|
||||
File indexing completed on 2025-01-18 10:04:14
0001 // Created on: 1991-03-14 0002 // Created by: Laurent PAINNOT 0003 // Copyright (c) 1991-1999 Matra Datavision 0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS 0005 // 0006 // This file is part of Open CASCADE Technology software library. 0007 // 0008 // This library is free software; you can redistribute it and/or modify it under 0009 // the terms of the GNU Lesser General Public License version 2.1 as published 0010 // by the Free Software Foundation, with special exception defined in the file 0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT 0012 // distribution for complete text of the license and disclaimer of any warranty. 0013 // 0014 // Alternatively, this file may be used under the terms of Open CASCADE 0015 // commercial license or contractual agreement. 0016 0017 #ifndef _math_NewtonFunctionRoot_HeaderFile 0018 #define _math_NewtonFunctionRoot_HeaderFile 0019 0020 #include <Standard.hxx> 0021 #include <Standard_DefineAlloc.hxx> 0022 0023 #include <Standard_OStream.hxx> 0024 class math_FunctionWithDerivative; 0025 0026 0027 0028 //! This class implements the calculation of a root of a function of 0029 //! a single variable starting from an initial near guess using the 0030 //! Newton algorithm. Knowledge of the derivative is required. 0031 class math_NewtonFunctionRoot 0032 { 0033 public: 0034 0035 DEFINE_STANDARD_ALLOC 0036 0037 0038 0039 //! The Newton method is done to find the root of the function F 0040 //! from the initial guess Guess. 0041 //! The tolerance required on the root is given by Tolerance. 0042 //! The solution is found when : 0043 //! abs(Xi - Xi-1) <= EpsX and abs(F(Xi))<= EpsF 0044 //! The maximum number of iterations allowed is given by NbIterations. 0045 Standard_EXPORT math_NewtonFunctionRoot(math_FunctionWithDerivative& F, const Standard_Real Guess, const Standard_Real EpsX, const Standard_Real EpsF, const Standard_Integer NbIterations = 100); 0046 0047 0048 //! The Newton method is done to find the root of the function F 0049 //! from the initial guess Guess. 0050 //! The solution must be inside the interval [A, B]. 0051 //! The tolerance required on the root is given by Tolerance. 0052 //! The solution is found when : 0053 //! abs(Xi - Xi-1) <= EpsX and abs(F(Xi))<= EpsF 0054 //! The maximum number of iterations allowed is given by NbIterations. 0055 Standard_EXPORT math_NewtonFunctionRoot(math_FunctionWithDerivative& F, const Standard_Real Guess, const Standard_Real EpsX, const Standard_Real EpsF, const Standard_Real A, const Standard_Real B, const Standard_Integer NbIterations = 100); 0056 0057 //! is used in a sub-class to initialize correctly all the fields 0058 //! of this class. 0059 Standard_EXPORT math_NewtonFunctionRoot(const Standard_Real A, const Standard_Real B, const Standard_Real EpsX, const Standard_Real EpsF, const Standard_Integer NbIterations = 100); 0060 0061 //! is used internally by the constructors. 0062 Standard_EXPORT void Perform (math_FunctionWithDerivative& F, const Standard_Real Guess); 0063 0064 //! Returns true if the computations are successful, otherwise returns false. 0065 Standard_Boolean IsDone() const; 0066 0067 //! Returns the value of the root of function <F>. 0068 //! Exception NotDone is raised if the root was not found. 0069 Standard_Real Root() const; 0070 0071 //! returns the value of the derivative at the root. 0072 //! Exception NotDone is raised if the root was not found. 0073 Standard_Real Derivative() const; 0074 0075 //! returns the value of the function at the root. 0076 //! Exception NotDone is raised if the root was not found. 0077 Standard_Real Value() const; 0078 0079 //! Returns the number of iterations really done on the 0080 //! computation of the Root. 0081 //! Exception NotDone is raised if the root was not found. 0082 Standard_Integer NbIterations() const; 0083 0084 //! Prints information on the current state of the object. 0085 Standard_EXPORT void Dump (Standard_OStream& o) const; 0086 0087 0088 0089 0090 protected: 0091 0092 0093 0094 0095 0096 private: 0097 0098 0099 0100 Standard_Boolean Done; 0101 Standard_Real X; 0102 Standard_Real Fx; 0103 Standard_Real DFx; 0104 Standard_Integer It; 0105 Standard_Real EpsilonX; 0106 Standard_Real EpsilonF; 0107 Standard_Integer Itermax; 0108 Standard_Real Binf; 0109 Standard_Real Bsup; 0110 0111 0112 }; 0113 0114 0115 #include <math_NewtonFunctionRoot.lxx> 0116 0117 0118 0119 0120 0121 #endif // _math_NewtonFunctionRoot_HeaderFile
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |