|
||||
File indexing completed on 2025-01-18 10:04:14
0001 // Created on: 1991-03-14 0002 // Created by: Laurent PAINNOT 0003 // Copyright (c) 1991-1999 Matra Datavision 0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS 0005 // 0006 // This file is part of Open CASCADE Technology software library. 0007 // 0008 // This library is free software; you can redistribute it and/or modify it under 0009 // the terms of the GNU Lesser General Public License version 2.1 as published 0010 // by the Free Software Foundation, with special exception defined in the file 0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT 0012 // distribution for complete text of the license and disclaimer of any warranty. 0013 // 0014 // Alternatively, this file may be used under the terms of Open CASCADE 0015 // commercial license or contractual agreement. 0016 0017 #ifndef _math_FunctionRoot_HeaderFile 0018 #define _math_FunctionRoot_HeaderFile 0019 0020 #include <Standard.hxx> 0021 #include <Standard_DefineAlloc.hxx> 0022 #include <Standard_Handle.hxx> 0023 0024 #include <Standard_Real.hxx> 0025 #include <Standard_OStream.hxx> 0026 class math_FunctionWithDerivative; 0027 0028 0029 0030 //! This class implements the computation of a root of a function of 0031 //! a single variable which is near an initial guess using a minimization 0032 //! algorithm.Knowledge of the derivative is required. The 0033 //! algorithm used is the same as in 0034 class math_FunctionRoot 0035 { 0036 public: 0037 0038 DEFINE_STANDARD_ALLOC 0039 0040 0041 0042 //! The Newton-Raphson method is done to find the root of the function F 0043 //! from the initial guess Guess.The tolerance required on 0044 //! the root is given by Tolerance. Iterations are stopped if 0045 //! the expected solution does not stay in the range A..B. 0046 //! The solution is found when abs(Xi - Xi-1) <= Tolerance; 0047 //! The maximum number of iterations allowed is given by NbIterations. 0048 Standard_EXPORT math_FunctionRoot(math_FunctionWithDerivative& F, const Standard_Real Guess, const Standard_Real Tolerance, const Standard_Integer NbIterations = 100); 0049 0050 0051 //! The Newton-Raphson method is done to find the root of the function F 0052 //! from the initial guess Guess. 0053 //! The tolerance required on the root is given by Tolerance. 0054 //! Iterations are stopped if the expected solution does not stay in the 0055 //! range A..B 0056 //! The solution is found when abs(Xi - Xi-1) <= Tolerance; 0057 //! The maximum number of iterations allowed is given by NbIterations. 0058 Standard_EXPORT math_FunctionRoot(math_FunctionWithDerivative& F, const Standard_Real Guess, const Standard_Real Tolerance, const Standard_Real A, const Standard_Real B, const Standard_Integer NbIterations = 100); 0059 0060 //! Returns true if the computations are successful, otherwise returns false. 0061 Standard_Boolean IsDone() const; 0062 0063 //! returns the value of the root. 0064 //! Exception NotDone is raised if the root was not found. 0065 Standard_Real Root() const; 0066 0067 //! returns the value of the derivative at the root. 0068 //! Exception NotDone is raised if the root was not found. 0069 Standard_Real Derivative() const; 0070 0071 //! returns the value of the function at the root. 0072 //! Exception NotDone is raised if the root was not found. 0073 Standard_Real Value() const; 0074 0075 //! returns the number of iterations really done on the 0076 //! computation of the Root. 0077 //! Exception NotDone is raised if the root was not found. 0078 Standard_Integer NbIterations() const; 0079 0080 //! Prints on the stream o information on the current state 0081 //! of the object. 0082 //! Is used to redefine the operator <<. 0083 Standard_EXPORT void Dump (Standard_OStream& o) const; 0084 0085 0086 0087 0088 protected: 0089 0090 0091 0092 0093 0094 private: 0095 0096 0097 0098 Standard_Boolean Done; 0099 Standard_Real TheRoot; 0100 Standard_Real TheError; 0101 Standard_Real TheDerivative; 0102 Standard_Integer NbIter; 0103 0104 0105 }; 0106 0107 0108 #include <math_FunctionRoot.lxx> 0109 0110 0111 0112 0113 0114 #endif // _math_FunctionRoot_HeaderFile
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |