|
||||
File indexing completed on 2025-01-18 10:04:14
0001 // Created on: 1991-08-22 0002 // Created by: Laurent PAINNOT 0003 // Copyright (c) 1991-1999 Matra Datavision 0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS 0005 // 0006 // This file is part of Open CASCADE Technology software library. 0007 // 0008 // This library is free software; you can redistribute it and/or modify it under 0009 // the terms of the GNU Lesser General Public License version 2.1 as published 0010 // by the Free Software Foundation, with special exception defined in the file 0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT 0012 // distribution for complete text of the license and disclaimer of any warranty. 0013 // 0014 // Alternatively, this file may be used under the terms of Open CASCADE 0015 // commercial license or contractual agreement. 0016 0017 #ifndef _math_Crout_HeaderFile 0018 #define _math_Crout_HeaderFile 0019 0020 #include <Standard.hxx> 0021 #include <Standard_DefineAlloc.hxx> 0022 #include <Standard_Handle.hxx> 0023 0024 #include <math_Matrix.hxx> 0025 #include <math_Vector.hxx> 0026 #include <Standard_OStream.hxx> 0027 0028 0029 //! This class implements the Crout algorithm used to solve a 0030 //! system A*X = B where A is a symmetric matrix. It can be used to 0031 //! invert a symmetric matrix. 0032 //! This algorithm is similar to Gauss but is faster than Gauss. 0033 //! Only the inferior triangle of A and the diagonal can be given. 0034 class math_Crout 0035 { 0036 public: 0037 0038 DEFINE_STANDARD_ALLOC 0039 0040 0041 //! Given an input matrix A, this algorithm inverts A by the 0042 //! Crout algorithm. The user can give only the inferior 0043 //! triangle for the implementation. 0044 //! A can be decomposed like this: 0045 //! A = L * D * T(L) where L is triangular inferior and D is 0046 //! diagonal. 0047 //! If one element of A is less than MinPivot, A is 0048 //! considered as singular. 0049 //! Exception NotSquare is raised if A is not a square matrix. 0050 Standard_EXPORT math_Crout(const math_Matrix& A, const Standard_Real MinPivot = 1.0e-20); 0051 0052 //! Returns True if all has been correctly done. 0053 Standard_Boolean IsDone() const; 0054 0055 //! Given an input vector <B>, this routine returns the 0056 //! solution of the set of linear equations A . X = B. 0057 //! Exception NotDone is raised if the decomposition was not 0058 //! done successfully. 0059 //! Exception DimensionError is raised if the range of B is 0060 //! not equal to the rowrange of A. 0061 Standard_EXPORT void Solve (const math_Vector& B, math_Vector& X) const; 0062 0063 //! returns the inverse matrix of A. Only the inferior 0064 //! triangle is returned. 0065 //! Exception NotDone is raised if NotDone. 0066 const math_Matrix& Inverse() const; 0067 0068 //! returns in Inv the inverse matrix of A. Only the inferior 0069 //! triangle is returned. 0070 //! Exception NotDone is raised if NotDone. 0071 void Invert (math_Matrix& Inv) const; 0072 0073 //! Returns the value of the determinant of the previously LU 0074 //! decomposed matrix A. Zero is returned if the matrix A is considered as singular. 0075 //! Exceptions 0076 //! StdFail_NotDone if the algorithm fails (and IsDone returns false). 0077 Standard_Real Determinant() const; 0078 0079 //! Prints on the stream o information on the current state 0080 //! of the object. 0081 Standard_EXPORT void Dump (Standard_OStream& o) const; 0082 0083 0084 0085 0086 protected: 0087 0088 0089 0090 0091 0092 private: 0093 0094 0095 0096 math_Matrix InvA; 0097 Standard_Boolean Done; 0098 Standard_Real Det; 0099 0100 0101 }; 0102 0103 0104 #include <math_Crout.lxx> 0105 0106 0107 0108 0109 0110 #endif // _math_Crout_HeaderFile
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |