|
||||
File indexing completed on 2025-01-18 10:10:22
0001 // @(#)root/mathcore:$Id$ 0002 // Author: L. Moneta Tue Nov 14 15:44:38 2006 0003 0004 /********************************************************************** 0005 * * 0006 * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT * 0007 * * 0008 * * 0009 **********************************************************************/ 0010 0011 // Utility functions for all ROOT Math classes 0012 0013 #ifndef ROOT_Math_Util 0014 #define ROOT_Math_Util 0015 0016 #include <string> 0017 #include <sstream> 0018 0019 #include <cmath> 0020 #include <limits> 0021 #include <numeric> 0022 0023 0024 // This can be protected against by defining ROOT_Math_VecTypes 0025 // This is only used for the R__HAS_VECCORE define 0026 // and a single VecCore function in EvalLog 0027 #ifndef ROOT_Math_VecTypes 0028 #include "Types.h" 0029 #endif 0030 0031 0032 // for defining unused variables in the interfaces 0033 // and have still them in the documentation 0034 #define MATH_UNUSED(var) (void)var 0035 0036 0037 namespace ROOT { 0038 0039 namespace Math { 0040 0041 /** 0042 namespace defining Utility functions needed by mathcore 0043 */ 0044 namespace Util { 0045 0046 /** 0047 Utility function for conversion to strings 0048 */ 0049 template <class T> 0050 std::string ToString(const T &val) 0051 { 0052 std::ostringstream buf; 0053 buf << val; 0054 0055 std::string ret = buf.str(); 0056 return ret; 0057 } 0058 0059 /// safe evaluation of log(x) with a protections against negative or zero argument to the log 0060 /// smooth linear extrapolation below function values smaller than epsilon 0061 /// (better than a simple cut-off) 0062 0063 template<class T> 0064 inline T EvalLog(T x) { 0065 static const T epsilon = T(2.0 * std::numeric_limits<double>::min()); 0066 #ifdef R__HAS_VECCORE 0067 T logval = vecCore::Blend<T>(x <= epsilon, x / epsilon + std::log(epsilon) - T(1.0), std::log(x)); 0068 #else 0069 T logval = x <= epsilon ? x / epsilon + std::log(epsilon) - T(1.0) : std::log(x); 0070 #endif 0071 return logval; 0072 } 0073 0074 } // end namespace Util 0075 0076 /// \class KahanSum 0077 /// The Kahan summation is a compensated summation algorithm, which significantly reduces numerical errors 0078 /// when adding a sequence of finite-precision floating point numbers. 0079 /// This is done by keeping a separate running compensation (a variable to accumulate small errors). 0080 /// 0081 /// ### Auto-vectorisable accumulation 0082 /// This class can internally use multiple accumulators (template parameter `N`). 0083 /// When filled from a collection that supports index access from a *contiguous* block of memory, 0084 /// compilers such as gcc, clang and icc can auto-vectorise the accumulation. This happens by cycling 0085 /// through the internal accumulators based on the value of "`index % N`", so `N` accumulators can be filled from a block 0086 /// of `N` numbers in a single instruction. 0087 /// 0088 /// The usage of multiple accumulators might slightly increase the precision in comparison to the single-accumulator version 0089 /// with `N = 1`. 0090 /// This depends on the order and magnitude of the numbers being accumulated. Therefore, in rare cases, the accumulation 0091 /// result can change *in dependence of N*, even when the data are identical. 0092 /// The magnitude of such differences is well below the precision of the floating point type, and will therefore mostly show 0093 /// in the compensation sum(see Carry()). Increasing the number of accumulators therefore only makes sense to 0094 /// speed up the accumulation, but not to increase precision. 0095 /// 0096 /// \param T The type of the values to be accumulated. 0097 /// \param N Number of accumulators. Defaults to 1. Ideal values are the widths of a vector register on the relevant architecture. 0098 /// Depending on the instruction set, good values are: 0099 /// - AVX2-float: 8 0100 /// - AVX2-double: 4 0101 /// - AVX512-float: 16 0102 /// - AVX512-double: 8 0103 /// 0104 /// ### Examples 0105 /// 0106 /// ~~~{.cpp} 0107 /// std::vector<double> numbers(1000); 0108 /// for (std::size_t i=0; i<1000; ++i) { 0109 /// numbers[i] = rand(); 0110 /// } 0111 /// 0112 /// ROOT::Math::KahanSum<double, 4> k; 0113 /// k.Add(numbers.begin(), numbers.end()); 0114 /// // or 0115 /// k.Add(numbers); 0116 /// ~~~ 0117 /// ~~~{.cpp} 0118 /// double offset = 10.; 0119 /// auto result = ROOT::Math::KahanSum<double, 4>::Accumulate(numbers.begin(), numbers.end(), offset); 0120 /// ~~~ 0121 template<typename T = double, unsigned int N = 1> 0122 class KahanSum { 0123 public: 0124 /// Initialise the sum. 0125 /// \param[in] initialValue Initialise with this value. Defaults to 0. 0126 explicit KahanSum(T initialValue = T{}) { 0127 fSum[0] = initialValue; 0128 std::fill(std::begin(fSum)+1, std::end(fSum), 0.); 0129 std::fill(std::begin(fCarry), std::end(fCarry), 0.); 0130 } 0131 0132 /// Initialise with a sum value and a carry value. 0133 /// \param[in] initialSumValue Initialise the sum with this value. 0134 /// \param[in] initialCarryValue Initialise the carry with this value. 0135 KahanSum(T initialSumValue, T initialCarryValue) { 0136 fSum[0] = initialSumValue; 0137 fCarry[0] = initialCarryValue; 0138 std::fill(std::begin(fSum)+1, std::end(fSum), 0.); 0139 std::fill(std::begin(fCarry)+1, std::end(fCarry), 0.); 0140 } 0141 0142 /// Initialise the sum with a pre-existing state. 0143 /// \param[in] sumBegin Begin of iterator range with values to initialise the sum with. 0144 /// \param[in] sumEnd End of iterator range with values to initialise the sum with. 0145 /// \param[in] carryBegin Begin of iterator range with values to initialise the carry with. 0146 /// \param[in] carryEnd End of iterator range with values to initialise the carry with. 0147 template<class Iterator> 0148 KahanSum(Iterator sumBegin, Iterator sumEnd, Iterator carryBegin, Iterator carryEnd) { 0149 assert(std::distance(sumBegin, sumEnd) == N); 0150 assert(std::distance(carryBegin, carryEnd) == N); 0151 std::copy(sumBegin, sumEnd, std::begin(fSum)); 0152 std::copy(carryBegin, carryEnd, std::begin(fCarry)); 0153 } 0154 0155 /// Constructor to create a KahanSum from another KahanSum with a different number of accumulators 0156 template <unsigned int M> 0157 KahanSum(KahanSum<T,M> const& other) { 0158 fSum[0] = other.Sum(); 0159 fCarry[0] = other.Carry(); 0160 std::fill(std::begin(fSum)+1, std::end(fSum), 0.); 0161 std::fill(std::begin(fCarry)+1, std::end(fCarry), 0.); 0162 } 0163 0164 /// Single-element accumulation. Will not vectorise. 0165 void Add(T x) { 0166 auto y = x - fCarry[0]; 0167 auto t = fSum[0] + y; 0168 fCarry[0] = (t - fSum[0]) - y; 0169 fSum[0] = t; 0170 } 0171 0172 0173 /// Accumulate from a range denoted by iterators. 0174 /// 0175 /// This function will auto-vectorise with random-access iterators. 0176 /// \param[in] begin Beginning of a range. Needs to be a random access iterator for automatic 0177 /// vectorisation, because a contiguous block of memory needs to be read. 0178 /// \param[in] end End of the range. 0179 template <class Iterator> 0180 void Add(Iterator begin, Iterator end) { 0181 static_assert(std::is_floating_point< 0182 typename std::remove_reference<decltype(*begin)>::type>::value, 0183 "Iterator needs to point to floating-point values."); 0184 const std::size_t n = std::distance(begin, end); 0185 0186 for (std::size_t i=0; i<n; ++i) { 0187 AddIndexed(*(begin++), i); 0188 } 0189 } 0190 0191 0192 /// Fill from a container that supports index access. 0193 /// \param[in] inputs Container with index access such as std::vector or array. 0194 template<class Container_t> 0195 void Add(const Container_t& inputs) { 0196 static_assert(std::is_floating_point<typename Container_t::value_type>::value, 0197 "Container does not hold floating-point values."); 0198 for (std::size_t i=0; i < inputs.size(); ++i) { 0199 AddIndexed(inputs[i], i); 0200 } 0201 } 0202 0203 0204 /// Iterate over a range and return an instance of a KahanSum. 0205 /// 0206 /// See Add(Iterator,Iterator) for details. 0207 /// \param[in] begin Beginning of a range. 0208 /// \param[in] end End of the range. 0209 /// \param[in] initialValue Optional initial value. 0210 template <class Iterator> 0211 static KahanSum<T, N> Accumulate(Iterator begin, Iterator end, 0212 T initialValue = T{}) { 0213 KahanSum<T, N> theSum(initialValue); 0214 theSum.Add(begin, end); 0215 0216 return theSum; 0217 } 0218 0219 0220 /// Add `input` to the sum. 0221 /// 0222 /// Particularly helpful when filling from a for loop. 0223 /// This function can be inlined and auto-vectorised if 0224 /// the index parameter is used to enumerate *consecutive* fills. 0225 /// Use Add() or Accumulate() when no index is available. 0226 /// \param[in] input Value to accumulate. 0227 /// \param[in] index Index of the value. Determines internal accumulator that this 0228 /// value is added to. Make sure that consecutive fills have consecutive indices 0229 /// to make a loop auto-vectorisable. The actual value of the index does not matter, 0230 /// as long as it is consecutive. 0231 void AddIndexed(T input, std::size_t index) { 0232 const unsigned int i = index % N; 0233 const T y = input - fCarry[i]; 0234 const T t = fSum[i] + y; 0235 fCarry[i] = (t - fSum[i]) - y; 0236 fSum[i] = t; 0237 } 0238 0239 /// \return Compensated sum. 0240 T Sum() const { 0241 return std::accumulate(std::begin(fSum), std::end(fSum), 0.); 0242 } 0243 0244 /// \return Compensated sum. 0245 T Result() const { 0246 return Sum(); 0247 } 0248 0249 /// \return The sum used for compensation. 0250 T Carry() const { 0251 return std::accumulate(std::begin(fCarry), std::end(fCarry), 0.); 0252 } 0253 0254 /// Add `arg` into accumulator. Does not vectorise. 0255 KahanSum<T, N>& operator+=(T arg) { 0256 Add(arg); 0257 return *this; 0258 } 0259 0260 /// Add other KahanSum into accumulator. Does not vectorise. 0261 /// 0262 /// Based on KahanIncrement from: 0263 /// Y. Tian, S. Tatikonda and B. Reinwald, "Scalable and Numerically Stable Descriptive Statistics in SystemML," 2012 IEEE 28th International Conference on Data Engineering, 2012, pp. 1351-1359, doi: 10.1109/ICDE.2012.12. 0264 /// Note that while Tian et al. add the carry in the first step, we subtract 0265 /// the carry, in accordance with the Add(Indexed) implementation(s) above. 0266 /// This is purely an implementation choice that has no impact on performance. 0267 /// 0268 /// \note Take care when using += (and -=) to add other KahanSums into a zero-initialized 0269 /// KahanSum. The operator behaves correctly in this case, but the result may be slightly 0270 /// off if you expect 0 + x to yield exactly x (where 0 is the zero-initialized KahanSum 0271 /// and x another KahanSum). In particular, x's carry term may get lost. This doesn't 0272 /// just happen with zero-initialized KahanSums; see the SubtractWithABitTooSmallCarry 0273 /// test case in the testKahan unittest for other examples. This behavior is internally 0274 /// consistent: the carry also gets lost if you switch the operands and it also happens with 0275 /// other KahanSum operators. 0276 template<typename U, unsigned int M> 0277 KahanSum<T, N>& operator+=(const KahanSum<U, M>& other) { 0278 U corrected_arg_sum = other.Sum() - (fCarry[0] + other.Carry()); 0279 U sum = fSum[0] + corrected_arg_sum; 0280 U correction = (sum - fSum[0]) - corrected_arg_sum; 0281 fSum[0] = sum; 0282 fCarry[0] = correction; 0283 return *this; 0284 } 0285 0286 /// Subtract other KahanSum. Does not vectorise. 0287 /// 0288 /// Based on KahanIncrement from: Tian et al., 2012 (see operator+= documentation). 0289 template<typename U, unsigned int M> 0290 KahanSum<T, N>& operator-=(KahanSum<U, M> const& other) { 0291 U corrected_arg_sum = -other.Sum() - (fCarry[0] - other.Carry()); 0292 U sum = fSum[0] + corrected_arg_sum; 0293 U correction = (sum - fSum[0]) - corrected_arg_sum; 0294 fSum[0] = sum; 0295 fCarry[0] = correction; 0296 return *this; 0297 } 0298 0299 KahanSum<T, N> operator-() 0300 { 0301 return {-this->fSum[0], -this->fCarry[0]}; 0302 } 0303 0304 template<typename U, unsigned int M> 0305 bool operator ==(KahanSum<U, M> const& other) const { 0306 return (this->Sum() == other.Sum()) && (this->Carry() == other.Carry()); 0307 } 0308 0309 template<typename U, unsigned int M> 0310 bool operator !=(KahanSum<U, M> const& other) const { 0311 return !(*this == other); 0312 } 0313 0314 private: 0315 T fSum[N]; 0316 T fCarry[N]; 0317 }; 0318 0319 /// Add two non-vectorized KahanSums. 0320 template<typename T, unsigned int N, typename U, unsigned int M> 0321 KahanSum<T, N> operator+(const KahanSum<T, N>& left, const KahanSum<U, M>& right) { 0322 KahanSum<T, N> sum(left); 0323 sum += right; 0324 return sum; 0325 } 0326 0327 /// Subtract two non-vectorized KahanSums. 0328 template<typename T, unsigned int N, typename U, unsigned int M> 0329 KahanSum<T, N> operator-(const KahanSum<T, N>& left, const KahanSum<U, M>& right) { 0330 KahanSum<T, N> sum(left); 0331 sum -= right; 0332 return sum; 0333 } 0334 0335 } // end namespace Math 0336 0337 } // end namespace ROOT 0338 0339 0340 #endif /* ROOT_Math_Util */
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |