseNodeType_t> upcastInterface(*upcastNodeOnHeap, *fLoopManager, fColRegister); 0299 const auto jittedFilter = 0300 RDFInternal::BookFilterJit(upcastNodeOnHeap, name, expression, fLoopManager->GetBranchNames(), fColRegister, 0301 fLoopManager->GetTree(), GetDataSource()); 0302 0303 return RInterface<RDFDetail::RJittedFilter, DS_t>(std::move(jittedFilter), *fLoopManager, fColRegister); 0304 } 0305 0306 //////////////////////////////////////////////////////////////////////////// 0307 /// \brief Discard entries with missing values 0308 /// \param[in] column Column name whose entries with missing values should be discarded 0309 /// \return The filter node of the computation graph 0310 /// 0311 /// This operation is useful in case an entry of the dataset is incomplete, 0312 /// i.e. if one or more of the columns do not have valid values. If the value 0313 /// of the input column is missing for an entry, the entire entry will be 0314 /// discarded from the rest of this branch of the computation graph. 0315 /// 0316 /// Use cases include: 0317 /// * When processing multiple files, one or more of them is missing a column 0318 /// * In horizontal joining with entry matching, a certain dataset has no 0319 /// match for the current entry. 0320 /// 0321 /// ### Example usage: 0322 /// 0323 /// \code{.py} 0324 /// # Assume a dataset with columns [idx, x] matching another dataset with 0325 /// # columns [idx, y]. For idx == 42, the right-hand dataset has no match 0326 /// df = ROOT.RDataFrame(dataset) 0327 /// df_nomissing = df.FilterAvailable("idx").Define("z", "x + y") 0328 /// colz = df_nomissing.Take[int]("z") 0329 /// \endcode 0330 /// 0331 /// \code{.cpp} 0332 /// // Assume a dataset with columns [idx, x] matching another dataset with 0333 /// // columns [idx, y]. For idx == 42, the right-hand dataset has no match 0334 /// ROOT::RDataFrame df{dataset}; 0335 /// auto df_nomissing = df.FilterAvailable("idx") 0336 /// .Define("z", [](int x, int y) { return x + y; }, {"x", "y"}); 0337 /// auto colz = df_nomissing.Take<int>("z"); 0338 /// \endcode 0339 /// 0340 /// \note See FilterMissing() if you want to keep only the entries with 0341 /// missing values instead. 0342 RInterface<RDFDetail::RFilterWithMissingValues<Proxied>, DS_t> FilterAvailable(std::string_view column) 0343 { 0344 const auto columns = ColumnNames_t{column.data()}; 0345 // For now disable this functionality in case of an empty data source and 0346 // the column name was not defined previously. 0347 if (ROOT::Internal::RDF::GetDataSourceLabel(*this) == "EmptyDS") 0348 throw std::runtime_error("Unknown column: \"" + std::string(column) + "\""); 0349 using F_t = RDFDetail::RFilterWithMissingValues<Proxied>; 0350 auto filterPtr = std::make_shared<F_t>(/*discardEntry*/ true, fProxiedPtr, fColRegister, columns); 0351 CheckAndFillDSColumns(columns, TTraits::TypeList<void>{}); 0352 return RInterface<F_t, DS_t>(std::move(filterPtr), *fLoopManager, fColRegister); 0353 } 0354 0355 //////////////////////////////////////////////////////////////////////////// 0356 /// \brief Keep only the entries that have missing values. 0357 /// \param[in] column Column name whose entries with missing values should be kept 0358 /// \return The filter node of the computation graph 0359 /// 0360 /// This operation is useful in case an entry of the dataset is incomplete, 0361 /// i.e. if one or more of the columns do not have valid values. It only 0362 /// keeps the entries for which the value of the input column is missing. 0363 /// 0364 /// Use cases include: 0365 /// * When processing multiple files, one or more of them is missing a column 0366 /// * In horizontal joining with entry matching, a certain dataset has no 0367 /// match for the current entry. 0368 /// 0369 /// ### Example usage: 0370 /// 0371 /// \code{.py} 0372 /// # Assume a dataset made of two files vertically chained together, one has 0373 /// # column "x" and the other has column "y" 0374 /// df = ROOT.RDataFrame(dataset) 0375 /// df_valid_col_x = df.FilterMissing("y") 0376 /// df_valid_col_y = df.FilterMissing("x") 0377 /// display_x = df_valid_col_x.Display(("x",)) 0378 /// display_y = df_valid_col_y.Display(("y",)) 0379 /// \endcode 0380 /// 0381 /// \code{.cpp} 0382 /// // Assume a dataset made of two files vertically chained together, one has 0383 /// // column "x" and the other has column "y" 0384 /// ROOT.RDataFrame df{dataset}; 0385 /// auto df_valid_col_x = df.FilterMissing("y"); 0386 /// auto df_valid_col_y = df.FilterMissing("x"); 0387 /// auto display_x = df_valid_col_x.Display<int>({"x"}); 0388 /// auto display_y = df_valid_col_y.Display<int>({"y"}); 0389 /// \endcode 0390 /// 0391 /// \note See FilterAvailable() if you want to discard the entries in case 0392 /// there is a missing value instead. 0393 RInterface<RDFDetail::RFilterWithMissingValues<Proxied>, DS_t> FilterMissing(std::string_view column) 0394 { 0395 const auto columns = ColumnNames_t{column.data()}; 0396 // For now disable this functionality in case of an empty data source and 0397 // the column name was not defined previously. 0398 if (ROOT::Internal::RDF::GetDataSourceLabel(*this) == "EmptyDS") 0399 throw std::runtime_error("Unknown column: \"" + std::string(column) + "\""); 0400 using F_t = RDFDetail::RFilterWithMissingValues<Proxied>; 0401 auto filterPtr = std::make_shared<F_t>(/*discardEntry*/ false, fProxiedPtr, fColRegister, columns); 0402 CheckAndFillDSColumns(columns, TTraits::TypeList<void>{}); 0403 return RInterface<F_t, DS_t>(std::move(filterPtr), *fLoopManager, fColRegister); 0404 } 0405 0406 // clang-format off 0407 //////////////////////////////////////////////////////////////////////////// 0408 /// \brief Define a new column. 0409 /// \param[in] name The name of the defined column. 0410 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column. 0411 /// \param[in] columns Names of the columns/branches in input to the producer function. 0412 /// \return the first node of the computation graph for which the new quantity is defined. 0413 /// 0414 /// Define a column that will be visible from all subsequent nodes 0415 /// of the functional chain. The `expression` is only evaluated for entries that pass 0416 /// all the preceding filters. 0417 /// A new variable is created called `name`, accessible as if it was contained 0418 /// in the dataset from subsequent transformations/actions. 0419 /// 0420 /// Use cases include: 0421 /// * caching the results of complex calculations for easy and efficient multiple access 0422 /// * extraction of quantities of interest from complex objects 0423 /// 0424 /// An exception is thrown if the name of the new column is already in use in this branch of the computation graph. 0425 /// 0426 /// ### Example usage: 0427 /// ~~~{.cpp} 0428 /// // assuming a function with signature: 0429 /// double myComplexCalculation(const RVec<float> &muon_pts); 0430 /// // we can pass it directly to Define 0431 /// auto df_with_define = df.Define("newColumn", myComplexCalculation, {"muon_pts"}); 0432 /// // alternatively, we can pass the body of the function as a string, as in Filter: 0433 /// auto df_with_define = df.Define("newColumn", "x*x + y*y"); 0434 /// ~~~ 0435 /// 0436 /// \note If the body of the string expression contains an explicit `return` statement (even if it is in a nested 0437 /// scope), RDataFrame _will not_ add another one in front of the expression. So this will not work: 0438 /// ~~~{.cpp} 0439 /// df.Define("x2", "Map(v, [](float e) { return e*e; })") 0440 /// ~~~ 0441 /// but instead this will: 0442 /// ~~~{.cpp} 0443 /// df.Define("x2", "return Map(v, [](float e) { return e*e; })") 0444 /// ~~~ 0445 template <typename F, typename std::enable_if_t<!std::is_convertible<F, std::string>::value, int> = 0> 0446 RInterface<Proxied, DS_t> Define(std::string_view name, F expression, const ColumnNames_t &columns = {}) 0447 { 0448 return DefineImpl<F, RDFDetail::ExtraArgsForDefine::None>(name, std::move(expression), columns, "Define"); 0449 } 0450 // clang-format on 0451 0452 // clang-format off 0453 //////////////////////////////////////////////////////////////////////////// 0454 /// \brief Define a new column with a value dependent on the processing slot. 0455 /// \param[in] name The name of the defined column. 0456 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column. 0457 /// \param[in] columns Names of the columns/branches in input to the producer function (excluding the slot number). 0458 /// \return the first node of the computation graph for which the new quantity is defined. 0459 /// 0460 /// This alternative implementation of `Define` is meant as a helper to evaluate new column values in a thread-safe manner. 0461 /// The expression must be a callable of signature R(unsigned int, T1, T2, ...) where `T1, T2...` are the types 0462 /// of the columns that the expression takes as input. The first parameter is reserved for an unsigned integer 0463 /// representing a "slot number". RDataFrame guarantees that different threads will invoke the expression with 0464 /// different slot numbers - slot numbers will range from zero to ROOT::GetThreadPoolSize()-1. 0465 /// Note that there is no guarantee as to how often each slot will be reached during the event loop. 0466 /// 0467 /// The following two calls are equivalent, although `DefineSlot` is slightly more performant: 0468 /// ~~~{.cpp} 0469 /// int function(unsigned int, double, double); 0470 /// df.Define("x", function, {"rdfslot_", "column1", "column2"}) 0471 /// df.DefineSlot("x", function, {"column1", "column2"}) 0472 /// ~~~ 0473 /// 0474 /// See Define() for more information. 0475 template <typename F> 0476 RInterface<Proxied, DS_t> DefineSlot(std::string_view name, F expression, const ColumnNames_t &columns = {}) 0477 { 0478 return DefineImpl<F, RDFDetail::ExtraArgsForDefine::Slot>(name, std::move(expression), columns, "DefineSlot"); 0479 } 0480 // clang-format on 0481 0482 // clang-format off 0483 //////////////////////////////////////////////////////////////////////////// 0484 /// \brief Define a new column with a value dependent on the processing slot and the current entry. 0485 /// \param[in] name The name of the defined column. 0486 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column. 0487 /// \param[in] columns Names of the columns/branches in input to the producer function (excluding slot and entry). 0488 /// \return the first node of the computation graph for which the new quantity is defined. 0489 /// 0490 /// This alternative implementation of `Define` is meant as a helper in writing entry-specific, thread-safe custom 0491 /// columns. The expression must be a callable of signature R(unsigned int, ULong64_t, T1, T2, ...) where `T1, T2...` 0492 /// are the types of the columns that the expression takes as input. The first parameter is reserved for an unsigned 0493 /// integer representing a "slot number". RDataFrame guarantees that different threads will invoke the expression with 0494 /// different slot numbers - slot numbers will range from zero to ROOT::GetThreadPoolSize()-1. 0495 /// Note that there is no guarantee as to how often each slot will be reached during the event loop. 0496 /// The second parameter is reserved for a `ULong64_t` representing the current entry being processed by the current thread. 0497 /// 0498 /// The following two `Define`s are equivalent, although `DefineSlotEntry` is slightly more performant: 0499 /// ~~~{.cpp} 0500 /// int function(unsigned int, ULong64_t, double, double); 0501 /// Define("x", function, {"rdfslot_", "rdfentry_", "column1", "column2"}) 0502 /// DefineSlotEntry("x", function, {"column1", "column2"}) 0503 /// ~~~ 0504 /// 0505 /// See Define() for more information. 0506 template <typename F> 0507 RInterface<Proxied, DS_t> DefineSlotEntry(std::string_view name, F expression, const ColumnNames_t &columns = {}) 0508 { 0509 return DefineImpl<F, RDFDetail::ExtraArgsForDefine::SlotAndEntry>(name, std::move(expression), columns, 0510 "DefineSlotEntry"); 0511 } 0512 // clang-format on 0513 0514 //////////////////////////////////////////////////////////////////////////// 0515 /// \brief Define a new column. 0516 /// \param[in] name The name of the defined column. 0517 /// \param[in] expression An expression in C++ which represents the defined value 0518 /// \return the first node of the computation graph for which the new quantity is defined. 0519 /// 0520 /// The expression is just-in-time compiled and used to produce the column entries. 0521 /// It must be valid C++ syntax in which variable names are substituted with the names 0522 /// of branches/columns. 0523 /// 0524 /// \note If the body of the string expression contains an explicit `return` statement (even if it is in a nested 0525 /// scope), RDataFrame _will not_ add another one in front of the expression. So this will not work: 0526 /// ~~~{.cpp} 0527 /// df.Define("x2", "Map(v, [](float e) { return e*e; })") 0528 /// ~~~ 0529 /// but instead this will: 0530 /// ~~~{.cpp} 0531 /// df.Define("x2", "return Map(v, [](float e) { return e*e; })") 0532 /// ~~~ 0533 /// 0534 /// Refer to the first overload of this method for the full documentation. 0535 RInterface<Proxied, DS_t> Define(std::string_view name, std::string_view expression) 0536 { 0537 constexpr auto where = "Define"; 0538 RDFInternal::CheckValidCppVarName(name, where); 0539 // these checks must be done before jitting lest we throw exceptions in jitted code 0540 RDFInternal::CheckForRedefinition(where, name, fColRegister, fLoopManager->GetBranchNames(), 0541 GetDataSource() ? GetDataSource()->GetColumnNames() : ColumnNames_t{}); 0542 0543 auto upcastNodeOnHeap = RDFInternal::MakeSharedOnHeap(RDFInternal::UpcastNode(fProxiedPtr)); 0544 auto jittedDefine = RDFInternal::BookDefineJit(name, expression, *fLoopManager, GetDataSource(), fColRegister, 0545 fLoopManager->GetBranchNames(), upcastNodeOnHeap); 0546 0547 RDFInternal::RColumnRegister newCols(fColRegister); 0548 newCols.AddDefine(std::move(jittedDefine)); 0549 0550 RInterface<Proxied, DS_t> newInterface(fProxiedPtr, *fLoopManager, std::move(newCols)); 0551 0552 return newInterface; 0553 } 0554 0555 //////////////////////////////////////////////////////////////////////////// 0556 /// \brief Overwrite the value and/or type of an existing column. 0557 /// \param[in] name The name of the column to redefine. 0558 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column. 0559 /// \param[in] columns Names of the columns/branches in input to the expression. 0560 /// \return the first node of the computation graph for which the quantity is redefined. 0561 /// 0562 /// The old value of the column can be used as an input for the expression. 0563 /// 0564 /// An exception is thrown in case the column to redefine does not already exist. 0565 /// See Define() for more information. 0566 template <typename F, std::enable_if_t<!std::is_convertible<F, std::string>::value, int> = 0> 0567 RInterface<Proxied, DS_t> Redefine(std::string_view name, F expression, const ColumnNames_t &columns = {}) 0568 { 0569 return DefineImpl<F, RDFDetail::ExtraArgsForDefine::None>(name, std::move(expression), columns, "Redefine"); 0570 } 0571 0572 // clang-format off 0573 //////////////////////////////////////////////////////////////////////////// 0574 /// \brief Overwrite the value and/or type of an existing column. 0575 /// \param[in] name The name of the column to redefine. 0576 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column. 0577 /// \param[in] columns Names of the columns/branches in input to the producer function (excluding slot). 0578 /// \return the first node of the computation graph for which the new quantity is defined. 0579 /// 0580 /// The old value of the column can be used as an input for the expression. 0581 /// An exception is thrown in case the column to redefine does not already exist. 0582 /// 0583 /// See DefineSlot() for more information. 0584 // clang-format on 0585 template <typename F> 0586 RInterface<Proxied, DS_t> RedefineSlot(std::string_view name, F expression, const ColumnNames_t &columns = {}) 0587 { 0588 return DefineImpl<F, RDFDetail::ExtraArgsForDefine::Slot>(name, std::move(expression), columns, "RedefineSlot"); 0589 } 0590 0591 // clang-format off 0592 //////////////////////////////////////////////////////////////////////////// 0593 /// \brief Overwrite the value and/or type of an existing column. 0594 /// \param[in] name The name of the column to redefine. 0595 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column. 0596 /// \param[in] columns Names of the columns/branches in input to the producer function (excluding slot and entry). 0597 /// \return the first node of the computation graph for which the new quantity is defined. 0598 /// 0599 /// The old value of the column can be used as an input for the expression. 0600 /// An exception is thrown in case the column to re-define does not already exist. 0601 /// 0602 /// See DefineSlotEntry() for more information. 0603 // clang-format on 0604 template <typename F> 0605 RInterface<Proxied, DS_t> RedefineSlotEntry(std::string_view name, F expression, const ColumnNames_t &columns = {}) 0606 { 0607 return DefineImpl<F, RDFDetail::ExtraArgsForDefine::SlotAndEntry>(name, std::move(expression), columns, 0608 "RedefineSlotEntry"); 0609 } 0610 0611 //////////////////////////////////////////////////////////////////////////// 0612 /// \brief Overwrite the value and/or type of an existing column. 0613 /// \param[in] name The name of the column to redefine. 0614 /// \param[in] expression An expression in C++ which represents the defined value 0615 /// \return the first node of the computation graph for which the new quantity is defined. 0616 /// 0617 /// The expression is just-in-time compiled and used to produce the column entries. 0618 /// It must be valid C++ syntax in which variable names are substituted with the names 0619 /// of branches/columns. 0620 /// 0621 /// The old value of the column can be used as an input for the expression. 0622 /// An exception is thrown in case the column to re-define does not already exist. 0623 /// 0624 /// Aliases cannot be overridden. See the corresponding Define() overload for more information. 0625 RInterface<Proxied, DS_t> Redefine(std::string_view name, std::string_view expression) 0626 { 0627 constexpr auto where = "Redefine"; 0628 RDFInternal::CheckValidCppVarName(name, where); 0629 RDFInternal::CheckForDefinition(where, name, fColRegister, fLoopManager->GetBranchNames(), 0630 GetDataSource() ? GetDataSource()->GetColumnNames() : ColumnNames_t{}); 0631 RDFInternal::CheckForNoVariations(where, name, fColRegister); 0632 0633 auto upcastNodeOnHeap = RDFInternal::MakeSharedOnHeap(RDFInternal::UpcastNode(fProxiedPtr)); 0634 auto jittedDefine = RDFInternal::BookDefineJit(name, expression, *fLoopManager, GetDataSource(), fColRegister, 0635 fLoopManager->GetBranchNames(), upcastNodeOnHeap); 0636 0637 RDFInternal::RColumnRegister newCols(fColRegister); 0638 newCols.AddDefine(std::move(jittedDefine)); 0639 0640 RInterface<Proxied, DS_t> newInterface(fProxiedPtr, *fLoopManager, std::move(newCols)); 0641 0642 return newInterface; 0643 } 0644 0645 //////////////////////////////////////////////////////////////////////////// 0646 /// \brief In case the value in the given column is missing, provide a default value 0647 /// \tparam T The type of the column 0648 /// \param[in] column Column name where missing values should be replaced by the given default value 0649 /// \param[in] defaultValue Value to provide instead of a missing value 0650 /// \return The node of the graph that will provide a default value 0651 /// 0652 /// This operation is useful in case an entry of the dataset is incomplete, 0653 /// i.e. if one or more of the columns do not have valid values. It does not 0654 /// modify the values of the column, but in case any entry is missing, it 0655 /// will provide the default value to downstream nodes instead. 0656 /// 0657 /// Use cases include: 0658 /// * When processing multiple files, one or more of them is missing a column 0659 /// * In horizontal joining with entry matching, a certain dataset has no 0660 /// match for the current entry. 0661 /// 0662 /// ### Example usage: 0663 /// 0664 /// \code{.cpp} 0665 /// // Assume a dataset with columns [idx, x] matching another dataset with 0666 /// // columns [idx, y]. For idx == 42, the right-hand dataset has no match 0667 /// ROOT::RDataFrame df{dataset}; 0668 /// auto df_default = df.DefaultValueFor("y", 33) 0669 /// .Define("z", [](int x, int y) { return x + y; }, {"x", "y"}); 0670 /// auto colz = df_default.Take<int>("z"); 0671 /// \endcode 0672 /// 0673 /// \code{.py} 0674 /// df = ROOT.RDataFrame(dataset) 0675 /// df_default = df.DefaultValueFor("y", 33).Define("z", "x + y") 0676 /// colz = df_default.Take[int]("z") 0677 /// \endcode 0678 template <typename T> 0679 RInterface<Proxied, DS_t> DefaultValueFor(std::string_view column, const T &defaultValue) 0680 { 0681 constexpr auto where{"DefaultValueFor"}; 0682 RDFInternal::CheckForNoVariations(where, column, fColRegister); 0683 // For now disable this functionality in case of an empty data source and 0684 // the column name was not defined previously. 0685 if (ROOT::Internal::RDF::GetDataSourceLabel(*this) == "EmptyDS") 0686 RDFInternal::CheckForDefinition(where, column, fColRegister, fLoopManager->GetBranchNames(), 0687 GetDataSource() ? GetDataSource()->GetColumnNames() : ColumnNames_t{}); 0688 0689 // Declare return type to the interpreter, for future use by jitted actions 0690 auto retTypeName = RDFInternal::TypeID2TypeName(typeid(T)); 0691 if (retTypeName.empty()) { 0692 // The type is not known to the interpreter. 0693 // We must not error out here, but if/when this column is used in jitted code 0694 const auto demangledType = RDFInternal::DemangleTypeIdName(typeid(T)); 0695 retTypeName = "CLING_UNKNOWN_TYPE_" + demangledType; 0696 } 0697 0698 const auto validColumnNames = ColumnNames_t{column.data()}; 0699 auto newColumn = std::make_shared<ROOT::Internal::RDF::RDefaultValueFor<T>>( 0700 column, retTypeName, defaultValue, validColumnNames, fColRegister, *fLoopManager); 0701 CheckAndFillDSColumns(validColumnNames, TTraits::TypeList<T>{}); 0702 0703 RDFInternal::RColumnRegister newCols(fColRegister); 0704 newCols.AddDefine(std::move(newColumn)); 0705 0706 RInterface<Proxied> newInterface(fProxiedPtr, *fLoopManager, std::move(newCols)); 0707 0708 return newInterface; 0709 } 0710 0711 // clang-format off 0712 //////////////////////////////////////////////////////////////////////////// 0713 /// \brief Define a new column that is updated when the input sample changes. 0714 /// \param[in] name The name of the defined column. 0715 /// \param[in] expression A C++ callable that computes the new value of the defined column. 0716 /// \return the first node of the computation graph for which the new quantity is defined. 0717 /// 0718 /// The signature of the callable passed as second argument should be `T(unsigned int slot, const ROOT::RDF::RSampleInfo &id)` 0719 /// where: 0720 /// - `T` is the type of the defined column 0721 /// - `slot` is a number in the range [0, nThreads) that is different for each processing thread. This can simplify 0722 /// the definition of thread-safe callables if you are interested in using parallel capabilities of RDataFrame. 0723 /// - `id` is an instance of a ROOT::RDF::RSampleInfo object which contains information about the sample which is 0724 /// being processed (see the class docs for more information). 0725 /// 0726 /// DefinePerSample() is useful to e.g. define a quantity that depends on which TTree in which TFile is being 0727 /// processed or to inject a callback into the event loop that is only called when the processing of a new sample 0728 /// starts rather than at every entry. 0729 /// 0730 /// The callable will be invoked once per input TTree or once per multi-thread task, whichever is more often. 0731 /// 0732 /// ### Example usage: 0733 /// ~~~{.cpp} 0734 /// ROOT::RDataFrame df{"mytree", {"sample1.root","sample2.root"}}; 0735 /// df.DefinePerSample("weightbysample", 0736 /// [](unsigned int slot, const ROOT::RDF::RSampleInfo &id) 0737 /// { return id.Contains("sample1") ? 1.0f : 2.0f; }); 0738 /// ~~~ 0739 // clang-format on 0740 // TODO we could SFINAE on F's signature to provide friendlier compilation errors in case of signature mismatch 0741 template <typename F, typename RetType_t = typename TTraits::CallableTraits<F>::ret_type> 0742 RInterface<Proxied, DS_t> DefinePerSample(std::string_view name, F expression) 0743 { 0744 RDFInternal::CheckValidCppVarName(name, "DefinePerSample"); 0745 RDFInternal::CheckForRedefinition("DefinePerSample", name, fColRegister, fLoopManager->GetBranchNames(), 0746 GetDataSource() ? GetDataSource()->GetColumnNames() : ColumnNames_t{}); 0747 0748 auto retTypeName = RDFInternal::TypeID2TypeName(typeid(RetType_t)); 0749 if (retTypeName.empty()) { 0750 // The type is not known to the interpreter. 0751 // We must not error out here, but if/when this column is used in jitted code 0752 const auto demangledType = RDFInternal::DemangleTypeIdName(typeid(RetType_t)); 0753 retTypeName = "CLING_UNKNOWN_TYPE_" + demangledType; 0754 } 0755 0756 auto newColumn = 0757 std::make_shared<RDFDetail::RDefinePerSample<F>>(name, retTypeName, std::move(expression), *fLoopManager); 0758 0759 RDFInternal::RColumnRegister newCols(fColRegister); 0760 newCols.AddDefine(std::move(newColumn)); 0761 RInterface<Proxied> newInterface(fProxiedPtr, *fLoopManager, std::move(newCols)); 0762 return newInterface; 0763 } 0764 0765 // clang-format off 0766 //////////////////////////////////////////////////////////////////////////// 0767 /// \brief Define a new column that is updated when the input sample changes. 0768 /// \param[in] name The name of the defined column. 0769 /// \param[in] expression A valid C++ expression as a string, which will be used to compute the defined value. 0770 /// \return the first node of the computation graph for which the new quantity is defined. 0771 /// 0772 /// The expression is just-in-time compiled and used to produce the column entries. 0773 /// It must be valid C++ syntax and the usage of the special variable names `rdfslot_` and `rdfsampleinfo_` is 0774 /// permitted, where these variables will take the same values as the `slot` and `id` parameters described at the 0775 /// DefinePerSample(std::string_view name, F expression) overload. See the documentation of that overload for more information. 0776 /// 0777 /// ### Example usage: 0778 /// ~~~{.py} 0779 /// df = ROOT.RDataFrame('mytree', ['sample1.root','sample2.root']) 0780 /// df.DefinePerSample('weightbysample', 'rdfsampleinfo_.Contains("sample1") ? 1.0f : 2.0f') 0781 /// ~~~ 0782 /// 0783 /// \note 0784 /// If you have declared some C++ function to the interpreter, the correct syntax to call that function with this 0785 /// overload of DefinePerSample is by calling it explicitly with the special names `rdfslot_` and `rdfsampleinfo_` as 0786 /// input parameters. This is for example the correct way to call this overload when working in PyROOT: 0787 /// ~~~{.py} 0788 /// ROOT.gInterpreter.Declare( 0789 /// """ 0790 /// float weights(unsigned int slot, const ROOT::RDF::RSampleInfo &id){ 0791 /// return id.Contains("sample1") ? 1.0f : 2.0f; 0792 /// } 0793 /// """) 0794 /// df = ROOT.RDataFrame("mytree", ["sample1.root","sample2.root"]) 0795 /// df.DefinePerSample("weightsbysample", "weights(rdfslot_, rdfsampleinfo_)") 0796 /// ~~~ 0797 /// 0798 /// \note 0799 /// Differently from what happens in Define(), the string expression passed to DefinePerSample cannot contain 0800 /// column names other than those mentioned above: the expression is evaluated once before the processing of the 0801 /// sample even starts, so column values are not accessible. 0802 // clang-format on 0803 RInterface<Proxied, DS_t> DefinePerSample(std::string_view name, std::string_view expression) 0804 { 0805 RDFInternal::CheckValidCppVarName(name, "DefinePerSample"); 0806 // these checks must be done before jitting lest we throw exceptions in jitted code 0807 RDFInternal::CheckForRedefinition("DefinePerSample", name, fColRegister, fLoopManager->GetBranchNames(), 0808 GetDataSource() ? GetDataSource()->GetColumnNames() : ColumnNames_t{}); 0809 0810 auto upcastNodeOnHeap = RDFInternal::MakeSharedOnHeap(RDFInternal::UpcastNode(fProxiedPtr)); 0811 auto jittedDefine = 0812 RDFInternal::BookDefinePerSampleJit(name, expression, *fLoopManager, fColRegister, upcastNodeOnHeap); 0813 0814 RDFInternal::RColumnRegister newCols(fColRegister); 0815 newCols.AddDefine(std::move(jittedDefine)); 0816 0817 RInterface<Proxied, DS_t> newInterface(fProxiedPtr, *fLoopManager, std::move(newCols)); 0818 0819 return newInterface; 0820 } 0821 0822 /// \brief Register systematic variations for a single existing column using custom variation tags. 0823 /// \param[in] colName name of the column for which varied values are provided. 0824 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can 0825 /// take any column values as input, similarly to what happens during Filter and Define calls. It must 0826 /// return an RVec of varied values, one for each variation tag, in the same order as the tags. 0827 /// \param[in] inputColumns the names of the columns to be passed to the callable. 0828 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`. 0829 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`. 0830 /// 0831 /// Vary provides a natural and flexible syntax to define systematic variations that automatically propagate to 0832 /// Filters, Defines and results. RDataFrame usage of columns with attached variations does not change, but for 0833 /// results that depend on any varied quantity, a map/dictionary of varied results can be produced with 0834 /// ROOT::RDF::Experimental::VariationsFor (see the example below). 0835 /// 0836 /// The dictionary will contain a "nominal" value (accessed with the "nominal" key) for the unchanged result, and 0837 /// values for each of the systematic variations that affected the result (via upstream Filters or via direct or 0838 /// indirect dependencies of the column values on some registered variations). The keys will be a composition of 0839 /// variation names and tags, e.g. "pt:up" and "pt:down" for the example below. 0840 /// 0841 /// In the following example we add up/down variations of pt and fill a histogram with a quantity that depends on pt. 0842 /// We automatically obtain three histograms in output ("nominal", "pt:up" and "pt:down"): 0843 /// ~~~{.cpp} 0844 /// auto nominal_hx = 0845 /// df.Vary("pt", [] (double pt) { return RVecD{pt*0.9, pt*1.1}; }, {"down", "up"}) 0846 /// .Filter("pt > k") 0847 /// .Define("x", someFunc, {"pt"}) 0848 /// .Histo1D("x"); 0849 /// 0850 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx); 0851 /// hx["nominal"].Draw(); 0852 /// hx["pt:down"].Draw("SAME"); 0853 /// hx["pt:up"].Draw("SAME"); 0854 /// ~~~ 0855 /// RDataFrame computes all variations as part of a single loop over the data. 0856 /// In particular, this means that I/O and computation of values shared 0857 /// among variations only happen once for all variations. Thus, the event loop 0858 /// run-time typically scales much better than linearly with the number of 0859 /// variations. 0860 /// 0861 /// RDataFrame lazily computes the varied values required to produce the 0862 /// outputs of \ref ROOT::RDF::Experimental::VariationsFor "VariationsFor()". If \ref 0863 /// ROOT::RDF::Experimental::VariationsFor "VariationsFor()" was not called for a result, the computations are only 0864 /// run for the nominal case. 0865 /// 0866 /// See other overloads for examples when variations are added for multiple existing columns, 0867 /// or when the tags are auto-generated instead of being directly defined. 0868 template <typename F> 0869 RInterface<Proxied, DS_t> Vary(std::string_view colName, F &&expression, const ColumnNames_t &inputColumns, 0870 const std::vector<std::string> &variationTags, std::string_view variationName = "") 0871 { 0872 std::vector<std::string> colNames{{std::string(colName)}}; 0873 const std::string theVariationName{variationName.empty() ? colName : variationName}; 0874 0875 return VaryImpl<true>(std::move(colNames), std::forward<F>(expression), inputColumns, variationTags, 0876 theVariationName); 0877 } 0878 0879 /// \brief Register systematic variations for a single existing column using auto-generated variation tags. 0880 /// \param[in] colName name of the column for which varied values are provided. 0881 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can 0882 /// take any column values as input, similarly to what happens during Filter and Define calls. It must 0883 /// return an RVec of varied values, one for each variation tag, in the same order as the tags. 0884 /// \param[in] inputColumns the names of the columns to be passed to the callable. 0885 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`, 0886 /// `"1"`, etc. 0887 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`. 0888 /// colName is used if none is provided. 0889 /// 0890 /// This overload of Vary takes an nVariations parameter instead of a list of tag names. 0891 /// The varied results will be accessible via the keys of the dictionary with the form `variationName:N` where `N` 0892 /// is the corresponding sequential tag starting at 0 and going up to `nVariations - 1`. 0893 /// 0894 /// Example usage: 0895 /// ~~~{.cpp} 0896 /// auto nominal_hx = 0897 /// df.Vary("pt", [] (double pt) { return RVecD{pt*0.9, pt*1.1}; }, 2) 0898 /// .Histo1D("x"); 0899 /// 0900 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx); 0901 /// hx["nominal"].Draw(); 0902 /// hx["x:0"].Draw("SAME"); 0903 /// hx["x:1"].Draw("SAME"); 0904 /// ~~~ 0905 /// 0906 /// \note See also This Vary() overload for more information. 0907 template <typename F> 0908 RInterface<Proxied, DS_t> Vary(std::string_view colName, F &&expression, const ColumnNames_t &inputColumns, 0909 std::size_t nVariations, std::string_view variationName = "") 0910 { 0911 R__ASSERT(nVariations > 0 && "Must have at least one variation."); 0912 0913 std::vector<std::string> variationTags; 0914 variationTags.reserve(nVariations); 0915 for (std::size_t i = 0u; i < nVariations; ++i) 0916 variationTags.emplace_back(std::to_string(i)); 0917 0918 const std::string theVariationName{variationName.empty() ? colName : variationName}; 0919 0920 return Vary(colName, std::forward<F>(expression), inputColumns, std::move(variationTags), theVariationName); 0921 } 0922 0923 /// \brief Register systematic variations for multiple existing columns using custom variation tags. 0924 /// \param[in] colNames set of names of the columns for which varied values are provided. 0925 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can 0926 /// take any column values as input, similarly to what happens during Filter and Define calls. It must 0927 /// return an RVec of varied values, one for each variation tag, in the same order as the tags. 0928 /// \param[in] inputColumns the names of the columns to be passed to the callable. 0929 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`. 0930 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"` 0931 /// 0932 /// This overload of Vary takes a list of column names as first argument and 0933 /// requires that the expression returns an RVec of RVecs of values: one inner RVec for the variations of each 0934 /// affected column. The `variationTags` are defined as `{"down", "up"}`. 0935 /// 0936 /// Example usage: 0937 /// ~~~{.cpp} 0938 /// // produce variations "ptAndEta:down" and "ptAndEta:up" 0939 /// auto nominal_hx = 0940 /// df.Vary({"pt", "eta"}, // the columns that will vary simultaneously 0941 /// [](double pt, double eta) { return RVec<RVecF>{{pt*0.9, pt*1.1}, {eta*0.9, eta*1.1}}; }, 0942 /// {"pt", "eta"}, // inputs to the Vary expression, independent of what columns are varied 0943 /// {"down", "up"}, // variation tags 0944 /// "ptAndEta") // variation name 0945 /// .Histo1D("pt", "eta"); 0946 /// 0947 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx); 0948 /// hx["nominal"].Draw(); 0949 /// hx["ptAndEta:down"].Draw("SAME"); 0950 /// hx["ptAndEta:up"].Draw("SAME"); 0951 /// ~~~ 0952 /// 0953 /// \note See also This Vary() overload for more information. 0954 0955 template <typename F> 0956 RInterface<Proxied, DS_t> 0957 Vary(const std::vector<std::string> &colNames, F &&expression, const ColumnNames_t &inputColumns, 0958 const std::vector<std::string> &variationTags, std::string_view variationName) 0959 { 0960 return VaryImpl<false>(colNames, std::forward<F>(expression), inputColumns, variationTags, variationName); 0961 } 0962 0963 /// \brief Register systematic variations for multiple existing columns using custom variation tags. 0964 /// \param[in] colNames set of names of the columns for which varied values are provided. 0965 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can 0966 /// take any column values as input, similarly to what happens during Filter and Define calls. It must 0967 /// return an RVec of varied values, one for each variation tag, in the same order as the tags. 0968 /// \param[in] inputColumns the names of the columns to be passed to the callable. 0969 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`. 0970 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`. 0971 /// colName is used if none is provided. 0972 /// 0973 /// \note This overload ensures that the ambiguity between C++20 string, vector<string> construction from init list 0974 /// is avoided. 0975 /// 0976 /// \note See also This Vary() overload for more information. 0977 template <typename F> 0978 RInterface<Proxied, DS_t> 0979 Vary(std::initializer_list<std::string> colNames, F &&expression, const ColumnNames_t &inputColumns, 0980 const std::vector<std::string> &variationTags, std::string_view variationName) 0981 { 0982 return Vary(std::vector<std::string>(colNames), std::forward<F>(expression), inputColumns, variationTags, variationName); 0983 } 0984 0985 /// \brief Register systematic variations for multiple existing columns using auto-generated tags. 0986 /// \param[in] colNames set of names of the columns for which varied values are provided. 0987 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can 0988 /// take any column values as input, similarly to what happens during Filter and Define calls. It must 0989 /// return an RVec of varied values, one for each variation tag, in the same order as the tags. 0990 /// \param[in] inputColumns the names of the columns to be passed to the callable. 0991 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`, 0992 /// `"1"`, etc. 0993 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`. 0994 /// colName is used if none is provided. 0995 /// 0996 /// This overload of Vary takes a list of column names as first argument. 0997 /// It takes an `nVariations` parameter instead of a list of tag names (`variationTags`). Tag names 0998 /// will be auto-generated as the sequence 0...``nVariations-1``. 0999 /// 1000 /// Example usage: 1001 /// ~~~{.cpp} 1002 /// auto nominal_hx = 1003 /// df.Vary({"pt", "eta"}, // the columns that will vary simultaneously 1004 /// [](double pt, double eta) { return RVec<RVecF>{{pt*0.9, pt*1.1}, {eta*0.9, eta*1.1}}; }, 1005 /// {"pt", "eta"}, // inputs to the Vary expression, independent of what columns are varied 1006 /// 2, // auto-generated variation tags 1007 /// "ptAndEta") // variation name 1008 /// .Histo1D("pt", "eta"); 1009 /// 1010 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx); 1011 /// hx["nominal"].Draw(); 1012 /// hx["ptAndEta:0"].Draw("SAME"); 1013 /// hx["ptAndEta:1"].Draw("SAME"); 1014 /// ~~~ 1015 /// 1016 /// \note See also This Vary() overload for more information. 1017 template <typename F> 1018 RInterface<Proxied, DS_t> 1019 Vary(const std::vector<std::string> &colNames, F &&expression, const ColumnNames_t &inputColumns, 1020 std::size_t nVariations, std::string_view variationName) 1021 { 1022 R__ASSERT(nVariations > 0 && "Must have at least one variation."); 1023 1024 std::vector<std::string> variationTags; 1025 variationTags.reserve(nVariations); 1026 for (std::size_t i = 0u; i < nVariations; ++i) 1027 variationTags.emplace_back(std::to_string(i)); 1028 1029 return Vary(colNames, std::forward<F>(expression), inputColumns, std::move(variationTags), variationName); 1030 } 1031 1032 /// \brief Register systematic variations for for multiple existing columns using custom variation tags. 1033 /// \param[in] colNames set of names of the columns for which varied values are provided. 1034 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can 1035 /// take any column values as input, similarly to what happens during Filter and Define calls. It must 1036 /// return an RVec of varied values, one for each variation tag, in the same order as the tags. 1037 /// \param[in] inputColumns the names of the columns to be passed to the callable. 1038 /// \param[in] inputColumns the names of the columns to be passed to the callable. 1039 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`, 1040 /// `"1"`, etc. 1041 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`. 1042 /// colName is used if none is provided. 1043 /// 1044 /// \note This overload ensures that the ambiguity between C++20 string, vector<string> construction from init list 1045 /// is avoided. 1046 /// 1047 /// \note See also This Vary() overload for more information. 1048 template <typename F> 1049 RInterface<Proxied, DS_t> 1050 Vary(std::initializer_list<std::string> colNames, F &&expression, const ColumnNames_t &inputColumns, 1051 std::size_t nVariations, std::string_view variationName) 1052 { 1053 return Vary(std::vector<std::string>(colNames), std::forward<F>(expression), inputColumns, nVariations, variationName); 1054 } 1055 1056 /// \brief Register systematic variations for a single existing column using custom variation tags. 1057 /// \param[in] colName name of the column for which varied values are provided. 1058 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec containing the varied 1059 /// values for the specified column. 1060 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`. 1061 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`. 1062 /// colName is used if none is provided. 1063 /// 1064 /// This overload adds the possibility for the expression used to evaluate the varied values to be just-in-time 1065 /// compiled. The example below shows how Vary() is used while dealing with a single column. The variation tags are 1066 /// defined as `{"down", "up"}`. 1067 /// ~~~{.cpp} 1068 /// auto nominal_hx = 1069 /// df.Vary("pt", "ROOT::RVecD{pt*0.9, pt*1.1}", {"down", "up"}) 1070 /// .Filter("pt > k") 1071 /// .Define("x", someFunc, {"pt"}) 1072 /// .Histo1D("x"); 1073 /// 1074 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx); 1075 /// hx["nominal"].Draw(); 1076 /// hx["pt:down"].Draw("SAME"); 1077 /// hx["pt:up"].Draw("SAME"); 1078 /// ~~~ 1079 /// 1080 /// \note See also This Vary() overload for more information. 1081 RInterface<Proxied, DS_t> Vary(std::string_view colName, std::string_view expression, 1082 const std::vector<std::string> &variationTags, std::string_view variationName = "") 1083 { 1084 std::vector<std::string> colNames{{std::string(colName)}}; 1085 const std::string theVariationName{variationName.empty() ? colName : variationName}; 1086 1087 return JittedVaryImpl(colNames, expression, variationTags, theVariationName, /*isSingleColumn=*/true); 1088 } 1089 1090 /// \brief Register systematic variations for a single existing column using auto-generated variation tags. 1091 /// \param[in] colName name of the column for which varied values are provided. 1092 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec containing the varied 1093 /// values for the specified column. 1094 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`, 1095 /// `"1"`, etc. 1096 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`. 1097 /// colName is used if none is provided. 1098 /// 1099 /// This overload adds the possibility for the expression used to evaluate the varied values to be a just-in-time 1100 /// compiled. The example below shows how Vary() is used while dealing with a single column. The variation tags are 1101 /// auto-generated. 1102 /// ~~~{.cpp} 1103 /// auto nominal_hx = 1104 /// df.Vary("pt", "ROOT::RVecD{pt*0.9, pt*1.1}", 2) 1105 /// .Histo1D("pt"); 1106 /// 1107 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx); 1108 /// hx["nominal"].Draw(); 1109 /// hx["pt:0"].Draw("SAME"); 1110 /// hx["pt:1"].Draw("SAME"); 1111 /// ~~~ 1112 /// 1113 /// \note See also This Vary() overload for more information. 1114 RInterface<Proxied, DS_t> Vary(std::string_view colName, std::string_view expression, std::size_t nVariations, 1115 std::string_view variationName = "") 1116 { 1117 std::vector<std::string> variationTags; 1118 variationTags.reserve(nVariations); 1119 for (std::size_t i = 0u; i < nVariations; ++i) 1120 variationTags.emplace_back(std::to_string(i)); 1121 1122 return Vary(colName, expression, std::move(variationTags), variationName); 1123 } 1124 1125 /// \brief Register systematic variations for multiple existing columns using auto-generated variation tags. 1126 /// \param[in] colNames set of names of the columns for which varied values are provided. 1127 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec or RVecs containing the varied 1128 /// values for the specified columns. 1129 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`, 1130 /// `"1"`, etc. 1131 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`. 1132 /// 1133 /// This overload adds the possibility for the expression used to evaluate the varied values to be just-in-time 1134 /// compiled. It takes an nVariations parameter instead of a list of tag names. 1135 /// The varied results will be accessible via the keys of the dictionary with the form `variationName:N` where `N` 1136 /// is the corresponding sequential tag starting at 0 and going up to `nVariations - 1`. 1137 /// The example below shows how Vary() is used while dealing with multiple columns. 1138 /// 1139 /// ~~~{.cpp} 1140 /// auto nominal_hx = 1141 /// df.Vary({"x", "y"}, "ROOT::RVec<ROOT::RVecD>{{x*0.9, x*1.1}, {y*0.9, y*1.1}}", 2, "xy") 1142 /// .Histo1D("x", "y"); 1143 /// 1144 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx); 1145 /// hx["nominal"].Draw(); 1146 /// hx["xy:0"].Draw("SAME"); 1147 /// hx["xy:1"].Draw("SAME"); 1148 /// ~~~ 1149 /// 1150 /// \note See also This Vary() overload for more information. 1151 RInterface<Proxied, DS_t> Vary(const std::vector<std::string> &colNames, std::string_view expression, 1152 std::size_t nVariations, std::string_view variationName) 1153 { 1154 std::vector<std::string> variationTags; 1155 variationTags.reserve(nVariations); 1156 for (std::size_t i = 0u; i < nVariations; ++i) 1157 variationTags.emplace_back(std::to_string(i)); 1158 1159 return Vary(colNames, expression, std::move(variationTags), variationName); 1160 } 1161 1162 /// \brief Register systematic variations for multiple existing columns using auto-generated variation tags. 1163 /// \param[in] colNames set of names of the columns for which varied values are provided. 1164 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec containing the varied 1165 /// values for the specified column. 1166 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`, 1167 /// `"1"`, etc. 1168 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`. 1169 /// colName is used if none is provided. 1170 /// 1171 /// \note This overload ensures that the ambiguity between C++20 string, vector<string> construction from init list 1172 /// is avoided. 1173 /// 1174 /// \note See also This Vary() overload for more information. 1175 RInterface<Proxied, DS_t> Vary(std::initializer_list<std::string> colNames, std::string_view expression, 1176 std::size_t nVariations, std::string_view variationName) 1177 { 1178 return Vary(std::vector<std::string>(colNames), expression, nVariations, variationName); 1179 } 1180 1181 /// \brief Register systematic variations for multiple existing columns using custom variation tags. 1182 /// \param[in] colNames set of names of the columns for which varied values are provided. 1183 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec or RVecs containing the varied 1184 /// values for the specified columns. 1185 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`. 1186 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`. 1187 /// 1188 /// This overload adds the possibility for the expression used to evaluate the varied values to be just-in-time 1189 /// compiled. The example below shows how Vary() is used while dealing with multiple columns. The tags are defined as 1190 /// `{"down", "up"}`. 1191 /// ~~~{.cpp} 1192 /// auto nominal_hx = 1193 /// df.Vary({"x", "y"}, "ROOT::RVec<ROOT::RVecD>{{x*0.9, x*1.1}, {y*0.9, y*1.1}}", {"down", "up"}, "xy") 1194 /// .Histo1D("x", "y"); 1195 /// 1196 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx); 1197 /// hx["nominal"].Draw(); 1198 /// hx["xy:down"].Draw("SAME"); 1199 /// hx["xy:up"].Draw("SAME"); 1200 /// ~~~ 1201 /// 1202 /// \note See also This Vary() overload for more information. 1203 RInterface<Proxied, DS_t> Vary(const std::vector<std::string> &colNames, std::string_view expression, 1204 const std::vector<std::string> &variationTags, std::string_view variationName) 1205 { 1206 return JittedVaryImpl(colNames, expression, variationTags, variationName, /*isSingleColumn=*/false); 1207 } 1208 1209 //////////////////////////////////////////////////////////////////////////// 1210 /// \brief Allow to refer to a column with a different name. 1211 /// \param[in] alias name of the column alias 1212 /// \param[in] columnName of the column to be aliased 1213 /// \return the first node of the computation graph for which the alias is available. 1214 /// 1215 /// Aliasing an alias is supported. 1216 /// 1217 /// ### Example usage: 1218 /// ~~~{.cpp} 1219 /// auto df_with_alias = df.Alias("simple_name", "very_long&complex_name!!!"); 1220 /// ~~~ 1221 RInterface<Proxied, DS_t> Alias(std::string_view alias, std::string_view columnName) 1222 { 1223 // The symmetry with Define is clear. We want to: 1224 // - Create globally the alias and return this very node, unchanged 1225 // - Make aliases accessible based on chains and not globally 1226 1227 // Helper to find out if a name is a column 1228 auto &dsColumnNames = GetDataSource() ? GetDataSource()->GetColumnNames() : ColumnNames_t{}; 1229 1230 constexpr auto where = "Alias"; 1231 RDFInternal::CheckValidCppVarName(alias, where); 1232 // If the alias name is a column name, there is a problem 1233 RDFInternal::CheckForRedefinition(where, alias, fColRegister, fLoopManager->GetBranchNames(), dsColumnNames); 1234 1235 const auto validColumnName = GetValidatedColumnNames(1, {std::string(columnName)})[0]; 1236 1237 RDFInternal::RColumnRegister newCols(fColRegister); 1238 newCols.AddAlias(alias, validColumnName); 1239 1240 RInterface<Proxied, DS_t> newInterface(fProxiedPtr, *fLoopManager, std::move(newCols)); 1241 1242 return newInterface; 1243 } 1244 1245 //////////////////////////////////////////////////////////////////////////// 1246 /// \brief Save selected columns to disk, in a new TTree `treename` in file `filename`. 1247 /// \tparam ColumnTypes variadic list of branch/column types. 1248 /// \param[in] treename The name of the output TTree. 1249 /// \param[in] filename The name of the output TFile. 1250 /// \param[in] columnList The list of names of the columns/branches to be written. 1251 /// \param[in] options RSnapshotOptions struct with extra options to pass to TFile and TTree. 1252 /// \return a `RDataFrame` that wraps the snapshotted dataset. 1253 /// 1254 /// Support for writing of nested branches is limited (although RDataFrame is able to read them) and dot ('.') 1255 /// characters in input column names will be replaced by underscores ('_') in the branches produced by Snapshot. 1256 /// When writing a variable size array through Snapshot, it is required that the column indicating its size is also 1257 /// written out and it appears before the array in the columnList. 1258 /// 1259 /// By default, in case of TTree or TChain inputs, Snapshot will try to write out all top-level branches. For other 1260 /// types of inputs, all columns returned by GetColumnNames() will be written out. If friend trees or chains are 1261 /// present, by default all friend top-level branches that have names that do not collide with 1262 /// names of branches in the main TTree/TChain will be written out. Since v6.24, Snapshot will also write out 1263 /// friend branches with the same names of branches in the main TTree/TChain with names of the form 1264 /// `<friendname>_<branchname>` in order to differentiate them from the branches in the main tree/chain. 1265 /// 1266 /// ### Writing to a sub-directory 1267 /// 1268 /// Snapshot supports writing the TTree in a sub-directory inside the TFile. It is sufficient to specify the path to 1269 /// the TTree as part of the TTree name, e.g. `df.Snapshot("subdir/t", "f.root")` write TTree `t` in the 1270 /// sub-directory `subdir` of file `f.root` (creating file and sub-directory as needed). 1271 /// 1272 /// \attention In multi-thread runs (i.e. when EnableImplicitMT() has been called) threads will loop over clusters of 1273 /// entries in an undefined order, so Snapshot will produce outputs in which (clusters of) entries will be shuffled 1274 /// with respect to the input TTree. Using such "shuffled" TTrees as friends of the original trees would result in 1275 /// wrong associations between entries in the main TTree and entries in the "shuffled" friend. Since v6.22, ROOT will 1276 /// error out if such a "shuffled" TTree is used in a friendship. 1277 /// 1278 /// \note In case no events are written out (e.g. because no event passes all filters), Snapshot will still write the 1279 /// requested output TTree to the file, with all the branches requested to preserve the dataset schema. 1280 /// 1281 /// \note Snapshot will refuse to process columns with names of the form `#columnname`. These are special columns 1282 /// made available by some data sources (e.g. RNTupleDS) that represent the size of column `columnname`, and are 1283 /// not meant to be written out with that name (which is not a valid C++ variable name). Instead, go through an 1284 /// Alias(): `df.Alias("nbar", "#bar").Snapshot(..., {"nbar"})`. 1285 /// 1286 /// ### Example invocations: 1287 /// 1288 /// ~~~{.cpp} 1289 /// // without specifying template parameters (column types automatically deduced) 1290 /// df.Snapshot("outputTree", "outputFile.root", {"x", "y"}); 1291 /// 1292 /// // specifying template parameters ("x" is `int`, "y" is `float`) 1293 /// df.Snapshot<int, float>("outputTree", "outputFile.root", {"x", "y"}); 1294 /// ~~~ 1295 /// 1296 /// To book a Snapshot without triggering the event loop, one needs to set the appropriate flag in 1297 /// `RSnapshotOptions`: 1298 /// ~~~{.cpp} 1299 /// RSnapshotOptions opts; 1300 /// opts.fLazy = true; 1301 /// df.Snapshot("outputTree", "outputFile.root", {"x"}, opts); 1302 /// ~~~ 1303 template <typename... ColumnTypes> 1304 RResultPtr<RInterface<RLoopManager>> 1305 Snapshot(std::string_view treename, std::string_view filename, const ColumnNames_t &columnList, 1306 const RSnapshotOptions &options = RSnapshotOptions()) 1307 { 1308 return SnapshotImpl<ColumnTypes...>(treename, filename, columnList, options); 1309 } 1310 1311 //////////////////////////////////////////////////////////////////////////// 1312 /// \brief Save selected columns to disk, in a new TTree `treename` in file `filename`. 1313 /// \param[in] treename The name of the output TTree. 1314 /// \param[in] filename The name of the output TFile. 1315 /// \param[in] columnList The list of names of the columns/branches to be written. 1316 /// \param[in] options RSnapshotOptions struct with extra options to pass to TFile and TTree. 1317 /// \return a `RDataFrame` that wraps the snapshotted dataset. 1318 /// 1319 /// This function returns a `RDataFrame` built with the output tree as a source. 1320 /// The types of the columns are automatically inferred and do not need to be specified. 1321 /// 1322 /// See above for a more complete description and example usages. 1323 RResultPtr<RInterface<RLoopManager>> Snapshot(std::string_view treename, std::string_view filename, 1324 const ColumnNames_t &columnList, 1325 const RSnapshotOptions &options = RSnapshotOptions()) 1326 { 1327 // like columnList but with `#var` columns removed 1328 auto colListNoPoundSizes = RDFInternal::FilterArraySizeColNames(columnList, "Snapshot"); 1329 // like columnListWithoutSizeColumns but with aliases resolved 1330 auto colListNoAliases = GetValidatedColumnNames(colListNoPoundSizes.size(), colListNoPoundSizes); 1331 RDFInternal::CheckForDuplicateSnapshotColumns(colListNoAliases); 1332 // like validCols but with missing size branches required by array branches added in the right positions 1333 const auto pairOfColumnLists = RDFInternal::AddSizeBranches( 1334 fLoopManager->GetBranchNames(), GetDataSource(), std::move(colListNoAliases), std::move(colListNoPoundSizes)); 1335 const auto &colListNoAliasesWithSizeBranches = pairOfColumnLists.first; 1336 const auto &colListWithAliasesAndSizeBranches = pairOfColumnLists.second; 1337 1338 const auto fullTreeName = treename; 1339 const auto parsedTreePath = RDFInternal::ParseTreePath(fullTreeName); 1340 treename = parsedTreePath.fTreeName; 1341 const auto &dirname = parsedTreePath.fDirName; 1342 1343 ::TDirectory::TContext ctxt; 1344 1345 RResultPtr<RInterface<RLoopManager>> resPtr; 1346 1347 if (options.fOutputFormat == ESnapshotOutputFormat::kRNTuple) { 1348 if (RDFInternal::GetDataSourceLabel(*this) == "TTreeDS") { 1349 throw std::runtime_error("Snapshotting from TTree to RNTuple is not yet supported. The current recommended " 1350 "way to convert TTrees to RNTuple is through the RNTupleImporter."); 1351 } 1352 1353 // The data source of the RNTuple resulting from the Snapshot action does not exist yet here, so we create one 1354 // without a data source for now, and set it once the actual data source can be created (i.e., after 1355 // writing the RNTuple). 1356 auto newRDF = std::make_shared<RInterface<RLoopManager>>(std::make_shared<RLoopManager>(colListNoPoundSizes)); 1357 1358 auto snapHelperArgs = std::make_shared<RDFInternal::SnapshotHelperArgs>(RDFInternal::SnapshotHelperArgs{ 1359 std::string(filename), std::string(dirname), std::string(treename), colListWithAliasesAndSizeBranches, 1360 options, newRDF->GetLoopManager(), GetLoopManager(), true /* fToNTuple */}); 1361 1362 // The Snapshot helper will use colListNoAliasesWithSizeBranches (with aliases resolved) as input columns, and 1363 // colListWithAliasesAndSizeBranches (still with aliases in it, passed through snapHelperArgs) as output column 1364 // names. 1365 resPtr = CreateAction<RDFInternal::ActionTags::Snapshot, RDFDetail::RInferredType>( 1366 colListNoAliasesWithSizeBranches, newRDF, snapHelperArgs, fProxiedPtr, 1367 colListNoAliasesWithSizeBranches.size()); 1368 } else { 1369 if (RDFInternal::GetDataSourceLabel(*this) == "RNTupleDS" && 1370 options.fOutputFormat == ESnapshotOutputFormat::kDefault) { 1371 Warning("Snapshot", 1372 "The default Snapshot output data format is TTree, but the input data format is RNTuple. If you " 1373 "want to Snapshot to RNTuple or suppress this warning, set the appropriate fOutputFormat option in " 1374 "RSnapshotOptions. Note that this current default behaviour might change in the future."); 1375 } 1376 1377 // We create an RLoopManager without a data source. This needs to be initialised when the output TTree dataset 1378 // has actually been created and written to TFile, i.e. at the end of the Snapshot execution. 1379 auto newRDF = std::make_shared<RInterface<RLoopManager>>( 1380 std::make_shared<RLoopManager>(colListNoAliasesWithSizeBranches)); 1381 1382 auto snapHelperArgs = std::make_shared<RDFInternal::SnapshotHelperArgs>(RDFInternal::SnapshotHelperArgs{ 1383 std::string(filename), std::string(dirname), std::string(treename), colListWithAliasesAndSizeBranches, 1384 options, newRDF->GetLoopManager(), GetLoopManager(), false /* fToRNTuple */}); 1385 1386 resPtr = CreateAction<RDFInternal::ActionTags::Snapshot, RDFDetail::RInferredType>( 1387 colListNoAliasesWithSizeBranches, newRDF, snapHelperArgs, fProxiedPtr, 1388 colListNoAliasesWithSizeBranches.size(), options.fVector2RVec); 1389 } 1390 1391 if (!options.fLazy) 1392 *resPtr; 1393 return resPtr; 1394 } 1395 1396 // clang-format off 1397 //////////////////////////////////////////////////////////////////////////// 1398 /// \brief Save selected columns to disk, in a new TTree `treename` in file `filename`. 1399 /// \param[in] treename The name of the output TTree. 1400 /// \param[in] filename The name of the output TFile. 1401 /// \param[in] columnNameRegexp The regular expression to match the column names to be selected. The presence of a '^' and a '$' at the end of the string is implicitly assumed if they are not specified. The dialect supported is PCRE via the TPRegexp class. An empty string signals the selection of all columns. 1402 /// \param[in] options RSnapshotOptions struct with extra options to pass to TFile and TTree 1403 /// \return a `RDataFrame` that wraps the snapshotted dataset. 1404 /// 1405 /// This function returns a `RDataFrame` built with the output tree as a source. 1406 /// The types of the columns are automatically inferred and do not need to be specified. 1407 /// 1408 /// See above for a more complete description and example usages. 1409 RResultPtr<RInterface<RLoopManager>> Snapshot(std::string_view treename, std::string_view filename, 1410 std::string_view columnNameRegexp = "", 1411 const RSnapshotOptions &options = RSnapshotOptions()) 1412 { 1413 const auto definedColumns = fColRegister.GenerateColumnNames(); 1414 auto *tree = fLoopManager->GetTree(); 1415 1416 const auto treeBranchNames = tree != nullptr ? ROOT::Internal::TreeUtils::GetTopLevelBranchNames(*tree) : ColumnNames_t{}; 1417 const auto dsColumns = GetDataSource() ? ROOT::Internal::RDF::GetTopLevelFieldNames(*GetDataSource()) : ColumnNames_t{}; 1418 // Ignore R_rdf_sizeof_* columns coming from datasources: we don't want to Snapshot those 1419 ColumnNames_t dsColumnsWithoutSizeColumns; 1420 std::copy_if(dsColumns.begin(), dsColumns.end(), std::back_inserter(dsColumnsWithoutSizeColumns), 1421 [](const std::string &name) { return name.size() < 13 || name.substr(0, 13) != "R_rdf_sizeof_"; }); 1422 ColumnNames_t columnNames; 1423 columnNames.reserve(definedColumns.size() + treeBranchNames.size() + dsColumnsWithoutSizeColumns.size()); 1424 columnNames.insert(columnNames.end(), definedColumns.begin(), definedColumns.end()); 1425 columnNames.insert(columnNames.end(), treeBranchNames.begin(), treeBranchNames.end()); 1426 columnNames.insert(columnNames.end(), dsColumnsWithoutSizeColumns.begin(), dsColumnsWithoutSizeColumns.end()); 1427 1428 // The only way we can get duplicate entries is if a column coming from a tree or data-source is Redefine'd. 1429 // RemoveDuplicates should preserve ordering of the columns: it might be meaningful. 1430 RDFInternal::RemoveDuplicates(columnNames); 1431 1432 auto selectedColumns = RDFInternal::ConvertRegexToColumns(columnNames, columnNameRegexp, "Snapshot"); 1433 1434 if (RDFInternal::GetDataSourceLabel(*this) == "RNTupleDS") { 1435 RDFInternal::RemoveRNTupleSubFields(selectedColumns); 1436 } 1437 1438 return Snapshot(treename, filename, selectedColumns, options); 1439 } 1440 // clang-format on 1441 1442 // clang-format off 1443 //////////////////////////////////////////////////////////////////////////// 1444 /// \brief Save selected columns to disk, in a new TTree `treename` in file `filename`. 1445 /// \param[in] treename The name of the output TTree. 1446 /// \param[in] filename The name of the output TFile. 1447 /// \param[in] columnList The list of names of the columns/branches to be written. 1448 /// \param[in] options RSnapshotOptions struct with extra options to pass to TFile and TTree. 1449 /// \return a `RDataFrame` that wraps the snapshotted dataset. 1450 /// 1451 /// This function returns a `RDataFrame` built with the output tree as a source. 1452 /// The types of the columns are automatically inferred and do not need to be specified. 1453 /// 1454 /// See above for a more complete description and example usages. 1455 RResultPtr<RInterface<RLoopManager>> Snapshot(std::string_view treename, std::string_view filename, 1456 std::initializer_list<std::string> columnList, 1457 const RSnapshotOptions &options = RSnapshotOptions()) 1458 { 1459 ColumnNames_t selectedColumns(columnList); 1460 return Snapshot(treename, filename, selectedColumns, options); 1461 } 1462 // clang-format on 1463 1464 //////////////////////////////////////////////////////////////////////////// 1465 /// \brief Save selected columns in memory. 1466 /// \tparam ColumnTypes variadic list of branch/column types. 1467 /// \param[in] columnList columns to be cached in memory. 1468 /// \return a `RDataFrame` that wraps the cached dataset. 1469 /// 1470 /// This action returns a new `RDataFrame` object, completely detached from 1471 /// the originating `RDataFrame`. The new dataframe only contains the cached 1472 /// columns and stores their content in memory for fast, zero-copy subsequent access. 1473 /// 1474 /// Use `Cache` if you know you will only need a subset of the (`Filter`ed) data that 1475 /// fits in memory and that will be accessed many times. 1476 /// 1477 /// \note Cache will refuse to process columns with names of the form `#columnname`. These are special columns 1478 /// made available by some data sources (e.g. RNTupleDS) that represent the size of column `columnname`, and are 1479 /// not meant to be written out with that name (which is not a valid C++ variable name). Instead, go through an 1480 /// Alias(): `df.Alias("nbar", "#bar").Cache<std::size_t>(..., {"nbar"})`. 1481 /// 1482 /// ### Example usage: 1483 /// 1484 /// **Types and columns specified:** 1485 /// ~~~{.cpp} 1486 /// auto cache_some_cols_df = df.Cache<double, MyClass, int>({"col0", "col1", "col2"}); 1487 /// ~~~ 1488 /// 1489 /// **Types inferred and columns specified (this invocation relies on jitting):** 1490 /// ~~~{.cpp} 1491 /// auto cache_some_cols_df = df.Cache({"col0", "col1", "col2"}); 1492 /// ~~~ 1493 /// 1494 /// **Types inferred and columns selected with a regexp (this invocation relies on jitting):** 1495 /// ~~~{.cpp} 1496 /// auto cache_all_cols_df = df.Cache(myRegexp); 1497 /// ~~~ 1498 template <typename... ColumnTypes> 1499 RInterface<RLoopManager> Cache(const ColumnNames_t &columnList) 1500 { 1501 auto staticSeq = std::make_index_sequence<sizeof...(ColumnTypes)>(); 1502 return CacheImpl<ColumnTypes...>(columnList, staticSeq); 1503 } 1504 1505 //////////////////////////////////////////////////////////////////////////// 1506 /// \brief Save selected columns in memory. 1507 /// \param[in] columnList columns to be cached in memory 1508 /// \return a `RDataFrame` that wraps the cached dataset. 1509 /// 1510 /// See the previous overloads for more information. 1511 RInterface<RLoopManager> Cache(const ColumnNames_t &columnList) 1512 { 1513 // Early return: if the list of columns is empty, just return an empty RDF 1514 // If we proceed, the jitted call will not compile! 1515 if (columnList.empty()) { 1516 auto nEntries = *this->Count(); 1517 RInterface<RLoopManager> emptyRDF(std::make_shared<RLoopManager>(nEntries)); 1518 return emptyRDF; 1519 } 1520 1521 std::stringstream cacheCall; 1522 auto upcastNode = RDFInternal::UpcastNode(fProxiedPtr); 1523 RInterface<TTraits::TakeFirstParameter_t<decltype(upcastNode)>> upcastInterface(fProxiedPtr, *fLoopManager, 1524 fColRegister); 1525 // build a string equivalent to 1526 // "(RInterface<nodetype*>*)(this)->Cache<Ts...>(*(ColumnNames_t*)(&columnList))" 1527 RInterface<RLoopManager> resRDF(std::make_shared<ROOT::Detail::RDF::RLoopManager>(0)); 1528 cacheCall << "*reinterpret_cast<ROOT::RDF::RInterface<ROOT::Detail::RDF::RLoopManager>*>(" 1529 << RDFInternal::PrettyPrintAddr(&resRDF) 1530 << ") = reinterpret_cast<ROOT::RDF::RInterface<ROOT::Detail::RDF::RNodeBase>*>(" 1531 << RDFInternal::PrettyPrintAddr(&upcastInterface) << ")->Cache<"; 1532 1533 const auto columnListWithoutSizeColumns = RDFInternal::FilterArraySizeColNames(columnList, "Cache"); 1534 1535 const auto validColumnNames = 1536 GetValidatedColumnNames(columnListWithoutSizeColumns.size(), columnListWithoutSizeColumns); 1537 const auto colTypes = GetValidatedArgTypes(validColumnNames, fColRegister, fLoopManager->GetTree(), 1538 GetDataSource(), "Cache", /*vector2RVec=*/false); 1539 for (const auto &colType : colTypes) 1540 cacheCall << colType << ", "; 1541 if (!columnListWithoutSizeColumns.empty()) 1542 cacheCall.seekp(-2, cacheCall.cur); // remove the last ", 1543 cacheCall << ">(*reinterpret_cast<std::vector<std::string>*>(" // vector<string> should be ColumnNames_t 1544 << RDFInternal::PrettyPrintAddr(&columnListWithoutSizeColumns) << "));"; 1545 1546 // book the code to jit with the RLoopManager and trigger the event loop 1547 fLoopManager->ToJitExec(cacheCall.str()); 1548 fLoopManager->Jit(); 1549 1550 return resRDF; 1551 } 1552 1553 //////////////////////////////////////////////////////////////////////////// 1554 /// \brief Save selected columns in memory. 1555 /// \param[in] columnNameRegexp The regular expression to match the column names to be selected. The presence of a '^' and a '$' at the end of the string is implicitly assumed if they are not specified. The dialect supported is PCRE via the TPRegexp class. An empty string signals the selection of all columns. 1556 /// \return a `RDataFrame` that wraps the cached dataset. 1557 /// 1558 /// The existing columns are matched against the regular expression. If the string provided 1559 /// is empty, all columns are selected. See the previous overloads for more information. 1560 RInterface<RLoopManager> Cache(std::string_view columnNameRegexp = "") 1561 { 1562 const auto definedColumns = fColRegister.GenerateColumnNames(); 1563 auto *tree = fLoopManager->GetTree(); 1564 const auto treeBranchNames = 1565 tree != nullptr ? ROOT::Internal::TreeUtils::GetTopLevelBranchNames(*tree) : ColumnNames_t{}; 1566 const auto dsColumns = GetDataSource() ? GetDataSource()->GetColumnNames() : ColumnNames_t{}; 1567 // Ignore R_rdf_sizeof_* columns coming from datasources: we don't want to Snapshot those 1568 ColumnNames_t dsColumnsWithoutSizeColumns; 1569 std::copy_if(dsColumns.begin(), dsColumns.end(), std::back_inserter(dsColumnsWithoutSizeColumns), 1570 [](const std::string &name) { return name.size() < 13 || name.substr(0, 13) != "R_rdf_sizeof_"; }); 1571 ColumnNames_t columnNames; 1572 columnNames.reserve(definedColumns.size() + treeBranchNames.size() + dsColumns.size()); 1573 columnNames.insert(columnNames.end(), definedColumns.begin(), definedColumns.end()); 1574 columnNames.insert(columnNames.end(), treeBranchNames.begin(), treeBranchNames.end()); 1575 columnNames.insert(columnNames.end(), dsColumns.begin(), dsColumns.end()); 1576 const auto selectedColumns = RDFInternal::ConvertRegexToColumns(columnNames, columnNameRegexp, "Cache"); 1577 return Cache(selectedColumns); 1578 } 1579 1580 //////////////////////////////////////////////////////////////////////////// 1581 /// \brief Save selected columns in memory. 1582 /// \param[in] columnList columns to be cached in memory. 1583 /// \return a `RDataFrame` that wraps the cached dataset. 1584 /// 1585 /// See the previous overloads for more information. 1586 RInterface<RLoopManager> Cache(std::initializer_list<std::string> columnList) 1587 { 1588 ColumnNames_t selectedColumns(columnList); 1589 return Cache(selectedColumns); 1590 } 1591 1592 // clang-format off 1593 //////////////////////////////////////////////////////////////////////////// 1594 /// \brief Creates a node that filters entries based on range: [begin, end). 1595 /// \param[in] begin Initial entry number considered for this range. 1596 /// \param[in] end Final entry number (excluded) considered for this range. 0 means that the range goes until the end of the dataset. 1597 /// \param[in] stride Process one entry of the [begin, end) range every `stride` entries. Must be strictly greater than 0. 1598 /// \return the first node of the computation graph for which the event loop is limited to a certain range of entries. 1599 /// 1600 /// Note that in case of previous Ranges and Filters the selected range refers to the transformed dataset. 1601 /// Ranges are only available if EnableImplicitMT has _not_ been called. Multi-thread ranges are not supported. 1602 /// 1603 /// ### Example usage: 1604 /// ~~~{.cpp} 1605 /// auto d_0_30 = d.Range(0, 30); // Pick the first 30 entries 1606 /// auto d_15_end = d.Range(15, 0); // Pick all entries from 15 onwards 1607 /// auto d_15_end_3 = d.Range(15, 0, 3); // Stride: from event 15, pick an event every 3 1608 /// ~~~ 1609 // clang-format on 1610 RInterface<RDFDetail::RRange<Proxied>, DS_t> Range(unsigned int begin, unsigned int end, unsigned int stride = 1) 1611 { 1612 // check invariants 1613 if (stride == 0 || (end != 0 && end < begin)) 1614 throw std::runtime_error("Range: stride must be strictly greater than 0 and end must be greater than begin."); 1615 CheckIMTDisabled("Range"); 1616 1617 using Range_t = RDFDetail::RRange<Proxied>; 1618 auto rangePtr = std::make_shared<Range_t>(begin, end, stride, fProxiedPtr); 1619 RInterface<RDFDetail::RRange<Proxied>, DS_t> newInterface(std::move(rangePtr), *fLoopManager, fColRegister); 1620 return newInterface; 1621 } 1622 1623 // clang-format off 1624 //////////////////////////////////////////////////////////////////////////// 1625 /// \brief Creates a node that filters entries based on range. 1626 /// \param[in] end Final entry number (excluded) considered for this range. 0 means that the range goes until the end of the dataset. 1627 /// \return a node of the computation graph for which the range is defined. 1628 /// 1629 /// See the other Range overload for a detailed description. 1630 // clang-format on 1631 RInterface<RDFDetail::RRange<Proxied>, DS_t> Range(unsigned int end) { return Range(0, end, 1); } 1632 1633 // clang-format off 1634 //////////////////////////////////////////////////////////////////////////// 1635 /// \brief Execute a user-defined function on each entry (*instant action*). 1636 /// \param[in] f Function, lambda expression, functor class or any other callable object performing user defined calculations. 1637 /// \param[in] columns Names of the columns/branches in input to the user function. 1638 /// 1639 /// The callable `f` is invoked once per entry. This is an *instant action*: 1640 /// upon invocation, an event loop as well as execution of all scheduled actions 1641 /// is triggered. 1642 /// Users are responsible for the thread-safety of this callable when executing 1643 /// with implicit multi-threading enabled (i.e. ROOT::EnableImplicitMT). 1644 /// 1645 /// ### Example usage: 1646 /// ~~~{.cpp} 1647 /// myDf.Foreach([](int i){ std::cout << i << std::endl;}, {"myIntColumn"}); 1648 /// ~~~ 1649 // clang-format on 1650 template <typename F> 1651 void Foreach(F f, const ColumnNames_t &columns = {}) 1652 { 1653 using arg_types = typename TTraits::CallableTraits<decltype(f)>::arg_types_nodecay; 1654 using ret_type = typename TTraits::CallableTraits<decltype(f)>::ret_type; 1655 ForeachSlot(RDFInternal::AddSlotParameter<ret_type>(f, arg_types()), columns); 1656 } 1657 1658 // clang-format off 1659 //////////////////////////////////////////////////////////////////////////// 1660 /// \brief Execute a user-defined function requiring a processing slot index on each entry (*instant action*). 1661 /// \param[in] f Function, lambda expression, functor class or any other callable object performing user defined calculations. 1662 /// \param[in] columns Names of the columns/branches in input to the user function. 1663 /// 1664 /// Same as `Foreach`, but the user-defined function takes an extra 1665 /// `unsigned int` as its first parameter, the *processing slot index*. 1666 /// This *slot index* will be assigned a different value, `0` to `poolSize - 1`, 1667 /// for each thread of execution. 1668 /// This is meant as a helper in writing thread-safe `Foreach` 1669 /// actions when using `RDataFrame` after `ROOT::EnableImplicitMT()`. 1670 /// The user-defined processing callable is able to follow different 1671 /// *streams of processing* indexed by the first parameter. 1672 /// `ForeachSlot` works just as well with single-thread execution: in that 1673 /// case `slot` will always be `0`. 1674 /// 1675 /// ### Example usage: 1676 /// ~~~{.cpp} 1677 /// myDf.ForeachSlot([](unsigned int s, int i){ std::cout << "Slot " << s << ": "<< i << std::endl;}, {"myIntColumn"}); 1678 /// ~~~ 1679 // clang-format on 1680 template <typename F> 1681 void ForeachSlot(F f, const ColumnNames_t &columns = {}) 1682 { 1683 using ColTypes_t = TypeTraits::RemoveFirstParameter_t<typename TTraits::CallableTraits<F>::arg_types>; 1684 constexpr auto nColumns = ColTypes_t::list_size; 1685 1686 const auto validColumnNames = GetValidatedColumnNames(nColumns, columns); 1687 CheckAndFillDSColumns(validColumnNames, ColTypes_t()); 1688 1689 using Helper_t = RDFInternal::ForeachSlotHelper<F>; 1690 using Action_t = RDFInternal::RAction<Helper_t, Proxied>; 1691 1692 auto action = std::make_unique<Action_t>(Helper_t(std::move(f)), validColumnNames, fProxiedPtr, fColRegister); 1693 1694 fLoopManager->Run(); 1695 } 1696 1697 // clang-format off 1698 //////////////////////////////////////////////////////////////////////////// 1699 /// \brief Execute a user-defined reduce operation on the values of a column. 1700 /// \tparam F The type of the reduce callable. Automatically deduced. 1701 /// \tparam T The type of the column to apply the reduction to. Automatically deduced. 1702 /// \param[in] f A callable with signature `T(T,T)` 1703 /// \param[in] columnName The column to be reduced. If omitted, the first default column is used instead. 1704 /// \return the reduced quantity wrapped in a ROOT::RDF:RResultPtr. 1705 /// 1706 /// A reduction takes two values of a column and merges them into one (e.g. 1707 /// by summing them, taking the maximum, etc). This action performs the 1708 /// specified reduction operation on all processed column values, returning 1709 /// a single value of the same type. The callable f must satisfy the general 1710 /// requirements of a *processing function* besides having signature `T(T,T)` 1711 /// where `T` is the type of column columnName. 1712 /// 1713 /// The returned reduced value of each thread (e.g. the initial value of a sum) is initialized to a 1714 /// default-constructed T object. This is commonly expected to be the neutral/identity element for the specific 1715 /// reduction operation `f` (e.g. 0 for a sum, 1 for a product). If a default-constructed T does not satisfy this 1716 /// requirement, users should explicitly specify an initialization value for T by calling the appropriate `Reduce` 1717 /// overload. 1718 /// 1719 /// ### Example usage: 1720 /// ~~~{.cpp} 1721 /// auto sumOfIntCol = d.Reduce([](int x, int y) { return x + y; }, "intCol"); 1722 /// ~~~ 1723 /// 1724 /// This action is *lazy*: upon invocation of this method the calculation is 1725 /// booked but not executed. Also see RResultPtr. 1726 // clang-format on 1727 template <typename F, typename T = typename TTraits::CallableTraits<F>::ret_type> 1728 RResultPtr<T> Reduce(F f, std::string_view columnName = "") 1729 { 1730 static_assert( 1731 std::is_default_constructible<T>::value, 1732 "reduce object cannot be default-constructed. Please provide an initialisation value (redIdentity)"); 1733 return Reduce(std::move(f), columnName, T()); 1734 } 1735 1736 //////////////////////////////////////////////////////////////////////////// 1737 /// \brief Execute a user-defined reduce operation on the values of a column. 1738 /// \tparam F The type of the reduce callable. Automatically deduced. 1739 /// \tparam T The type of the column to apply the reduction to. Automatically deduced. 1740 /// \param[in] f A callable with signature `T(T,T)` 1741 /// \param[in] columnName The column to be reduced. If omitted, the first default column is used instead. 1742 /// \param[in] redIdentity The reduced object of each thread is initialized to this value. 1743 /// \return the reduced quantity wrapped in a RResultPtr. 1744 /// 1745 /// ### Example usage: 1746 /// ~~~{.cpp} 1747 /// auto sumOfIntColWithOffset = d.Reduce([](int x, int y) { return x + y; }, "intCol", 42); 1748 /// ~~~ 1749 /// See the description of the first Reduce overload for more information. 1750 template <typename F, typename T = typename TTraits::CallableTraits<F>::ret_type> 1751 RResultPtr<T> Reduce(F f, std::string_view columnName, const T &redIdentity) 1752 { 1753 return Aggregate(f, f, columnName, redIdentity); 1754 } 1755 1756 //////////////////////////////////////////////////////////////////////////// 1757 /// \brief Return the number of entries processed (*lazy action*). 1758 /// \return the number of entries wrapped in a RResultPtr. 1759 /// 1760 /// Useful e.g. for counting the number of entries passing a certain filter (see also `Report`). 1761 /// This action is *lazy*: upon invocation of this method the calculation is 1762 /// booked but not executed. Also see RResultPtr. 1763 /// 1764 /// ### Example usage: 1765 /// ~~~{.cpp} 1766 /// auto nEntriesAfterCuts = myFilteredDf.Count(); 1767 /// ~~~ 1768 /// 1769 RResultPtr<ULong64_t> Count() 1770 { 1771 const auto nSlots = fLoopManager->GetNSlots(); 1772 auto cSPtr = std::make_shared<ULong64_t>(0); 1773 using Helper_t = RDFInternal::CountHelper; 1774 using Action_t = RDFInternal::RAction<Helper_t, Proxied>; 1775 auto action = std::make_unique<Action_t>(Helper_t(cSPtr, nSlots), ColumnNames_t({}), fProxiedPtr, 1776 RDFInternal::RColumnRegister(fColRegister)); 1777 return MakeResultPtr(cSPtr, *fLoopManager, std::move(action)); 1778 } 1779 1780 //////////////////////////////////////////////////////////////////////////// 1781 /// \brief Return a collection of values of a column (*lazy action*, returns a std::vector by default). 1782 /// \tparam T The type of the column. 1783 /// \tparam COLL The type of collection used to store the values. 1784 /// \param[in] column The name of the column to collect the values of. 1785 /// \return the content of the selected column wrapped in a RResultPtr. 1786 /// 1787 /// The collection type to be specified for C-style array columns is `RVec<T>`: 1788 /// in this case the returned collection is a `std::vector<RVec<T>>`. 1789 /// ### Example usage: 1790 /// ~~~{.cpp} 1791 /// // In this case intCol is a std::vector<int> 1792 /// auto intCol = rdf.Take<int>("integerColumn"); 1793 /// // Same content as above but in this case taken as a RVec<int> 1794 /// auto intColAsRVec = rdf.Take<int, RVec<int>>("integerColumn"); 1795 /// // In this case intCol is a std::vector<RVec<int>>, a collection of collections 1796 /// auto cArrayIntCol = rdf.Take<RVec<int>>("cArrayInt"); 1797 /// ~~~ 1798 /// This action is *lazy*: upon invocation of this method the calculation is 1799 /// booked but not executed. Also see RResultPtr. 1800 template <typename T, typename COLL = std::vector<T>> 1801 RResultPtr<COLL> Take(std::string_view column = "") 1802 { 1803 const auto columns = column.empty() ? ColumnNames_t() : ColumnNames_t({std::string(column)}); 1804 1805 const auto validColumnNames = GetValidatedColumnNames(1, columns); 1806 CheckAndFillDSColumns(validColumnNames, TTraits::TypeList<T>()); 1807 1808 using Helper_t = RDFInternal::TakeHelper<T, T, COLL>; 1809 using Action_t = RDFInternal::RAction<Helper_t, Proxied>; 1810 auto valuesPtr = std::make_shared<COLL>(); 1811 const auto nSlots = fLoopManager->GetNSlots(); 1812 1813 auto action = 1814 std::make_unique<Action_t>(Helper_t(valuesPtr, nSlots), validColumnNames, fProxiedPtr, fColRegister); 1815 return MakeResultPtr(valuesPtr, *fLoopManager, std::move(action)); 1816 } 1817 1818 //////////////////////////////////////////////////////////////////////////// 1819 /// \brief Fill and return a one-dimensional histogram with the values of a column (*lazy action*). 1820 /// \tparam V The type of the column used to fill the histogram. 1821 /// \param[in] model The returned histogram will be constructed using this as a model. 1822 /// \param[in] vName The name of the column that will fill the histogram. 1823 /// \return the monodimensional histogram wrapped in a RResultPtr. 1824 /// 1825 /// Columns can be of a container type (e.g. `std::vector<double>`), in which case the histogram 1826 /// is filled with each one of the elements of the container. In case multiple columns of container type 1827 /// are provided (e.g. values and weights) they must have the same length for each one of the events (but 1828 /// possibly different lengths between events). 1829 /// This action is *lazy*: upon invocation of this method the calculation is 1830 /// booked but not executed. Also see RResultPtr. 1831 /// 1832 /// ### Example usage: 1833 /// ~~~{.cpp} 1834 /// // Deduce column type (this invocation needs jitting internally) 1835 /// auto myHist1 = myDf.Histo1D({"histName", "histTitle", 64u, 0., 128.}, "myColumn"); 1836 /// // Explicit column type 1837 /// auto myHist2 = myDf.Histo1D<float>({"histName", "histTitle", 64u, 0., 128.}, "myColumn"); 1838 /// ~~~ 1839 /// 1840 /// \note Differently from other ROOT interfaces, the returned histogram is not associated to gDirectory 1841 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that 1842 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas). 1843 template <typename V = RDFDetail::RInferredType> 1844 RResultPtr<::TH1D> Histo1D(const TH1DModel &model = {"", "", 128u, 0., 0.}, std::string_view vName = "") 1845 { 1846 const auto userColumns = vName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(vName)}); 1847 1848 const auto validatedColumns = GetValidatedColumnNames(1, userColumns); 1849 1850 std::shared_ptr<::TH1D> h(nullptr); 1851 { 1852 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError); 1853 h = model.GetHistogram(); 1854 h->SetDirectory(nullptr); 1855 } 1856 1857 if (h->GetXaxis()->GetXmax() == h->GetXaxis()->GetXmin()) 1858 RDFInternal::HistoUtils<::TH1D>::SetCanExtendAllAxes(*h); 1859 return CreateAction<RDFInternal::ActionTags::Histo1D, V>(validatedColumns, h, h, fProxiedPtr); 1860 } 1861 1862 //////////////////////////////////////////////////////////////////////////// 1863 /// \brief Fill and return a one-dimensional histogram with the values of a column (*lazy action*). 1864 /// \tparam V The type of the column used to fill the histogram. 1865 /// \param[in] vName The name of the column that will fill the histogram. 1866 /// \return the monodimensional histogram wrapped in a RResultPtr. 1867 /// 1868 /// This overload uses a default model histogram TH1D(name, title, 128u, 0., 0.). 1869 /// The "name" and "title" strings are built starting from the input column name. 1870 /// See the description of the first Histo1D() overload for more details. 1871 /// 1872 /// ### Example usage: 1873 /// ~~~{.cpp} 1874 /// // Deduce column type (this invocation needs jitting internally) 1875 /// auto myHist1 = myDf.Histo1D("myColumn"); 1876 /// // Explicit column type 1877 /// auto myHist2 = myDf.Histo1D<float>("myColumn"); 1878 /// ~~~ 1879 template <typename V = RDFDetail::RInferredType> 1880 RResultPtr<::TH1D> Histo1D(std::string_view vName) 1881 { 1882 const auto h_name = std::string(vName); 1883 const auto h_title = h_name + ";" + h_name + ";count"; 1884 return Histo1D<V>({h_name.c_str(), h_title.c_str(), 128u, 0., 0.}, vName); 1885 } 1886 1887 //////////////////////////////////////////////////////////////////////////// 1888 /// \brief Fill and return a one-dimensional histogram with the weighted values of a column (*lazy action*). 1889 /// \tparam V The type of the column used to fill the histogram. 1890 /// \tparam W The type of the column used as weights. 1891 /// \param[in] model The returned histogram will be constructed using this as a model. 1892 /// \param[in] vName The name of the column that will fill the histogram. 1893 /// \param[in] wName The name of the column that will provide the weights. 1894 /// \return the monodimensional histogram wrapped in a RResultPtr. 1895 /// 1896 /// See the description of the first Histo1D() overload for more details. 1897 /// 1898 /// ### Example usage: 1899 /// ~~~{.cpp} 1900 /// // Deduce column type (this invocation needs jitting internally) 1901 /// auto myHist1 = myDf.Histo1D({"histName", "histTitle", 64u, 0., 128.}, "myValue", "myweight"); 1902 /// // Explicit column type 1903 /// auto myHist2 = myDf.Histo1D<float, int>({"histName", "histTitle", 64u, 0., 128.}, "myValue", "myweight"); 1904 /// ~~~ 1905 template <typename V = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType> 1906 RResultPtr<::TH1D> Histo1D(const TH1DModel &model, std::string_view vName, std::string_view wName) 1907 { 1908 const std::vector<std::string_view> columnViews = {vName, wName}; 1909 const auto userColumns = RDFInternal::AtLeastOneEmptyString(columnViews) 1910 ? ColumnNames_t() 1911 : ColumnNames_t(columnViews.begin(), columnViews.end()); 1912 std::shared_ptr<::TH1D> h(nullptr); 1913 { 1914 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError); 1915 h = model.GetHistogram(); 1916 } 1917 return CreateAction<RDFInternal::ActionTags::Histo1D, V, W>(userColumns, h, h, fProxiedPtr); 1918 } 1919 1920 //////////////////////////////////////////////////////////////////////////// 1921 /// \brief Fill and return a one-dimensional histogram with the weighted values of a column (*lazy action*). 1922 /// \tparam V The type of the column used to fill the histogram. 1923 /// \tparam W The type of the column used as weights. 1924 /// \param[in] vName The name of the column that will fill the histogram. 1925 /// \param[in] wName The name of the column that will provide the weights. 1926 /// \return the monodimensional histogram wrapped in a RResultPtr. 1927 /// 1928 /// This overload uses a default model histogram TH1D(name, title, 128u, 0., 0.). 1929 /// The "name" and "title" strings are built starting from the input column names. 1930 /// See the description of the first Histo1D() overload for more details. 1931 /// 1932 /// ### Example usage: 1933 /// ~~~{.cpp} 1934 /// // Deduce column types (this invocation needs jitting internally) 1935 /// auto myHist1 = myDf.Histo1D("myValue", "myweight"); 1936 /// // Explicit column types 1937 /// auto myHist2 = myDf.Histo1D<float, int>("myValue", "myweight"); 1938 /// ~~~ 1939 template <typename V = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType> 1940 RResultPtr<::TH1D> Histo1D(std::string_view vName, std::string_view wName) 1941 { 1942 // We build name and title based on the value and weight column names 1943 std::string str_vName{vName}; 1944 std::string str_wName{wName}; 1945 const auto h_name = str_vName + "_weighted_" + str_wName; 1946 const auto h_title = str_vName + ", weights: " + str_wName + ";" + str_vName + ";count * " + str_wName; 1947 return Histo1D<V, W>({h_name.c_str(), h_title.c_str(), 128u, 0., 0.}, vName, wName); 1948 } 1949 1950 //////////////////////////////////////////////////////////////////////////// 1951 /// \brief Fill and return a one-dimensional histogram with the weighted values of a column (*lazy action*). 1952 /// \tparam V The type of the column used to fill the histogram. 1953 /// \tparam W The type of the column used as weights. 1954 /// \param[in] model The returned histogram will be constructed using this as a model. 1955 /// \return the monodimensional histogram wrapped in a RResultPtr. 1956 /// 1957 /// This overload will use the first two default columns as column names. 1958 /// See the description of the first Histo1D() overload for more details. 1959 template <typename V, typename W> 1960 RResultPtr<::TH1D> Histo1D(const TH1DModel &model = {"", "", 128u, 0., 0.}) 1961 { 1962 return Histo1D<V, W>(model, "", ""); 1963 } 1964 1965 //////////////////////////////////////////////////////////////////////////// 1966 /// \brief Fill and return a two-dimensional histogram (*lazy action*). 1967 /// \tparam V1 The type of the column used to fill the x axis of the histogram. 1968 /// \tparam V2 The type of the column used to fill the y axis of the histogram. 1969 /// \param[in] model The returned histogram will be constructed using this as a model. 1970 /// \param[in] v1Name The name of the column that will fill the x axis. 1971 /// \param[in] v2Name The name of the column that will fill the y axis. 1972 /// \return the bidimensional histogram wrapped in a RResultPtr. 1973 /// 1974 /// Columns can be of a container type (e.g. std::vector<double>), in which case the histogram 1975 /// is filled with each one of the elements of the container. In case multiple columns of container type 1976 /// are provided (e.g. values and weights) they must have the same length for each one of the events (but 1977 /// possibly different lengths between events). 1978 /// This action is *lazy*: upon invocation of this method the calculation is 1979 /// booked but not executed. Also see RResultPtr. 1980 /// 1981 /// ### Example usage: 1982 /// ~~~{.cpp} 1983 /// // Deduce column types (this invocation needs jitting internally) 1984 /// auto myHist1 = myDf.Histo2D({"histName", "histTitle", 64u, 0., 128., 32u, -4., 4.}, "myValueX", "myValueY"); 1985 /// // Explicit column types 1986 /// auto myHist2 = myDf.Histo2D<float, float>({"histName", "histTitle", 64u, 0., 128., 32u, -4., 4.}, "myValueX", "myValueY"); 1987 /// ~~~ 1988 /// 1989 /// 1990 /// \note Differently from other ROOT interfaces, the returned histogram is not associated to gDirectory 1991 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that 1992 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas). 1993 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType> 1994 RResultPtr<::TH2D> Histo2D(const TH2DModel &model, std::string_view v1Name = "", std::string_view v2Name = "") 1995 { 1996 std::shared_ptr<::TH2D> h(nullptr); 1997 { 1998 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError); 1999 h = model.GetHistogram(); 2000 } 2001 if (!RDFInternal::HistoUtils<::TH2D>::HasAxisLimits(*h)) { 2002 throw std::runtime_error("2D histograms with no axes limits are not supported yet."); 2003 } 2004 const std::vector<std::string_view> columnViews = {v1Name, v2Name}; 2005 const auto userColumns = RDFInternal::AtLeastOneEmptyString(columnViews) 2006 ? ColumnNames_t() 2007 : ColumnNames_t(columnViews.begin(), columnViews.end()); 2008 return CreateAction<RDFInternal::ActionTags::Histo2D, V1, V2>(userColumns, h, h, fProxiedPtr); 2009 } 2010 2011 //////////////////////////////////////////////////////////////////////////// 2012 /// \brief Fill and return a weighted two-dimensional histogram (*lazy action*). 2013 /// \tparam V1 The type of the column used to fill the x axis of the histogram. 2014 /// \tparam V2 The type of the column used to fill the y axis of the histogram. 2015 /// \tparam W The type of the column used for the weights of the histogram. 2016 /// \param[in] model The returned histogram will be constructed using this as a model. 2017 /// \param[in] v1Name The name of the column that will fill the x axis. 2018 /// \param[in] v2Name The name of the column that will fill the y axis. 2019 /// \param[in] wName The name of the column that will provide the weights. 2020 /// \return the bidimensional histogram wrapped in a RResultPtr. 2021 /// 2022 /// This action is *lazy*: upon invocation of this method the calculation is 2023 /// booked but not executed. Also see RResultPtr. 2024 /// 2025 /// ### Example usage: 2026 /// ~~~{.cpp} 2027 /// // Deduce column types (this invocation needs jitting internally) 2028 /// auto myHist1 = myDf.Histo2D({"histName", "histTitle", 64u, 0., 128., 32u, -4., 4.}, "myValueX", "myValueY", "myWeight"); 2029 /// // Explicit column types 2030 /// auto myHist2 = myDf.Histo2D<float, float, double>({"histName", "histTitle", 64u, 0., 128., 32u, -4., 4.}, "myValueX", "myValueY", "myWeight"); 2031 /// ~~~ 2032 /// 2033 /// See the documentation of the first Histo2D() overload for more details. 2034 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType, 2035 typename W = RDFDetail::RInferredType> 2036 RResultPtr<::TH2D> 2037 Histo2D(const TH2DModel &model, std::string_view v1Name, std::string_view v2Name, std::string_view wName) 2038 { 2039 std::shared_ptr<::TH2D> h(nullptr); 2040 { 2041 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError); 2042 h = model.GetHistogram(); 2043 } 2044 if (!RDFInternal::HistoUtils<::TH2D>::HasAxisLimits(*h)) { 2045 throw std::runtime_error("2D histograms with no axes limits are not supported yet."); 2046 } 2047 const std::vector<std::string_view> columnViews = {v1Name, v2Name, wName}; 2048 const auto userColumns = RDFInternal::AtLeastOneEmptyString(columnViews) 2049 ? ColumnNames_t() 2050 : ColumnNames_t(columnViews.begin(), columnViews.end()); 2051 return CreateAction<RDFInternal::ActionTags::Histo2D, V1, V2, W>(userColumns, h, h, fProxiedPtr); 2052 } 2053 2054 template <typename V1, typename V2, typename W> 2055 RResultPtr<::TH2D> Histo2D(const TH2DModel &model) 2056 { 2057 return Histo2D<V1, V2, W>(model, "", "", ""); 2058 } 2059 2060 //////////////////////////////////////////////////////////////////////////// 2061 /// \brief Fill and return a three-dimensional histogram (*lazy action*). 2062 /// \tparam V1 The type of the column used to fill the x axis of the histogram. Inferred if not present. 2063 /// \tparam V2 The type of the column used to fill the y axis of the histogram. Inferred if not present. 2064 /// \tparam V3 The type of the column used to fill the z axis of the histogram. Inferred if not present. 2065 /// \param[in] model The returned histogram will be constructed using this as a model. 2066 /// \param[in] v1Name The name of the column that will fill the x axis. 2067 /// \param[in] v2Name The name of the column that will fill the y axis. 2068 /// \param[in] v3Name The name of the column that will fill the z axis. 2069 /// \return the tridimensional histogram wrapped in a RResultPtr. 2070 /// 2071 /// This action is *lazy*: upon invocation of this method the calculation is 2072 /// booked but not executed. Also see RResultPtr. 2073 /// 2074 /// ### Example usage: 2075 /// ~~~{.cpp} 2076 /// // Deduce column types (this invocation needs jitting internally) 2077 /// auto myHist1 = myDf.Histo3D({"name", "title", 64u, 0., 128., 32u, -4., 4., 8u, -2., 2.}, 2078 /// "myValueX", "myValueY", "myValueZ"); 2079 /// // Explicit column types 2080 /// auto myHist2 = myDf.Histo3D<double, double, float>({"name", "title", 64u, 0., 128., 32u, -4., 4., 8u, -2., 2.}, 2081 /// "myValueX", "myValueY", "myValueZ"); 2082 /// ~~~ 2083 /// 2084 /// \note Differently from other ROOT interfaces, the returned histogram is not associated to gDirectory 2085 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that 2086 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas). 2087 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType, 2088 typename V3 = RDFDetail::RInferredType> 2089 RResultPtr<::TH3D> Histo3D(const TH3DModel &model, std::string_view v1Name = "", std::string_view v2Name = "", 2090 std::string_view v3Name = "") 2091 { 2092 std::shared_ptr<::TH3D> h(nullptr); 2093 { 2094 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError); 2095 h = model.GetHistogram(); 2096 } 2097 if (!RDFInternal::HistoUtils<::TH3D>::HasAxisLimits(*h)) { 2098 throw std::runtime_error("3D histograms with no axes limits are not supported yet."); 2099 } 2100 const std::vector<std::string_view> columnViews = {v1Name, v2Name, v3Name}; 2101 const auto userColumns = RDFInternal::AtLeastOneEmptyString(columnViews) 2102 ? ColumnNames_t() 2103 : ColumnNames_t(columnViews.begin(), columnViews.end()); 2104 return CreateAction<RDFInternal::ActionTags::Histo3D, V1, V2, V3>(userColumns, h, h, fProxiedPtr); 2105 } 2106 2107 //////////////////////////////////////////////////////////////////////////// 2108 /// \brief Fill and return a three-dimensional histogram (*lazy action*). 2109 /// \tparam V1 The type of the column used to fill the x axis of the histogram. Inferred if not present. 2110 /// \tparam V2 The type of the column used to fill the y axis of the histogram. Inferred if not present. 2111 /// \tparam V3 The type of the column used to fill the z axis of the histogram. Inferred if not present. 2112 /// \tparam W The type of the column used for the weights of the histogram. Inferred if not present. 2113 /// \param[in] model The returned histogram will be constructed using this as a model. 2114 /// \param[in] v1Name The name of the column that will fill the x axis. 2115 /// \param[in] v2Name The name of the column that will fill the y axis. 2116 /// \param[in] v3Name The name of the column that will fill the z axis. 2117 /// \param[in] wName The name of the column that will provide the weights. 2118 /// \return the tridimensional histogram wrapped in a RResultPtr. 2119 /// 2120 /// This action is *lazy*: upon invocation of this method the calculation is 2121 /// booked but not executed. Also see RResultPtr. 2122 /// 2123 /// ### Example usage: 2124 /// ~~~{.cpp} 2125 /// // Deduce column types (this invocation needs jitting internally) 2126 /// auto myHist1 = myDf.Histo3D({"name", "title", 64u, 0., 128., 32u, -4., 4., 8u, -2., 2.}, 2127 /// "myValueX", "myValueY", "myValueZ", "myWeight"); 2128 /// // Explicit column types 2129 /// using d_t = double; 2130 /// auto myHist2 = myDf.Histo3D<d_t, d_t, float, d_t>({"name", "title", 64u, 0., 128., 32u, -4., 4., 8u, -2., 2.}, 2131 /// "myValueX", "myValueY", "myValueZ", "myWeight"); 2132 /// ~~~ 2133 /// 2134 /// 2135 /// See the documentation of the first Histo2D() overload for more details. 2136 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType, 2137 typename V3 = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType> 2138 RResultPtr<::TH3D> Histo3D(const TH3DModel &model, std::string_view v1Name, std::string_view v2Name, 2139 std::string_view v3Name, std::string_view wName) 2140 { 2141 std::shared_ptr<::TH3D> h(nullptr); 2142 { 2143 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError); 2144 h = model.GetHistogram(); 2145 } 2146 if (!RDFInternal::HistoUtils<::TH3D>::HasAxisLimits(*h)) { 2147 throw std::runtime_error("3D histograms with no axes limits are not supported yet."); 2148 } 2149 const std::vector<std::string_view> columnViews = {v1Name, v2Name, v3Name, wName}; 2150 const auto userColumns = RDFInternal::AtLeastOneEmptyString(columnViews) 2151 ? ColumnNames_t() 2152 : ColumnNames_t(columnViews.begin(), columnViews.end()); 2153 return CreateAction<RDFInternal::ActionTags::Histo3D, V1, V2, V3, W>(userColumns, h, h, fProxiedPtr); 2154 } 2155 2156 template <typename V1, typename V2, typename V3, typename W> 2157 RResultPtr<::TH3D> Histo3D(const TH3DModel &model) 2158 { 2159 return Histo3D<V1, V2, V3, W>(model, "", "", "", ""); 2160 } 2161 2162 //////////////////////////////////////////////////////////////////////////// 2163 /// \brief Fill and return an N-dimensional histogram (*lazy action*). 2164 /// \tparam FirstColumn The first type of the column the values of which are used to fill the object. Inferred if not 2165 /// present. 2166 /// \tparam OtherColumns A list of the other types of the columns the values of which are used to fill the 2167 /// object. 2168 /// \param[in] model The returned histogram will be constructed using this as a model. 2169 /// \param[in] columnList 2170 /// A list containing the names of the columns that will be passed when calling `Fill`. 2171 /// (N columns for unweighted filling, or N+1 columns for weighted filling) 2172 /// \return the N-dimensional histogram wrapped in a RResultPtr. 2173 /// 2174 /// This action is *lazy*: upon invocation of this method the calculation is 2175 /// booked but not executed. See RResultPtr documentation. 2176 /// 2177 /// ### Example usage: 2178 /// ~~~{.cpp} 2179 /// auto myFilledObj = myDf.HistoND<float, float, float, float>({"name","title", 4, 2180 /// {40,40,40,40}, {20.,20.,20.,20.}, {60.,60.,60.,60.}}, 2181 /// {"col0", "col1", "col2", "col3"}); 2182 /// ~~~ 2183 /// 2184 template <typename FirstColumn, typename... OtherColumns> // need FirstColumn to disambiguate overloads 2185 RResultPtr<::THnD> HistoND(const THnDModel &model, const ColumnNames_t &columnList) 2186 { 2187 std::shared_ptr<::THnD> h(nullptr); 2188 { 2189 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError); 2190 h = model.GetHistogram(); 2191 2192 if (int(columnList.size()) == (h->GetNdimensions() + 1)) { 2193 h->Sumw2(); 2194 } else if (int(columnList.size()) != h->GetNdimensions()) { 2195 throw std::runtime_error("Wrong number of columns for the specified number of histogram axes."); 2196 } 2197 } 2198 return CreateAction<RDFInternal::ActionTags::HistoND, FirstColumn, OtherColumns...>(columnList, h, h, 2199 fProxiedPtr); 2200 } 2201 2202 //////////////////////////////////////////////////////////////////////////// 2203 /// \brief Fill and return an N-dimensional histogram (*lazy action*). 2204 /// \param[in] model The returned histogram will be constructed using this as a model. 2205 /// \param[in] columnList A list containing the names of the columns that will be passed when calling `Fill` 2206 /// (N columns for unweighted filling, or N+1 columns for weighted filling) 2207 /// \return the N-dimensional histogram wrapped in a RResultPtr. 2208 /// 2209 /// This action is *lazy*: upon invocation of this method the calculation is 2210 /// booked but not executed. Also see RResultPtr. 2211 /// 2212 /// ### Example usage: 2213 /// ~~~{.cpp} 2214 /// auto myFilledObj = myDf.HistoND({"name","title", 4, 2215 /// {40,40,40,40}, {20.,20.,20.,20.}, {60.,60.,60.,60.}}, 2216 /// {"col0", "col1", "col2", "col3"}); 2217 /// ~~~ 2218 /// 2219 RResultPtr<::THnD> HistoND(const THnDModel &model, const ColumnNames_t &columnList) 2220 { 2221 std::shared_ptr<::THnD> h(nullptr); 2222 { 2223 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError); 2224 h = model.GetHistogram(); 2225 2226 if (int(columnList.size()) == (h->GetNdimensions() + 1)) { 2227 h->Sumw2(); 2228 } else if (int(columnList.size()) != h->GetNdimensions()) { 2229 throw std::runtime_error("Wrong number of columns for the specified number of histogram axes."); 2230 } 2231 } 2232 return CreateAction<RDFInternal::ActionTags::HistoND, RDFDetail::RInferredType>(columnList, h, h, fProxiedPtr, 2233 columnList.size()); 2234 } 2235 2236 //////////////////////////////////////////////////////////////////////////// 2237 /// \brief Fill and return a TGraph object (*lazy action*). 2238 /// \tparam X The type of the column used to fill the x axis. 2239 /// \tparam Y The type of the column used to fill the y axis. 2240 /// \param[in] x The name of the column that will fill the x axis. 2241 /// \param[in] y The name of the column that will fill the y axis. 2242 /// \return the TGraph wrapped in a RResultPtr. 2243 /// 2244 /// Columns can be of a container type (e.g. std::vector<double>), in which case the TGraph 2245 /// is filled with each one of the elements of the container. 2246 /// If Multithreading is enabled, the order in which points are inserted is undefined. 2247 /// If the Graph has to be drawn, it is suggested to the user to sort it on the x before printing. 2248 /// A name and a title to the TGraph is given based on the input column names. 2249 /// 2250 /// This action is *lazy*: upon invocation of this method the calculation is 2251 /// booked but not executed. Also see RResultPtr. 2252 /// 2253 /// ### Example usage: 2254 /// ~~~{.cpp} 2255 /// // Deduce column types (this invocation needs jitting internally) 2256 /// auto myGraph1 = myDf.Graph("xValues", "yValues"); 2257 /// // Explicit column types 2258 /// auto myGraph2 = myDf.Graph<int, float>("xValues", "yValues"); 2259 /// ~~~ 2260 /// 2261 /// \note Differently from other ROOT interfaces, the returned TGraph is not associated to gDirectory 2262 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that 2263 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas). 2264 template <typename X = RDFDetail::RInferredType, typename Y = RDFDetail::RInferredType> 2265 RResultPtr<::TGraph> Graph(std::string_view x = "", std::string_view y = "") 2266 { 2267 auto graph = std::make_shared<::TGraph>(); 2268 const std::vector<std::string_view> columnViews = {x, y}; 2269 const auto userColumns = RDFInternal::AtLeastOneEmptyString(columnViews) 2270 ? ColumnNames_t() 2271 : ColumnNames_t(columnViews.begin(), columnViews.end()); 2272 2273 const auto validatedColumns = GetValidatedColumnNames(2, userColumns); 2274 2275 // We build a default name and title based on the input columns 2276 const auto g_name = validatedColumns[1] + "_vs_" + validatedColumns[0]; 2277 const auto g_title = validatedColumns[1] + " vs " + validatedColumns[0]; 2278 graph->SetNameTitle(g_name.c_str(), g_title.c_str()); 2279 graph->GetXaxis()->SetTitle(validatedColumns[0].c_str()); 2280 graph->GetYaxis()->SetTitle(validatedColumns[1].c_str()); 2281 2282 return CreateAction<RDFInternal::ActionTags::Graph, X, Y>(validatedColumns, graph, graph, fProxiedPtr); 2283 } 2284 2285 //////////////////////////////////////////////////////////////////////////// 2286 /// \brief Fill and return a TGraphAsymmErrors object (*lazy action*). 2287 /// \param[in] x The name of the column that will fill the x axis. 2288 /// \param[in] y The name of the column that will fill the y axis. 2289 /// \param[in] exl The name of the column of X low errors 2290 /// \param[in] exh The name of the column of X high errors 2291 /// \param[in] eyl The name of the column of Y low errors 2292 /// \param[in] eyh The name of the column of Y high errors 2293 /// \return the TGraphAsymmErrors wrapped in a RResultPtr. 2294 /// 2295 /// Columns can be of a container type (e.g. std::vector<double>), in which case the graph 2296 /// is filled with each one of the elements of the container. 2297 /// If Multithreading is enabled, the order in which points are inserted is undefined. 2298 /// 2299 /// This action is *lazy*: upon invocation of this method the calculation is 2300 /// booked but not executed. Also see RResultPtr. 2301 /// 2302 /// ### Example usage: 2303 /// ~~~{.cpp} 2304 /// // Deduce column types (this invocation needs jitting internally) 2305 /// auto myGAE1 = myDf.GraphAsymmErrors("xValues", "yValues", "exl", "exh", "eyl", "eyh"); 2306 /// // Explicit column types 2307 /// using f = float 2308 /// auto myGAE2 = myDf.GraphAsymmErrors<f, f, f, f, f, f>("xValues", "yValues", "exl", "exh", "eyl", "eyh"); 2309 /// ~~~ 2310 /// 2311 /// `GraphAssymErrors` should also be used for the cases in which values associated only with 2312 /// one of the axes have associated errors. For example, only `ey` exist and `ex` are equal to zero. 2313 /// In such cases, user should do the following: 2314 /// ~~~{.cpp} 2315 /// // Create a column of zeros in RDataFrame 2316 /// auto rdf_withzeros = rdf.Define("zero", "0"); 2317 /// // or alternatively: 2318 /// auto rdf_withzeros = rdf.Define("zero", []() -> double { return 0.;}); 2319 /// // Create the graph with y errors only 2320 /// auto rdf_errorsOnYOnly = rdf_withzeros.GraphAsymmErrors("xValues", "yValues", "zero", "zero", "eyl", "eyh"); 2321 /// ~~~ 2322 /// 2323 /// \note Differently from other ROOT interfaces, the returned TGraphAsymmErrors is not associated to gDirectory 2324 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that 2325 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas). 2326 template <typename X = RDFDetail::RInferredType, typename Y = RDFDetail::RInferredType, 2327 typename EXL = RDFDetail::RInferredType, typename EXH = RDFDetail::RInferredType, 2328 typename EYL = RDFDetail::RInferredType, typename EYH = RDFDetail::RInferredType> 2329 RResultPtr<::TGraphAsymmErrors> 2330 GraphAsymmErrors(std::string_view x = "", std::string_view y = "", std::string_view exl = "", 2331 std::string_view exh = "", std::string_view eyl = "", std::string_view eyh = "") 2332 { 2333 auto graph = std::make_shared<::TGraphAsymmErrors>(); 2334 const std::vector<std::string_view> columnViews = {x, y, exl, exh, eyl, eyh}; 2335 const auto userColumns = RDFInternal::AtLeastOneEmptyString(columnViews) 2336 ? ColumnNames_t() 2337 : ColumnNames_t(columnViews.begin(), columnViews.end()); 2338 2339 const auto validatedColumns = GetValidatedColumnNames(6, userColumns); 2340 2341 // We build a default name and title based on the input columns 2342 const auto g_name = validatedColumns[1] + "_vs_" + validatedColumns[0]; 2343 const auto g_title = validatedColumns[1] + " vs " + validatedColumns[0]; 2344 graph->SetNameTitle(g_name.c_str(), g_title.c_str()); 2345 graph->GetXaxis()->SetTitle(validatedColumns[0].c_str()); 2346 graph->GetYaxis()->SetTitle(validatedColumns[1].c_str()); 2347 2348 return CreateAction<RDFInternal::ActionTags::GraphAsymmErrors, X, Y, EXL, EXH, EYL, EYH>(validatedColumns, graph, 2349 graph, fProxiedPtr); 2350 } 2351 2352 //////////////////////////////////////////////////////////////////////////// 2353 /// \brief Fill and return a one-dimensional profile (*lazy action*). 2354 /// \tparam V1 The type of the column the values of which are used to fill the profile. Inferred if not present. 2355 /// \tparam V2 The type of the column the values of which are used to fill the profile. Inferred if not present. 2356 /// \param[in] model The model to be considered to build the new return value. 2357 /// \param[in] v1Name The name of the column that will fill the x axis. 2358 /// \param[in] v2Name The name of the column that will fill the y axis. 2359 /// \return the monodimensional profile wrapped in a RResultPtr. 2360 /// 2361 /// This action is *lazy*: upon invocation of this method the calculation is 2362 /// booked but not executed. Also see RResultPtr. 2363 /// 2364 /// ### Example usage: 2365 /// ~~~{.cpp} 2366 /// // Deduce column types (this invocation needs jitting internally) 2367 /// auto myProf1 = myDf.Profile1D({"profName", "profTitle", 64u, -4., 4.}, "xValues", "yValues"); 2368 /// // Explicit column types 2369 /// auto myProf2 = myDf.Graph<int, float>({"profName", "profTitle", 64u, -4., 4.}, "xValues", "yValues"); 2370 /// ~~~ 2371 /// 2372 /// \note Differently from other ROOT interfaces, the returned profile is not associated to gDirectory 2373 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that 2374 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas). 2375 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType> 2376 RResultPtr<::TProfile> 2377 Profile1D(const TProfile1DModel &model, std::string_view v1Name = "", std::string_view v2Name = "") 2378 { 2379 std::shared_ptr<::TProfile> h(nullptr); 2380 { 2381 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError); 2382 h = model.GetProfile(); 2383 } 2384 2385 if (!RDFInternal::HistoUtils<::TProfile>::HasAxisLimits(*h)) { 2386 throw std::runtime_error("Profiles with no axes limits are not supported yet."); 2387 } 2388 const std::vector<std::string_view> columnViews = {v1Name, v2Name}; 2389 const auto userColumns = RDFInternal::AtLeastOneEmptyString(columnViews) 2390 ? ColumnNames_t() 2391 : ColumnNames_t(columnViews.begin(), columnViews.end()); 2392 return CreateAction<RDFInternal::ActionTags::Profile1D, V1, V2>(userColumns, h, h, fProxiedPtr); 2393 } 2394 2395 //////////////////////////////////////////////////////////////////////////// 2396 /// \brief Fill and return a one-dimensional profile (*lazy action*). 2397 /// \tparam V1 The type of the column the values of which are used to fill the profile. Inferred if not present. 2398 /// \tparam V2 The type of the column the values of which are used to fill the profile. Inferred if not present. 2399 /// \tparam W The type of the column the weights of which are used to fill the profile. Inferred if not present. 2400 /// \param[in] model The model to be considered to build the new return value. 2401 /// \param[in] v1Name The name of the column that will fill the x axis. 2402 /// \param[in] v2Name The name of the column that will fill the y axis. 2403 /// \param[in] wName The name of the column that will provide the weights. 2404 /// \return the monodimensional profile wrapped in a RResultPtr. 2405 /// 2406 /// This action is *lazy*: upon invocation of this method the calculation is 2407 /// booked but not executed. Also see RResultPtr. 2408 /// 2409 /// ### Example usage: 2410 /// ~~~{.cpp} 2411 /// // Deduce column types (this invocation needs jitting internally) 2412 /// auto myProf1 = myDf.Profile1D({"profName", "profTitle", 64u, -4., 4.}, "xValues", "yValues", "weight"); 2413 /// // Explicit column types 2414 /// auto myProf2 = myDf.Profile1D<int, float, double>({"profName", "profTitle", 64u, -4., 4.}, 2415 /// "xValues", "yValues", "weight"); 2416 /// ~~~ 2417 /// 2418 /// See the first Profile1D() overload for more details. 2419 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType, 2420 typename W = RDFDetail::RInferredType> 2421 RResultPtr<::TProfile> 2422 Profile1D(const TProfile1DModel &model, std::string_view v1Name, std::string_view v2Name, std::string_view wName) 2423 { 2424 std::shared_ptr<::TProfile> h(nullptr); 2425 { 2426 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError); 2427 h = model.GetProfile(); 2428 } 2429 2430 if (!RDFInternal::HistoUtils<::TProfile>::HasAxisLimits(*h)) { 2431 throw std::runtime_error("Profile histograms with no axes limits are not supported yet."); 2432 } 2433 const std::vector<std::string_view> columnViews = {v1Name, v2Name, wName}; 2434 const auto userColumns = RDFInternal::AtLeastOneEmptyString(columnViews) 2435 ? ColumnNames_t() 2436 : ColumnNames_t(columnViews.begin(), columnViews.end()); 2437 return CreateAction<RDFInternal::ActionTags::Profile1D, V1, V2, W>(userColumns, h, h, fProxiedPtr); 2438 } 2439 2440 //////////////////////////////////////////////////////////////////////////// 2441 /// \brief Fill and return a one-dimensional profile (*lazy action*). 2442 /// See the first Profile1D() overload for more details. 2443 template <typename V1, typename V2, typename W> 2444 RResultPtr<::TProfile> Profile1D(const TProfile1DModel &model) 2445 { 2446 return Profile1D<V1, V2, W>(model, "", "", ""); 2447 } 2448 2449 //////////////////////////////////////////////////////////////////////////// 2450 /// \brief Fill and return a two-dimensional profile (*lazy action*). 2451 /// \tparam V1 The type of the column used to fill the x axis of the histogram. Inferred if not present. 2452 /// \tparam V2 The type of the column used to fill the y axis of the histogram. Inferred if not present. 2453 /// \tparam V3 The type of the column used to fill the z axis of the histogram. Inferred if not present. 2454 /// \param[in] model The returned profile will be constructed using this as a model. 2455 /// \param[in] v1Name The name of the column that will fill the x axis. 2456 /// \param[in] v2Name The name of the column that will fill the y axis. 2457 /// \param[in] v3Name The name of the column that will fill the z axis. 2458 /// \return the bidimensional profile wrapped in a RResultPtr. 2459 /// 2460 /// This action is *lazy*: upon invocation of this method the calculation is 2461 /// booked but not executed. Also see RResultPtr. 2462 /// 2463 /// ### Example usage: 2464 /// ~~~{.cpp} 2465 /// // Deduce column types (this invocation needs jitting internally) 2466 /// auto myProf1 = myDf.Profile2D({"profName", "profTitle", 40, -4, 4, 40, -4, 4, 0, 20}, 2467 /// "xValues", "yValues", "zValues"); 2468 /// // Explicit column types 2469 /// auto myProf2 = myDf.Profile2D<int, float, double>({"profName", "profTitle", 40, -4, 4, 40, -4, 4, 0, 20}, 2470 /// "xValues", "yValues", "zValues"); 2471 /// ~~~ 2472 /// 2473 /// \note Differently from other ROOT interfaces, the returned profile is not associated to gDirectory 2474 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that 2475 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas). 2476 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType, 2477 typename V3 = RDFDetail::RInferredType> 2478 RResultPtr<::TProfile2D> Profile2D(const TProfile2DModel &model, std::string_view v1Name = "", 2479 std::string_view v2Name = "", std::string_view v3Name = "") 2480 { 2481 std::shared_ptr<::TProfile2D> h(nullptr); 2482 { 2483 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError); 2484 h = model.GetProfile(); 2485 } 2486 2487 if (!RDFInternal::HistoUtils<::TProfile2D>::HasAxisLimits(*h)) { 2488 throw std::runtime_error("2D profiles with no axes limits are not supported yet."); 2489 } 2490 const std::vector<std::string_view> columnViews = {v1Name, v2Name, v3Name}; 2491 const auto userColumns = RDFInternal::AtLeastOneEmptyString(columnViews) 2492 ? ColumnNames_t() 2493 : ColumnNames_t(columnViews.begin(), columnViews.end()); 2494 return CreateAction<RDFInternal::ActionTags::Profile2D, V1, V2, V3>(userColumns, h, h, fProxiedPtr); 2495 } 2496 2497 //////////////////////////////////////////////////////////////////////////// 2498 /// \brief Fill and return a two-dimensional profile (*lazy action*). 2499 /// \tparam V1 The type of the column used to fill the x axis of the histogram. Inferred if not present. 2500 /// \tparam V2 The type of the column used to fill the y axis of the histogram. Inferred if not present. 2501 /// \tparam V3 The type of the column used to fill the z axis of the histogram. Inferred if not present. 2502 /// \tparam W The type of the column used for the weights of the histogram. Inferred if not present. 2503 /// \param[in] model The returned histogram will be constructed using this as a model. 2504 /// \param[in] v1Name The name of the column that will fill the x axis. 2505 /// \param[in] v2Name The name of the column that will fill the y axis. 2506 /// \param[in] v3Name The name of the column that will fill the z axis. 2507 /// \param[in] wName The name of the column that will provide the weights. 2508 /// \return the bidimensional profile wrapped in a RResultPtr. 2509 /// 2510 /// This action is *lazy*: upon invocation of this method the calculation is 2511 /// booked but not executed. Also see RResultPtr. 2512 /// 2513 /// ### Example usage: 2514 /// ~~~{.cpp} 2515 /// // Deduce column types (this invocation needs jitting internally) 2516 /// auto myProf1 = myDf.Profile2D({"profName", "profTitle", 40, -4, 4, 40, -4, 4, 0, 20}, 2517 /// "xValues", "yValues", "zValues", "weight"); 2518 /// // Explicit column types 2519 /// auto myProf2 = myDf.Profile2D<int, float, double, int>({"profName", "profTitle", 40, -4, 4, 40, -4, 4, 0, 20}, 2520 /// "xValues", "yValues", "zValues", "weight"); 2521 /// ~~~ 2522 /// 2523 /// See the first Profile2D() overload for more details. 2524 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType, 2525 typename V3 = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType> 2526 RResultPtr<::TProfile2D> Profile2D(const TProfile2DModel &model, std::string_view v1Name, std::string_view v2Name, 2527 std::string_view v3Name, std::string_view wName) 2528 { 2529 std::shared_ptr<::TProfile2D> h(nullptr); 2530 { 2531 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError); 2532 h = model.GetProfile(); 2533 } 2534 2535 if (!RDFInternal::HistoUtils<::TProfile2D>::HasAxisLimits(*h)) { 2536 throw std::runtime_error("2D profiles with no axes limits are not supported yet."); 2537 } 2538 const std::vector<std::string_view> columnViews = {v1Name, v2Name, v3Name, wName}; 2539 const auto userColumns = RDFInternal::AtLeastOneEmptyString(columnViews) 2540 ? ColumnNames_t() 2541 : ColumnNames_t(columnViews.begin(), columnViews.end()); 2542 return CreateAction<RDFInternal::ActionTags::Profile2D, V1, V2, V3, W>(userColumns, h, h, fProxiedPtr); 2543 } 2544 2545 /// \brief Fill and return a two-dimensional profile (*lazy action*). 2546 /// See the first Profile2D() overload for more details. 2547 template <typename V1, typename V2, typename V3, typename W> 2548 RResultPtr<::TProfile2D> Profile2D(const TProfile2DModel &model) 2549 { 2550 return Profile2D<V1, V2, V3, W>(model, "", "", "", ""); 2551 } 2552 2553 //////////////////////////////////////////////////////////////////////////// 2554 /// \brief Return an object of type T on which `T::Fill` will be called once per event (*lazy action*). 2555 /// 2556 /// Type T must provide at least: 2557 /// - a copy-constructor 2558 /// - a `Fill` method that accepts as many arguments and with same types as the column names passed as columnList 2559 /// (these types can also be passed as template parameters to this method) 2560 /// - a `Merge` method with signature `Merge(TCollection *)` or `Merge(const std::vector<T *>&)` that merges the 2561 /// objects passed as argument into the object on which `Merge` was called (an analogous of TH1::Merge). Note that 2562 /// if the signature that takes a `TCollection*` is used, then T must inherit from TObject (to allow insertion in 2563 /// the TCollection*). 2564 /// 2565 /// \tparam FirstColumn The first type of the column the values of which are used to fill the object. Inferred together with OtherColumns if not present. 2566 /// \tparam OtherColumns A list of the other types of the columns the values of which are used to fill the object. 2567 /// \tparam T The type of the object to fill. Automatically deduced. 2568 /// \param[in] model The model to be considered to build the new return value. 2569 /// \param[in] columnList A list containing the names of the columns that will be passed when calling `Fill` 2570 /// \return the filled object wrapped in a RResultPtr. 2571 /// 2572 /// The user gives up ownership of the model object. 2573 /// The list of column names to be used for filling must always be specified. 2574 /// This action is *lazy*: upon invocation of this method the calculation is booked but not executed. 2575 /// Also see RResultPtr. 2576 /// 2577 /// ### Example usage: 2578 /// ~~~{.cpp} 2579 /// MyClass obj; 2580 /// // Deduce column types (this invocation needs jitting internally, and in this case 2581 /// // MyClass needs to be known to the interpreter) 2582 /// auto myFilledObj = myDf.Fill(obj, {"col0", "col1"}); 2583 /// // explicit column types 2584 /// auto myFilledObj = myDf.Fill<float, float>(obj, {"col0", "col1"}); 2585 /// ~~~ 2586 /// 2587 template <typename FirstColumn = RDFDetail::RInferredType, typename... OtherColumns, typename T> 2588 RResultPtr<std::decay_t<T>> Fill(T &&model, const ColumnNames_t &columnList) 2589 { 2590 auto h = std::make_shared<std::decay_t<T>>(std::forward<T>(model)); 2591 if (!RDFInternal::HistoUtils<T>::HasAxisLimits(*h)) { 2592 throw std::runtime_error("The absence of axes limits is not supported yet."); 2593 } 2594 return CreateAction<RDFInternal::ActionTags::Fill, FirstColumn, OtherColumns...>(columnList, h, h, fProxiedPtr, 2595 columnList.size()); 2596 } 2597 2598 //////////////////////////////////////////////////////////////////////////// 2599 /// \brief Return a TStatistic object, filled once per event (*lazy action*). 2600 /// 2601 /// \tparam V The type of the value column 2602 /// \param[in] value The name of the column with the values to fill the statistics with. 2603 /// \return the filled TStatistic object wrapped in a RResultPtr. 2604 /// 2605 /// ### Example usage: 2606 /// ~~~{.cpp} 2607 /// // Deduce column type (this invocation needs jitting internally) 2608 /// auto stats0 = myDf.Stats("values"); 2609 /// // Explicit column type 2610 /// auto stats1 = myDf.Stats<float>("values"); 2611 /// ~~~ 2612 /// 2613 template <typename V = RDFDetail::RInferredType> 2614 RResultPtr<TStatistic> Stats(std::string_view value = "") 2615 { 2616 ColumnNames_t columns; 2617 if (!value.empty()) { 2618 columns.emplace_back(std::string(value)); 2619 } 2620 const auto validColumnNames = GetValidatedColumnNames(1, columns); 2621 if (std::is_same<V, RDFDetail::RInferredType>::value) { 2622 return Fill(TStatistic(), validColumnNames); 2623 } else { 2624 return Fill<V>(TStatistic(), validColumnNames); 2625 } 2626 } 2627 2628 //////////////////////////////////////////////////////////////////////////// 2629 /// \brief Return a TStatistic object, filled once per event (*lazy action*). 2630 /// 2631 /// \tparam V The type of the value column 2632 /// \tparam W The type of the weight column 2633 /// \param[in] value The name of the column with the values to fill the statistics with. 2634 /// \param[in] weight The name of the column with the weights to fill the statistics with. 2635 /// \return the filled TStatistic object wrapped in a RResultPtr. 2636 /// 2637 /// ### Example usage: 2638 /// ~~~{.cpp} 2639 /// // Deduce column types (this invocation needs jitting internally) 2640 /// auto stats0 = myDf.Stats("values", "weights"); 2641 /// // Explicit column types 2642 /// auto stats1 = myDf.Stats<int, float>("values", "weights"); 2643 /// ~~~ 2644 /// 2645 template <typename V = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType> 2646 RResultPtr<TStatistic> Stats(std::string_view value, std::string_view weight) 2647 { 2648 ColumnNames_t columns{std::string(value), std::string(weight)}; 2649 constexpr auto vIsInferred = std::is_same<V, RDFDetail::RInferredType>::value; 2650 constexpr auto wIsInferred = std::is_same<W, RDFDetail::RInferredType>::value; 2651 const auto validColumnNames = GetValidatedColumnNames(2, columns); 2652 // We have 3 cases: 2653 // 1. Both types are inferred: we use Fill and let the jit kick in. 2654 // 2. One of the two types is explicit and the other one is inferred: the case is not supported. 2655 // 3. Both types are explicit: we invoke the fully compiled Fill method. 2656 if (vIsInferred && wIsInferred) { 2657 return Fill(TStatistic(), validColumnNames); 2658 } else if (vIsInferred != wIsInferred) { 2659 std::string error("The "); 2660 error += vIsInferred ? "value " : "weight "; 2661 error += "column type is explicit, while the "; 2662 error += vIsInferred ? "weight " : "value "; 2663 error += " is specified to be inferred. This case is not supported: please specify both types or none."; 2664 throw std::runtime_error(error); 2665 } else { 2666 return Fill<V, W>(TStatistic(), validColumnNames); 2667 } 2668 } 2669 2670 //////////////////////////////////////////////////////////////////////////// 2671 /// \brief Return the minimum of processed column values (*lazy action*). 2672 /// \tparam T The type of the branch/column. 2673 /// \param[in] columnName The name of the branch/column to be treated. 2674 /// \return the minimum value of the selected column wrapped in a RResultPtr. 2675 /// 2676 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct 2677 /// template specialization of this method. 2678 /// If the type of the column is inferred, the return type is `double`, the type of the column otherwise. 2679 /// 2680 /// This action is *lazy*: upon invocation of this method the calculation is 2681 /// booked but not executed. Also see RResultPtr. 2682 /// 2683 /// ### Example usage: 2684 /// ~~~{.cpp} 2685 /// // Deduce column type (this invocation needs jitting internally) 2686 /// auto minVal0 = myDf.Min("values"); 2687 /// // Explicit column type 2688 /// auto minVal1 = myDf.Min<double>("values"); 2689 /// ~~~ 2690 /// 2691 template <typename T = RDFDetail::RInferredType> 2692 RResultPtr<RDFDetail::MinReturnType_t<T>> Min(std::string_view columnName = "") 2693 { 2694 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)}); 2695 using RetType_t = RDFDetail::MinReturnType_t<T>; 2696 auto minV = std::make_shared<RetType_t>(std::numeric_limits<RetType_t>::max()); 2697 return CreateAction<RDFInternal::ActionTags::Min, T>(userColumns, minV, minV, fProxiedPtr); 2698 } 2699 2700 //////////////////////////////////////////////////////////////////////////// 2701 /// \brief Return the maximum of processed column values (*lazy action*). 2702 /// \tparam T The type of the branch/column. 2703 /// \param[in] columnName The name of the branch/column to be treated. 2704 /// \return the maximum value of the selected column wrapped in a RResultPtr. 2705 /// 2706 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct 2707 /// template specialization of this method. 2708 /// If the type of the column is inferred, the return type is `double`, the type of the column otherwise. 2709 /// 2710 /// This action is *lazy*: upon invocation of this method the calculation is 2711 /// booked but not executed. Also see RResultPtr. 2712 /// 2713 /// ### Example usage: 2714 /// ~~~{.cpp} 2715 /// // Deduce column type (this invocation needs jitting internally) 2716 /// auto maxVal0 = myDf.Max("values"); 2717 /// // Explicit column type 2718 /// auto maxVal1 = myDf.Max<double>("values"); 2719 /// ~~~ 2720 /// 2721 template <typename T = RDFDetail::RInferredType> 2722 RResultPtr<RDFDetail::MaxReturnType_t<T>> Max(std::string_view columnName = "") 2723 { 2724 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)}); 2725 using RetType_t = RDFDetail::MaxReturnType_t<T>; 2726 auto maxV = std::make_shared<RetType_t>(std::numeric_limits<RetType_t>::lowest()); 2727 return CreateAction<RDFInternal::ActionTags::Max, T>(userColumns, maxV, maxV, fProxiedPtr); 2728 } 2729 2730 //////////////////////////////////////////////////////////////////////////// 2731 /// \brief Return the mean of processed column values (*lazy action*). 2732 /// \tparam T The type of the branch/column. 2733 /// \param[in] columnName The name of the branch/column to be treated. 2734 /// \return the mean value of the selected column wrapped in a RResultPtr. 2735 /// 2736 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct 2737 /// template specialization of this method. 2738 /// 2739 /// This action is *lazy*: upon invocation of this method the calculation is 2740 /// booked but not executed. Also see RResultPtr. 2741 /// 2742 /// ### Example usage: 2743 /// ~~~{.cpp} 2744 /// // Deduce column type (this invocation needs jitting internally) 2745 /// auto meanVal0 = myDf.Mean("values"); 2746 /// // Explicit column type 2747 /// auto meanVal1 = myDf.Mean<double>("values"); 2748 /// ~~~ 2749 /// 2750 template <typename T = RDFDetail::RInferredType> 2751 RResultPtr<double> Mean(std::string_view columnName = "") 2752 { 2753 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)}); 2754 auto meanV = std::make_shared<double>(0); 2755 return CreateAction<RDFInternal::ActionTags::Mean, T>(userColumns, meanV, meanV, fProxiedPtr); 2756 } 2757 2758 //////////////////////////////////////////////////////////////////////////// 2759 /// \brief Return the unbiased standard deviation of processed column values (*lazy action*). 2760 /// \tparam T The type of the branch/column. 2761 /// \param[in] columnName The name of the branch/column to be treated. 2762 /// \return the standard deviation value of the selected column wrapped in a RResultPtr. 2763 /// 2764 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct 2765 /// template specialization of this method. 2766 /// 2767 /// This action is *lazy*: upon invocation of this method the calculation is 2768 /// booked but not executed. Also see RResultPtr. 2769 /// 2770 /// ### Example usage: 2771 /// ~~~{.cpp} 2772 /// // Deduce column type (this invocation needs jitting internally) 2773 /// auto stdDev0 = myDf.StdDev("values"); 2774 /// // Explicit column type 2775 /// auto stdDev1 = myDf.StdDev<double>("values"); 2776 /// ~~~ 2777 /// 2778 template <typename T = RDFDetail::RInferredType> 2779 RResultPtr<double> StdDev(std::string_view columnName = "") 2780 { 2781 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)}); 2782 auto stdDeviationV = std::make_shared<double>(0); 2783 return CreateAction<RDFInternal::ActionTags::StdDev, T>(userColumns, stdDeviationV, stdDeviationV, fProxiedPtr); 2784 } 2785 2786 // clang-format off 2787 //////////////////////////////////////////////////////////////////////////// 2788 /// \brief Return the sum of processed column values (*lazy action*). 2789 /// \tparam T The type of the branch/column. 2790 /// \param[in] columnName The name of the branch/column. 2791 /// \param[in] initValue Optional initial value for the sum. If not present, the column values must be default-constructible. 2792 /// \return the sum of the selected column wrapped in a RResultPtr. 2793 /// 2794 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct 2795 /// template specialization of this method. 2796 /// If the type of the column is inferred, the return type is `double`, the type of the column otherwise. 2797 /// 2798 /// This action is *lazy*: upon invocation of this method the calculation is 2799 /// booked but not executed. Also see RResultPtr. 2800 /// 2801 /// ### Example usage: 2802 /// ~~~{.cpp} 2803 /// // Deduce column type (this invocation needs jitting internally) 2804 /// auto sum0 = myDf.Sum("values"); 2805 /// // Explicit column type 2806 /// auto sum1 = myDf.Sum<double>("values"); 2807 /// ~~~ 2808 /// 2809 template <typename T = RDFDetail::RInferredType> 2810 RResultPtr<RDFDetail::SumReturnType_t<T>> 2811 Sum(std::string_view columnName = "", 2812 const RDFDetail::SumReturnType_t<T> &initValue = RDFDetail::SumReturnType_t<T>{}) 2813 { 2814 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)}); 2815 auto sumV = std::make_shared<RDFDetail::SumReturnType_t<T>>(initValue); 2816 return CreateAction<RDFInternal::ActionTags::Sum, T>(userColumns, sumV, sumV, fProxiedPtr); 2817 } 2818 // clang-format on 2819 2820 //////////////////////////////////////////////////////////////////////////// 2821 /// \brief Gather filtering statistics. 2822 /// \return the resulting `RCutFlowReport` instance wrapped in a RResultPtr. 2823 /// 2824 /// Calling `Report` on the main `RDataFrame` object gathers stats for 2825 /// all named filters in the call graph. Calling this method on a 2826 /// stored chain state (i.e. a graph node different from the first) gathers 2827 /// the stats for all named filters in the chain section between the original 2828 /// `RDataFrame` and that node (included). Stats are gathered in the same 2829 /// order as the named filters have been added to the graph. 2830 /// A RResultPtr<RCutFlowReport> is returned to allow inspection of the 2831 /// effects cuts had. 2832 /// 2833 /// This action is *lazy*: upon invocation of 2834 /// this method the calculation is booked but not executed. See RResultPtr 2835 /// documentation. 2836 /// 2837 /// ### Example usage: 2838 /// ~~~{.cpp} 2839 /// auto filtered = d.Filter(cut1, {"b1"}, "Cut1").Filter(cut2, {"b2"}, "Cut2"); 2840 /// auto cutReport = filtered3.Report(); 2841 /// cutReport->Print(); 2842 /// ~~~ 2843 /// 2844 RResultPtr<RCutFlowReport> Report() 2845 { 2846 bool returnEmptyReport = false; 2847 // if this is a RInterface<RLoopManager> on which `Define` has been called, users 2848 // are calling `Report` on a chain of the form LoopManager->Define->Define->..., which 2849 // certainly does not contain named filters. 2850 // The number 4 takes into account the implicit columns for entry and slot number 2851 // and their aliases (2 + 2, i.e. {r,t}dfentry_ and {r,t}dfslot_) 2852 if (std::is_same<Proxied, RLoopManager>::value && fColRegister.GenerateColumnNames().size() > 4) 2853 returnEmptyReport = true; 2854 2855 auto rep = std::make_shared<RCutFlowReport>(); 2856 using Helper_t = RDFInternal::ReportHelper<Proxied>; 2857 using Action_t = RDFInternal::RAction<Helper_t, Proxied>; 2858 2859 auto action = std::make_unique<Action_t>(Helper_t(rep, fProxiedPtr.get(), returnEmptyReport), ColumnNames_t({}), 2860 fProxiedPtr, RDFInternal::RColumnRegister(fColRegister)); 2861 2862 return MakeResultPtr(rep, *fLoopManager, std::move(action)); 2863 } 2864 2865 /// \brief Returns the names of the filters created. 2866 /// \return the container of filters names. 2867 /// 2868 /// If called on a root node, all the filters in the computation graph will 2869 /// be printed. For any other node, only the filters upstream of that node. 2870 /// Filters without a name are printed as "Unnamed Filter" 2871 /// This is not an action nor a transformation, just a query to the RDataFrame object. 2872 /// 2873 /// ### Example usage: 2874 /// ~~~{.cpp} 2875 /// auto filtNames = d.GetFilterNames(); 2876 /// for (auto &&filtName : filtNames) std::cout << filtName << std::endl; 2877 /// ~~~ 2878 /// 2879 std::vector<std::string> GetFilterNames() { return RDFInternal::GetFilterNames(fProxiedPtr); } 2880 2881 // clang-format off 2882 //////////////////////////////////////////////////////////////////////////// 2883 /// \brief Execute a user-defined accumulation operation on the processed column values in each processing slot. 2884 /// \tparam F The type of the aggregator callable. Automatically deduced. 2885 /// \tparam U The type of the aggregator variable. Must be default-constructible, copy-constructible and copy-assignable. Automatically deduced. 2886 /// \tparam T The type of the column to apply the reduction to. Automatically deduced. 2887 /// \param[in] aggregator A callable with signature `U(U,T)` or `void(U&,T)`, where T is the type of the column, U is the type of the aggregator variable 2888 /// \param[in] merger A callable with signature `U(U,U)` or `void(std::vector<U>&)` used to merge the results of the accumulations of each thread 2889 /// \param[in] columnName The column to be aggregated. If omitted, the first default column is used instead. 2890 /// \param[in] aggIdentity The aggregator variable of each thread is initialized to this value (or is default-constructed if the parameter is omitted) 2891 /// \return the result of the aggregation wrapped in a RResultPtr. 2892 /// 2893 /// An aggregator callable takes two values, an aggregator variable and a column value. The aggregator variable is 2894 /// initialized to aggIdentity or default-constructed if aggIdentity is omitted. 2895 /// This action calls the aggregator callable for each processed entry, passing in the aggregator variable and 2896 /// the value of the column columnName. 2897 /// If the signature is `U(U,T)` the aggregator variable is then copy-assigned the result of the execution of the callable. 2898 /// Otherwise the signature of aggregator must be `void(U&,T)`. 2899 /// 2900 /// The merger callable is used to merge the partial accumulation results of each processing thread. It is only called in multi-thread executions. 2901 /// If its signature is `U(U,U)` the aggregator variables of each thread are merged two by two. 2902 /// If its signature is `void(std::vector<U>& a)` it is assumed that it merges all aggregators in a[0]. 2903 /// 2904 /// This action is *lazy*: upon invocation of this method the calculation is booked but not executed. Also see RResultPtr. 2905 /// 2906 /// Example usage: 2907 /// ~~~{.cpp} 2908 /// auto aggregator = [](double acc, double x) { return acc * x; }; 2909 /// ROOT::EnableImplicitMT(); 2910 /// // If multithread is enabled, the aggregator function will be called by more threads 2911 /// // and will produce a vector of partial accumulators. 2912 /// // The merger function performs the final aggregation of these partial results. 2913 /// auto merger = [](std::vector<double> &accumulators) { 2914 /// for (auto i : ROOT::TSeqU(1u, accumulators.size())) { 2915 /// accumulators[0] *= accumulators[i]; 2916 /// } 2917 /// }; 2918 /// 2919 /// // The accumulator is initialized at this value by every thread. 2920 /// double initValue = 1.; 2921 /// 2922 /// // Multiplies all elements of the column "x" 2923 /// auto result = d.Aggregate(aggregator, merger, "x", initValue); 2924 /// ~~~ 2925 // clang-format on 2926 template <typename AccFun, typename MergeFun, typename R = typename TTraits::CallableTraits<AccFun>::ret_type, 2927 typename ArgTypes = typename TTraits::CallableTraits<AccFun>::arg_types, 2928 typename ArgTypesNoDecay = typename TTraits::CallableTraits<AccFun>::arg_types_nodecay, 2929 typename U = TTraits::TakeFirstParameter_t<ArgTypes>, 2930 typename T = TTraits::TakeFirstParameter_t<TTraits::RemoveFirstParameter_t<ArgTypes>>> 2931 RResultPtr<U> Aggregate(AccFun aggregator, MergeFun merger, std::string_view columnName, const U &aggIdentity) 2932 { 2933 RDFInternal::CheckAggregate<R, MergeFun>(ArgTypesNoDecay()); 2934 const auto columns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)}); 2935 2936 const auto validColumnNames = GetValidatedColumnNames(1, columns); 2937 CheckAndFillDSColumns(validColumnNames, TTraits::TypeList<T>()); 2938 2939 auto accObjPtr = std::make_shared<U>(aggIdentity); 2940 using Helper_t = RDFInternal::AggregateHelper<AccFun, MergeFun, R, T, U>; 2941 using Action_t = RDFInternal::RAction<Helper_t, Proxied>; 2942 auto action = std::make_unique<Action_t>( 2943 Helper_t(std::move(aggregator), std::move(merger), accObjPtr, fLoopManager->GetNSlots()), validColumnNames, 2944 fProxiedPtr, fColRegister); 2945 return MakeResultPtr(accObjPtr, *fLoopManager, std::move(action)); 2946 } 2947 2948 // clang-format off 2949 //////////////////////////////////////////////////////////////////////////// 2950 /// \brief Execute a user-defined accumulation operation on the processed column values in each processing slot. 2951 /// \tparam F The type of the aggregator callable. Automatically deduced. 2952 /// \tparam U The type of the aggregator variable. Must be default-constructible, copy-constructible and copy-assignable. Automatically deduced. 2953 /// \tparam T The type of the column to apply the reduction to. Automatically deduced. 2954 /// \param[in] aggregator A callable with signature `U(U,T)` or `void(U,T)`, where T is the type of the column, U is the type of the aggregator variable 2955 /// \param[in] merger A callable with signature `U(U,U)` or `void(std::vector<U>&)` used to merge the results of the accumulations of each thread 2956 /// \param[in] columnName The column to be aggregated. If omitted, the first default column is used instead. 2957 /// \return the result of the aggregation wrapped in a RResultPtr. 2958 /// 2959 /// See previous Aggregate overload for more information. 2960 // clang-format on 2961 template <typename AccFun, typename MergeFun, typename R = typename TTraits::CallableTraits<AccFun>::ret_type, 2962 typename ArgTypes = typename TTraits::CallableTraits<AccFun>::arg_types, 2963 typename U = TTraits::TakeFirstParameter_t<ArgTypes>, 2964 typename T = TTraits::TakeFirstParameter_t<TTraits::RemoveFirstParameter_t<ArgTypes>>> 2965 RResultPtr<U> Aggregate(AccFun aggregator, MergeFun merger, std::string_view columnName = "") 2966 { 2967 static_assert( 2968 std::is_default_constructible<U>::value, 2969 "aggregated object cannot be default-constructed. Please provide an initialisation value (aggIdentity)"); 2970 return Aggregate(std::move(aggregator), std::move(merger), columnName, U()); 2971 } 2972 2973 // clang-format off 2974 //////////////////////////////////////////////////////////////////////////// 2975 /// \brief Book execution of a custom action using a user-defined helper object. 2976 /// \tparam FirstColumn The type of the first column used by this action. Inferred together with OtherColumns if not present. 2977 /// \tparam OtherColumns A list of the types of the other columns used by this action 2978 /// \tparam Helper The type of the user-defined helper. See below for the required interface it should expose. 2979 /// \param[in] helper The Action Helper to be scheduled. 2980 /// \param[in] columns The names of the columns on which the helper acts. 2981 /// \return the result of the helper wrapped in a RResultPtr. 2982 /// 2983 /// This method books a custom action for execution. The behavior of the action is completely dependent on the 2984 /// Helper object provided by the caller. The required interface for the helper is described below (more 2985 /// methods that the ones required can be present, e.g. a constructor that takes the number of worker threads is usually useful): 2986 /// 2987 /// ### Mandatory interface 2988 /// 2989 /// * `Helper` must publicly inherit from `ROOT::Detail::RDF::RActionImpl<Helper>` 2990 /// * `Helper::Result_t`: public alias for the type of the result of this action helper. `Result_t` must be default-constructible. 2991 /// * `Helper(Helper &&)`: a move-constructor is required. Copy-constructors are discouraged. 2992 /// * `std::shared_ptr<Result_t> GetResultPtr() const`: return a shared_ptr to the result of this action (of type 2993 /// Result_t). The RResultPtr returned by Book will point to this object. Note that this method can be called 2994 /// _before_ Initialize(), because the RResultPtr is constructed before the event loop is started. 2995 /// * `void Initialize()`: this method is called once before starting the event-loop. Useful for setup operations. 2996 /// It must reset the state of the helper to the expected state at the beginning of the event loop: the same helper, 2997 /// or copies of it, might be used for multiple event loops (e.g. in the presence of systematic variations). 2998 /// * `void InitTask(TTreeReader *, unsigned int slot)`: each working thread shall call this method during the event 2999 /// loop, before processing a batch of entries. The pointer passed as argument, if not null, will point to the TTreeReader 3000 /// that RDataFrame has set up to read the task's batch of entries. It is passed to the helper to allow certain advanced optimizations 3001 /// it should not usually serve any purpose for the Helper. This method is often no-op for simple helpers. 3002 /// * `void Exec(unsigned int slot, ColumnTypes...columnValues)`: each working thread shall call this method 3003 /// during the event-loop, possibly concurrently. No two threads will ever call Exec with the same 'slot' value: 3004 /// this parameter is there to facilitate writing thread-safe helpers. The other arguments will be the values of 3005 /// the requested columns for the particular entry being processed. 3006 /// * `void Finalize()`: this method is called at the end of the event loop. Commonly used to finalize the contents of the result. 3007 /// * `std::string GetActionName()`: it returns a string identifier for this type of action that RDataFrame will use in 3008 /// diagnostics, SaveGraph(), etc. 3009 /// 3010 /// ### Optional methods 3011 /// 3012 /// If these methods are implemented they enable extra functionality as per the description below. 3013 /// 3014 /// * `Result_t &PartialUpdate(unsigned int slot)`: if present, it must return the value of the partial result of this action for the given 'slot'. 3015 /// Different threads might call this method concurrently, but will do so with different 'slot' numbers. 3016 /// RDataFrame leverages this method to implement RResultPtr::OnPartialResult(). 3017 /// * `ROOT::RDF::SampleCallback_t GetSampleCallback()`: if present, it must return a callable with the 3018 /// appropriate signature (see ROOT::RDF::SampleCallback_t) that will be invoked at the beginning of the processing 3019 /// of every sample, as in DefinePerSample(). 3020 /// * `Helper MakeNew(void *newResult, std::string_view variation = "nominal")`: if implemented, it enables varying 3021 /// the action's result with VariationsFor(). It takes a type-erased new result that can be safely cast to a 3022 /// `std::shared_ptr<Result_t> *` (a pointer to shared pointer) and should be used as the action's output result. 3023 /// The function optionally takes the name of the current variation which could be useful in customizing its behaviour. 3024 /// 3025 /// In case Book is called without specifying column types as template arguments, corresponding typed code will be just-in-time compiled 3026 /// by RDataFrame. In that case the Helper class needs to be known to the ROOT interpreter. 3027 /// 3028 /// This action is *lazy*: upon invocation of this method the calculation is booked but not executed. Also see RResultPtr. 3029 /// 3030 /// ### Examples 3031 /// See [this tutorial](https://root.cern/doc/master/df018__customActions_8C.html) for an example implementation of an action helper. 3032 /// 3033 /// It is also possible to inspect the code used by built-in RDataFrame actions at ActionHelpers.hxx. 3034 /// 3035 // clang-format on 3036 template <typename FirstColumn = RDFDetail::RInferredType, typename... OtherColumns, typename Helper> 3037 RResultPtr<typename std::decay_t<Helper>::Result_t> Book(Helper &&helper, const ColumnNames_t &columns = {}) 3038 { 3039 using HelperT = std::decay_t<Helper>; 3040 // TODO add more static sanity checks on Helper 3041 using AH = RDFDetail::RActionImpl<HelperT>; 3042 static_assert(std::is_base_of<AH, HelperT>::value && std::is_convertible<HelperT *, AH *>::value, 3043 "Action helper of type T must publicly inherit from ROOT::Detail::RDF::RActionImpl<T>"); 3044 3045 auto hPtr = std::make_shared<HelperT>(std::forward<Helper>(helper)); 3046 auto resPtr = hPtr->GetResultPtr(); 3047 3048 if (std::is_same<FirstColumn, RDFDetail::RInferredType>::value && columns.empty()) { 3049 return CallCreateActionWithoutColsIfPossible<HelperT>(resPtr, hPtr, TTraits::TypeList<FirstColumn>{}); 3050 } else { 3051 return CreateAction<RDFInternal::ActionTags::Book, FirstColumn, OtherColumns...>(columns, resPtr, hPtr, 3052 fProxiedPtr, columns.size()); 3053 } 3054 } 3055 3056 //////////////////////////////////////////////////////////////////////////// 3057 /// \brief Provides a representation of the columns in the dataset. 3058 /// \tparam ColumnTypes variadic list of branch/column types. 3059 /// \param[in] columnList Names of the columns to be displayed. 3060 /// \param[in] nRows Number of events for each column to be displayed. 3061 /// \param[in] nMaxCollectionElements Maximum number of collection elements to display per row. 3062 /// \return the `RDisplay` instance wrapped in a RResultPtr. 3063 /// 3064 /// This function returns a `RResultPtr<RDisplay>` containing all the entries to be displayed, organized in a tabular 3065 /// form. RDisplay will either print on the standard output a summarized version through `RDisplay::Print()` or will 3066 /// return a complete version through `RDisplay::AsString()`. 3067 /// 3068 /// This action is *lazy*: upon invocation of this method the calculation is booked but not executed. Also see 3069 /// RResultPtr. 3070 /// 3071 /// Example usage: 3072 /// ~~~{.cpp} 3073 /// // Preparing the RResultPtr<RDisplay> object with all columns and default number of entries 3074 /// auto d1 = rdf.Display(""); 3075 /// // Preparing the RResultPtr<RDisplay> object with two columns and 128 entries 3076 /// auto d2 = d.Display({"x", "y"}, 128); 3077 /// // Printing the short representations, the event loop will run 3078 /// d1->Print(); 3079 /// d2->Print(); 3080 /// ~~~ 3081 template <typename... ColumnTypes> 3082 RResultPtr<RDisplay> Display(const ColumnNames_t &columnList, size_t nRows = 5, size_t nMaxCollectionElements = 10) 3083 { 3084 CheckIMTDisabled("Display"); 3085 auto newCols = columnList; 3086 newCols.insert(newCols.begin(), "rdfentry_"); // Artificially insert first column 3087 auto displayer = std::make_shared<RDisplay>(newCols, GetColumnTypeNamesList(newCols), nMaxCollectionElements); 3088 using displayHelperArgs_t = std::pair<size_t, std::shared_ptr<RDisplay>>; 3089 // Need to add ULong64_t type corresponding to the first column rdfentry_ 3090 return CreateAction<RDFInternal::ActionTags::Display, ULong64_t, ColumnTypes...>( 3091 std::move(newCols), displayer, std::make_shared<displayHelperArgs_t>(nRows, displayer), fProxiedPtr); 3092 } 3093 3094 //////////////////////////////////////////////////////////////////////////// 3095 /// \brief Provides a representation of the columns in the dataset. 3096 /// \param[in] columnList Names of the columns to be displayed. 3097 /// \param[in] nRows Number of events for each column to be displayed. 3098 /// \param[in] nMaxCollectionElements Maximum number of collection elements to display per row. 3099 /// \return the `RDisplay` instance wrapped in a RResultPtr. 3100 /// 3101 /// This overload automatically infers the column types. 3102 /// See the previous overloads for further details. 3103 /// 3104 /// Invoked when no types are specified to Display 3105 RResultPtr<RDisplay> Display(const ColumnNames_t &columnList, size_t nRows = 5, size_t nMaxCollectionElements = 10) 3106 { 3107 CheckIMTDisabled("Display"); 3108 auto newCols = columnList; 3109 newCols.insert(newCols.begin(), "rdfentry_"); // Artificially insert first column 3110 auto displayer = std::make_shared<RDisplay>(newCols, GetColumnTypeNamesList(newCols), nMaxCollectionElements); 3111 using displayHelperArgs_t = std::pair<size_t, std::shared_ptr<RDisplay>>; 3112 return CreateAction<RDFInternal::ActionTags::Display, RDFDetail::RInferredType>( 3113 std::move(newCols), displayer, std::make_shared<displayHelperArgs_t>(nRows, displayer), fProxiedPtr, 3114 columnList.size() + 1); 3115 } 3116 3117 //////////////////////////////////////////////////////////////////////////// 3118 /// \brief Provides a representation of the columns in the dataset. 3119 /// \param[in] columnNameRegexp A regular expression to select the columns. 3120 /// \param[in] nRows Number of events for each column to be displayed. 3121 /// \param[in] nMaxCollectionElements Maximum number of collection elements to display per row. 3122 /// \return the `RDisplay` instance wrapped in a RResultPtr. 3123 /// 3124 /// The existing columns are matched against the regular expression. If the string provided 3125 /// is empty, all columns are selected. 3126 /// See the previous overloads for further details. 3127 RResultPtr<RDisplay> 3128 Display(std::string_view columnNameRegexp = "", size_t nRows = 5, size_t nMaxCollectionElements = 10) 3129 { 3130 const auto columnNames = GetColumnNames(); 3131 const auto selectedColumns = RDFInternal::ConvertRegexToColumns(columnNames, columnNameRegexp, "Display"); 3132 return Display(selectedColumns, nRows, nMaxCollectionElements); 3133 } 3134 3135 //////////////////////////////////////////////////////////////////////////// 3136 /// \brief Provides a representation of the columns in the dataset. 3137 /// \param[in] columnList Names of the columns to be displayed. 3138 /// \param[in] nRows Number of events for each column to be displayed. 3139 /// \param[in] nMaxCollectionElements Number of maximum elements in collection. 3140 /// \return the `RDisplay` instance wrapped in a RResultPtr. 3141 /// 3142 /// See the previous overloads for further details. 3143 RResultPtr<RDisplay> 3144 Display(std::initializer_list<std::string> columnList, size_t nRows = 5, size_t nMaxCollectionElements = 10) 3145 { 3146 ColumnNames_t selectedColumns(columnList); 3147 return Display(selectedColumns, nRows, nMaxCollectionElements); 3148 } 3149 3150 private: 3151 template <typename F, typename DefineType, typename RetType = typename TTraits::CallableTraits<F>::ret_type> 3152 std::enable_if_t<std::is_default_constructible<RetType>::value, RInterface<Proxied, DS_t>> 3153 DefineImpl(std::string_view name, F &&expression, const ColumnNames_t &columns, const std::string &where) 3154 { 3155 if (where.compare(0, 8, "Redefine") != 0) { // not a Redefine 3156 RDFInternal::CheckValidCppVarName(name, where); 3157 RDFInternal::CheckForRedefinition(where, name, fColRegister, fLoopManager->GetBranchNames(), 3158 GetDataSource() ? GetDataSource()->GetColumnNames() : ColumnNames_t{}); 3159 } else { 3160 RDFInternal::CheckForDefinition(where, name, fColRegister, fLoopManager->GetBranchNames(), 3161 GetDataSource() ? GetDataSource()->GetColumnNames() : ColumnNames_t{}); 3162 RDFInternal::CheckForNoVariations(where, name, fColRegister); 3163 } 3164 3165 using ArgTypes_t = typename TTraits::CallableTraits<F>::arg_types; 3166 using ColTypesTmp_t = typename RDFInternal::RemoveFirstParameterIf< 3167 std::is_same<DefineType, RDFDetail::ExtraArgsForDefine::Slot>::value, ArgTypes_t>::type; 3168 using ColTypes_t = typename RDFInternal::RemoveFirstTwoParametersIf< 3169 std::is_same<DefineType, RDFDetail::ExtraArgsForDefine::SlotAndEntry>::value, ColTypesTmp_t>::type; 3170 3171 constexpr auto nColumns = ColTypes_t::list_size; 3172 3173 const auto validColumnNames = GetValidatedColumnNames(nColumns, columns); 3174 CheckAndFillDSColumns(validColumnNames, ColTypes_t()); 3175 3176 // Declare return type to the interpreter, for future use by jitted actions 3177 auto retTypeName = RDFInternal::TypeID2TypeName(typeid(RetType)); 3178 if (retTypeName.empty()) { 3179 // The type is not known to the interpreter. 3180 // We must not error out here, but if/when this column is used in jitted code 3181 const auto demangledType = RDFInternal::DemangleTypeIdName(typeid(RetType)); 3182 retTypeName = "CLING_UNKNOWN_TYPE_" + demangledType; 3183 } 3184 3185 using NewCol_t = RDFDetail::RDefine<F, DefineType>; 3186 auto newColumn = std::make_shared<NewCol_t>(name, retTypeName, std::forward<F>(expression), validColumnNames, 3187 fColRegister, *fLoopManager); 3188 3189 RDFInternal::RColumnRegister newCols(fColRegister); 3190 newCols.AddDefine(std::move(newColumn)); 3191 3192 RInterface<Proxied> newInterface(fProxiedPtr, *fLoopManager, std::move(newCols)); 3193 3194 return newInterface; 3195 } 3196 3197 // This overload is chosen when the callable passed to Define or DefineSlot returns void. 3198 // It simply fires a compile-time error. This is preferable to a static_assert in the main `Define` overload because 3199 // this way compilation of `Define` has no way to continue after throwing the error. 3200 template <typename F, typename DefineType, typename RetType = typename TTraits::CallableTraits<F>::ret_type, 3201 bool IsFStringConv = std::is_convertible<F, std::string>::value, 3202 bool IsRetTypeDefConstr = std::is_default_constructible<RetType>::value> 3203 std::enable_if_t<!IsFStringConv && !IsRetTypeDefConstr, RInterface<Proxied, DS_t>> 3204 DefineImpl(std::string_view, F, const ColumnNames_t &, const std::string &) 3205 { 3206 static_assert(std::is_default_constructible<typename TTraits::CallableTraits<F>::ret_type>::value, 3207 "Error in `Define`: type returned by expression is not default-constructible"); 3208 return *this; // never reached 3209 } 3210 3211 template <typename... ColumnTypes> 3212 RResultPtr<RInterface<RLoopManager>> SnapshotImpl(std::string_view fullTreeName, std::string_view filename, 3213 const ColumnNames_t &columnList, const RSnapshotOptions &options) 3214 { 3215 const auto columnListWithoutSizeColumns = RDFInternal::FilterArraySizeColNames(columnList, "Snapshot"); 3216 3217 RDFInternal::CheckTypesAndPars(sizeof...(ColumnTypes), columnListWithoutSizeColumns.size()); 3218 // validCols has aliases resolved, while columnListWithoutSizeColumns still has aliases in it. 3219 const auto validCols = GetValidatedColumnNames(columnListWithoutSizeColumns.size(), columnListWithoutSizeColumns); 3220 RDFInternal::CheckForDuplicateSnapshotColumns(validCols); 3221 CheckAndFillDSColumns(validCols, TTraits::TypeList<ColumnTypes...>()); 3222 3223 const auto parsedTreePath = RDFInternal::ParseTreePath(fullTreeName); 3224 const auto &treename = parsedTreePath.fTreeName; 3225 const auto &dirname = parsedTreePath.fDirName; 3226 3227 ::TDirectory::TContext ctxt; 3228 3229 RResultPtr<RInterface<RLoopManager>> resPtr; 3230 3231 if (options.fOutputFormat == ESnapshotOutputFormat::kRNTuple) { 3232 if (RDFInternal::GetDataSourceLabel(*this) == "TTreeDS") { 3233 throw std::runtime_error("Snapshotting from TTree to RNTuple is not yet supported. The current recommended " 3234 "way to convert TTrees to RNTuple is through the RNTupleImporter."); 3235 } 3236 3237 auto newRDF = 3238 std::make_shared<RInterface<RLoopManager>>(std::make_shared<RLoopManager>(columnListWithoutSizeColumns)); 3239 3240 auto snapHelperArgs = std::make_shared<RDFInternal::SnapshotHelperArgs>(RDFInternal::SnapshotHelperArgs{ 3241 std::string(filename), std::string(dirname), std::string(treename), columnListWithoutSizeColumns, options, 3242 newRDF->GetLoopManager(), GetLoopManager(), true /* fToRNTuple */}); 3243 3244 // The Snapshot helper will use validCols (with aliases resolved) as input columns, and 3245 // columnListWithoutSizeColumns (still with aliases in it, passed through snapHelperArgs) as output column 3246 // names. 3247 resPtr = CreateAction<RDFInternal::ActionTags::Snapshot, ColumnTypes...>(validCols, newRDF, snapHelperArgs, 3248 fProxiedPtr); 3249 } else { 3250 if (RDFInternal::GetDataSourceLabel(*this) == "RNTupleDS" && 3251 options.fOutputFormat == ESnapshotOutputFormat::kDefault) { 3252 Warning("Snapshot", 3253 "The default Snapshot output data format is TTree, but the input data format is RNTuple. If you " 3254 "want to Snapshot to RNTuple or suppress this warning, set the appropriate fOutputFormat option in " 3255 "RSnapshotOptions. Note that this current default behaviour might change in the future."); 3256 } 3257 3258 // We create an RLoopManager without a data source. This needs to be initialised when the output TTree dataset 3259 // has actually been created and written to TFile, i.e. at the end of the Snapshot execution. 3260 auto newRDF = 3261 std::make_shared<RInterface<RLoopManager>>(std::make_shared<RLoopManager>(columnListWithoutSizeColumns)); 3262 3263 auto snapHelperArgs = std::make_shared<RDFInternal::SnapshotHelperArgs>(RDFInternal::SnapshotHelperArgs{ 3264 std::string(filename), std::string(dirname), std::string(treename), columnListWithoutSizeColumns, options, 3265 newRDF->GetLoopManager(), GetLoopManager(), false /* fToRNTuple */}); 3266 3267 // The Snapshot helper will use validCols (with aliases resolved) as input columns, and 3268 // columnListWithoutSizeColumns (still with aliases in it, passed through snapHelperArgs) as output column 3269 // names. 3270 resPtr = CreateAction<RDFInternal::ActionTags::Snapshot, ColumnTypes...>(validCols, newRDF, snapHelperArgs, 3271 fProxiedPtr); 3272 } 3273 3274 if (!options.fLazy) 3275 *resPtr; 3276 return resPtr; 3277 } 3278 3279 //////////////////////////////////////////////////////////////////////////// 3280 /// \brief Implementation of cache. 3281 template <typename... ColTypes, std::size_t... S> 3282 RInterface<RLoopManager> CacheImpl(const ColumnNames_t &columnList, std::index_sequence<S...>) 3283 { 3284 const auto columnListWithoutSizeColumns = RDFInternal::FilterArraySizeColNames(columnList, "Snapshot"); 3285 3286 // Check at compile time that the columns types are copy constructible 3287 constexpr bool areCopyConstructible = 3288 RDFInternal::TEvalAnd<std::is_copy_constructible<ColTypes>::value...>::value; 3289 static_assert(areCopyConstructible, "Columns of a type which is not copy constructible cannot be cached yet."); 3290 3291 RDFInternal::CheckTypesAndPars(sizeof...(ColTypes), columnListWithoutSizeColumns.size()); 3292 3293 auto colHolders = std::make_tuple(Take<ColTypes>(columnListWithoutSizeColumns[S])...); 3294 auto ds = std::make_unique<RLazyDS<ColTypes...>>( 3295 std::make_pair(columnListWithoutSizeColumns[S], std::get<S>(colHolders))...); 3296 3297 RInterface<RLoopManager> cachedRDF(std::make_shared<RLoopManager>(std::move(ds), columnListWithoutSizeColumns)); 3298 3299 return cachedRDF; 3300 } 3301 3302 template <bool IsSingleColumn, typename F> 3303 RInterface<Proxied, DS_t> 3304 VaryImpl(const std::vector<std::string> &colNames, F &&expression, const ColumnNames_t &inputColumns, 3305 const std::vector<std::string> &variationTags, std::string_view variationName) 3306 { 3307 using F_t = std::decay_t<F>; 3308 using ColTypes_t = typename TTraits::CallableTraits<F_t>::arg_types; 3309 using RetType = typename TTraits::CallableTraits<F_t>::ret_type; 3310 constexpr auto nColumns = ColTypes_t::list_size; 3311 3312 SanityChecksForVary<RetType>(colNames, variationTags, variationName); 3313 3314 const auto validColumnNames = GetValidatedColumnNames(nColumns, inputColumns); 3315 CheckAndFillDSColumns(validColumnNames, ColTypes_t{}); 3316 3317 auto retTypeName = RDFInternal::TypeID2TypeName(typeid(RetType)); 3318 if (retTypeName.empty()) { 3319 // The type is not known to the interpreter, but we don't want to error out 3320 // here, rather if/when this column is used in jitted code, so we inject a broken but telling type name. 3321 const auto demangledType = RDFInternal::DemangleTypeIdName(typeid(RetType)); 3322 retTypeName = "CLING_UNKNOWN_TYPE_" + demangledType; 3323 } 3324 3325 auto variation = std::make_shared<RDFInternal::RVariation<F_t, IsSingleColumn>>( 3326 colNames, variationName, std::forward<F>(expression), variationTags, retTypeName, fColRegister, *fLoopManager, 3327 validColumnNames); 3328 3329 RDFInternal::RColumnRegister newCols(fColRegister); 3330 newCols.AddVariation(std::move(variation)); 3331 3332 RInterface<Proxied> newInterface(fProxiedPtr, *fLoopManager, std::move(newCols)); 3333 3334 return newInterface; 3335 } 3336 3337 RInterface<Proxied, DS_t> JittedVaryImpl(const std::vector<std::string> &colNames, std::string_view expression, 3338 const std::vector<std::string> &variationTags, 3339 std::string_view variationName, bool isSingleColumn) 3340 { 3341 R__ASSERT(!variationTags.empty() && "Must have at least one variation."); 3342 R__ASSERT(!colNames.empty() && "Must have at least one varied column."); 3343 R__ASSERT(!variationName.empty() && "Must provide a variation name."); 3344 3345 for (auto &colName : colNames) { 3346 RDFInternal::CheckValidCppVarName(colName, "Vary"); 3347 RDFInternal::CheckForDefinition("Vary", colName, fColRegister, fLoopManager->GetBranchNames(), 3348 GetDataSource() ? GetDataSource()->GetColumnNames() : ColumnNames_t{}); 3349 } 3350 RDFInternal::CheckValidCppVarName(variationName, "Vary"); 3351 3352 // when varying multiple columns, they must be different columns 3353 if (colNames.size() > 1) { 3354 std::set<std::string> uniqueCols(colNames.begin(), colNames.end()); 3355 if (uniqueCols.size() != colNames.size()) 3356 throw std::logic_error("A column name was passed to the same Vary invocation multiple times."); 3357 } 3358 3359 auto upcastNodeOnHeap = RDFInternal::MakeSharedOnHeap(RDFInternal::UpcastNode(fProxiedPtr)); 3360 auto jittedVariation = RDFInternal::BookVariationJit( 3361 colNames, variationName, variationTags, expression, *fLoopManager, GetDataSource(), fColRegister, 3362 fLoopManager->GetBranchNames(), upcastNodeOnHeap, isSingleColumn); 3363 3364 RDFInternal::RColumnRegister newColRegister(fColRegister); 3365 newColRegister.AddVariation(std::move(jittedVariation)); 3366 3367 RInterface<Proxied, DS_t> newInterface(fProxiedPtr, *fLoopManager, std::move(newColRegister)); 3368 3369 return newInterface; 3370 } 3371 3372 template <typename Helper, typename ActionResultType> 3373 auto CallCreateActionWithoutColsIfPossible(const std::shared_ptr<ActionResultType> &resPtr, 3374 const std::shared_ptr<Helper> &hPtr, 3375 TTraits::TypeList<RDFDetail::RInferredType>) 3376 -> decltype(hPtr->Exec(0u), RResultPtr<ActionResultType>{}) 3377 { 3378 return CreateAction<RDFInternal::ActionTags::Book>(/*columns=*/{}, resPtr, hPtr, fProxiedPtr, 0u); 3379 } 3380 3381 template <typename Helper, typename ActionResultType, typename... Others> 3382 RResultPtr<ActionResultType> 3383 CallCreateActionWithoutColsIfPossible(const std::shared_ptr<ActionResultType> &, 3384 const std::shared_ptr<Helper>& /*hPtr*/, 3385 Others...) 3386 { 3387 throw std::logic_error(std::string("An action was booked with no input columns, but the action requires " 3388 "columns! The action helper type was ") + 3389 typeid(Helper).name()); 3390 return {}; 3391 } 3392 3393 protected: 3394 RInterface(const std::shared_ptr<Proxied> &proxied, RLoopManager &lm, 3395 const RDFInternal::RColumnRegister &colRegister) 3396 : RInterfaceBase(lm, colRegister), fProxiedPtr(proxied) 3397 { 3398 } 3399 3400 const std::shared_ptr<Proxied> &GetProxiedPtr() const { return fProxiedPtr; } 3401 }; 3402 3403 } // namespace RDF 3404 3405 } // namespace ROOT 3406 3407 #endif // ROOT_RDF_INTERFACE
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |
![]() ![]() |