|
||||
File indexing completed on 2025-01-18 10:03:43
0001 // Copyright (c) 1991-1999 Matra Datavision 0002 // Copyright (c) 1999-2014 OPEN CASCADE SAS 0003 // 0004 // This file is part of Open CASCADE Technology software library. 0005 // 0006 // This library is free software; you can redistribute it and/or modify it under 0007 // the terms of the GNU Lesser General Public License version 2.1 as published 0008 // by the Free Software Foundation, with special exception defined in the file 0009 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT 0010 // distribution for complete text of the license and disclaimer of any warranty. 0011 // 0012 // Alternatively, this file may be used under the terms of Open CASCADE 0013 // commercial license or contractual agreement. 0014 0015 #ifndef _gp_Ax2_HeaderFile 0016 #define _gp_Ax2_HeaderFile 0017 0018 #include <gp_Ax1.hxx> 0019 #include <gp_Dir.hxx> 0020 #include <Precision.hxx> 0021 0022 class gp_Trsf; 0023 class gp_Vec; 0024 0025 //! Describes a right-handed coordinate system in 3D space. 0026 //! A coordinate system is defined by: 0027 //! - its origin (also referred to as its "Location point"), and 0028 //! - three orthogonal unit vectors, termed respectively the 0029 //! "X Direction", the "Y Direction" and the "Direction" (also 0030 //! referred to as the "main Direction"). 0031 //! The "Direction" of the coordinate system is called its 0032 //! "main Direction" because whenever this unit vector is 0033 //! modified, the "X Direction" and the "Y Direction" are 0034 //! recomputed. However, when we modify either the "X 0035 //! Direction" or the "Y Direction", "Direction" is not modified. 0036 //! The "main Direction" is also the "Z Direction". 0037 //! Since an Ax2 coordinate system is right-handed, its 0038 //! "main Direction" is always equal to the cross product of 0039 //! its "X Direction" and "Y Direction". (To define a 0040 //! left-handed coordinate system, use gp_Ax3.) 0041 //! A coordinate system is used: 0042 //! - to describe geometric entities, in particular to position 0043 //! them. The local coordinate system of a geometric 0044 //! entity serves the same purpose as the STEP function 0045 //! "axis placement two axes", or 0046 //! - to define geometric transformations. 0047 //! Note: we refer to the "X Axis", "Y Axis" and "Z Axis", 0048 //! respectively, as to axes having: 0049 //! - the origin of the coordinate system as their origin, and 0050 //! - the unit vectors "X Direction", "Y Direction" and "main 0051 //! Direction", respectively, as their unit vectors. 0052 //! The "Z Axis" is also the "main Axis". 0053 class gp_Ax2 0054 { 0055 public: 0056 0057 DEFINE_STANDARD_ALLOC 0058 0059 //! Creates an object corresponding to the reference 0060 //! coordinate system (OXYZ). 0061 gp_Ax2() : vydir(0.,1.,0.) 0062 // vxdir(1.,0.,0.) use default ctor of gp_Dir, as it creates the same dir(1,0,0) 0063 {} 0064 0065 //! Creates an axis placement with an origin P such that: 0066 //! - N is the Direction, and 0067 //! - the "X Direction" is normal to N, in the plane 0068 //! defined by the vectors (N, Vx): "X 0069 //! Direction" = (N ^ Vx) ^ N, 0070 //! Exception: raises ConstructionError if N and Vx are parallel (same or opposite orientation). 0071 gp_Ax2 (const gp_Pnt& P, const gp_Dir& N, const gp_Dir& Vx) 0072 : axis (P, N), 0073 vydir (N), 0074 vxdir (N) 0075 { 0076 vxdir.CrossCross(Vx, N); 0077 vydir.Cross(vxdir); 0078 } 0079 0080 //! Creates - a coordinate system with an origin P, where V 0081 //! gives the "main Direction" (here, "X Direction" and "Y 0082 //! Direction" are defined automatically). 0083 Standard_EXPORT gp_Ax2(const gp_Pnt& P, const gp_Dir& V); 0084 0085 //! Assigns the origin and "main Direction" of the axis A1 to 0086 //! this coordinate system, then recomputes its "X Direction" and "Y Direction". 0087 //! Note: The new "X Direction" is computed as follows: 0088 //! new "X Direction" = V1 ^(previous "X Direction" ^ V) 0089 //! where V is the "Direction" of A1. 0090 //! Exceptions 0091 //! Standard_ConstructionError if A1 is parallel to the "X 0092 //! Direction" of this coordinate system. 0093 void SetAxis (const gp_Ax1& A1); 0094 0095 //! Changes the "main Direction" of this coordinate system, 0096 //! then recomputes its "X Direction" and "Y Direction". 0097 //! Note: the new "X Direction" is computed as follows: 0098 //! new "X Direction" = V ^ (previous "X Direction" ^ V) 0099 //! Exceptions 0100 //! Standard_ConstructionError if V is parallel to the "X 0101 //! Direction" of this coordinate system. 0102 void SetDirection (const gp_Dir& V); 0103 0104 //! Changes the "Location" point (origin) of <me>. 0105 void SetLocation (const gp_Pnt& theP) { axis.SetLocation (theP); } 0106 0107 //! Changes the "Xdirection" of <me>. The main direction 0108 //! "Direction" is not modified, the "Ydirection" is modified. 0109 //! If <Vx> is not normal to the main direction then <XDirection> 0110 //! is computed as follows XDirection = Direction ^ (Vx ^ Direction). 0111 //! Exceptions 0112 //! Standard_ConstructionError if Vx or Vy is parallel to 0113 //! the "main Direction" of this coordinate system. 0114 void SetXDirection (const gp_Dir& theVx) 0115 { 0116 vxdir = axis.Direction().CrossCrossed (theVx, axis.Direction()); 0117 vydir = axis.Direction().Crossed (vxdir); 0118 } 0119 0120 //! Changes the "Ydirection" of <me>. The main direction is not 0121 //! modified but the "Xdirection" is changed. 0122 //! If <Vy> is not normal to the main direction then "YDirection" 0123 //! is computed as follows 0124 //! YDirection = Direction ^ (<Vy> ^ Direction). 0125 //! Exceptions 0126 //! Standard_ConstructionError if Vx or Vy is parallel to 0127 //! the "main Direction" of this coordinate system. 0128 void SetYDirection (const gp_Dir& theVy) 0129 { 0130 vxdir = theVy.Crossed (axis.Direction()); 0131 vydir = (axis.Direction()).Crossed (vxdir); 0132 } 0133 0134 //! Computes the angular value, in radians, between the main direction of 0135 //! <me> and the main direction of <theOther>. Returns the angle 0136 //! between 0 and PI in radians. 0137 Standard_Real Angle (const gp_Ax2& theOther) const { return axis.Angle (theOther.axis); } 0138 0139 //! Returns the main axis of <me>. It is the "Location" point 0140 //! and the main "Direction". 0141 const gp_Ax1& Axis() const { return axis; } 0142 0143 //! Returns the main direction of <me>. 0144 const gp_Dir& Direction() const { return axis.Direction(); } 0145 0146 //! Returns the "Location" point (origin) of <me>. 0147 const gp_Pnt& Location() const { return axis.Location(); } 0148 0149 //! Returns the "XDirection" of <me>. 0150 const gp_Dir& XDirection() const { return vxdir; } 0151 0152 //! Returns the "YDirection" of <me>. 0153 const gp_Dir& YDirection() const { return vydir; } 0154 0155 Standard_Boolean IsCoplanar (const gp_Ax2& Other, const Standard_Real LinearTolerance, const Standard_Real AngularTolerance) const; 0156 0157 //! Returns True if 0158 //! . the distance between <me> and the "Location" point of A1 0159 //! is lower of equal to LinearTolerance and 0160 //! . the main direction of <me> and the direction of A1 are normal. 0161 //! Note: the tolerance criterion for angular equality is given by AngularTolerance. 0162 Standard_Boolean IsCoplanar (const gp_Ax1& A1, const Standard_Real LinearTolerance, const Standard_Real AngularTolerance) const; 0163 0164 //! Performs a symmetrical transformation of this coordinate 0165 //! system with respect to: 0166 //! - the point P, and assigns the result to this coordinate system. 0167 //! Warning 0168 //! This transformation is always performed on the origin. 0169 //! In case of a reflection with respect to a point: 0170 //! - the main direction of the coordinate system is not changed, and 0171 //! - the "X Direction" and the "Y Direction" are simply reversed 0172 //! In case of a reflection with respect to an axis or a plane: 0173 //! - the transformation is applied to the "X Direction" 0174 //! and the "Y Direction", then 0175 //! - the "main Direction" is recomputed as the cross 0176 //! product "X Direction" ^ "Y Direction". 0177 //! This maintains the right-handed property of the 0178 //! coordinate system. 0179 Standard_EXPORT void Mirror (const gp_Pnt& P); 0180 0181 //! Performs a symmetrical transformation of this coordinate 0182 //! system with respect to: 0183 //! - the point P, and creates a new one. 0184 //! Warning 0185 //! This transformation is always performed on the origin. 0186 //! In case of a reflection with respect to a point: 0187 //! - the main direction of the coordinate system is not changed, and 0188 //! - the "X Direction" and the "Y Direction" are simply reversed 0189 //! In case of a reflection with respect to an axis or a plane: 0190 //! - the transformation is applied to the "X Direction" 0191 //! and the "Y Direction", then 0192 //! - the "main Direction" is recomputed as the cross 0193 //! product "X Direction" ^ "Y Direction". 0194 //! This maintains the right-handed property of the 0195 //! coordinate system. 0196 Standard_NODISCARD Standard_EXPORT gp_Ax2 Mirrored (const gp_Pnt& P) const; 0197 0198 //! Performs a symmetrical transformation of this coordinate 0199 //! system with respect to: 0200 //! - the axis A1, and assigns the result to this coordinate systeme. 0201 //! Warning 0202 //! This transformation is always performed on the origin. 0203 //! In case of a reflection with respect to a point: 0204 //! - the main direction of the coordinate system is not changed, and 0205 //! - the "X Direction" and the "Y Direction" are simply reversed 0206 //! In case of a reflection with respect to an axis or a plane: 0207 //! - the transformation is applied to the "X Direction" 0208 //! and the "Y Direction", then 0209 //! - the "main Direction" is recomputed as the cross 0210 //! product "X Direction" ^ "Y Direction". 0211 //! This maintains the right-handed property of the 0212 //! coordinate system. 0213 Standard_EXPORT void Mirror (const gp_Ax1& A1); 0214 0215 //! Performs a symmetrical transformation of this coordinate 0216 //! system with respect to: 0217 //! - the axis A1, and creates a new one. 0218 //! Warning 0219 //! This transformation is always performed on the origin. 0220 //! In case of a reflection with respect to a point: 0221 //! - the main direction of the coordinate system is not changed, and 0222 //! - the "X Direction" and the "Y Direction" are simply reversed 0223 //! In case of a reflection with respect to an axis or a plane: 0224 //! - the transformation is applied to the "X Direction" 0225 //! and the "Y Direction", then 0226 //! - the "main Direction" is recomputed as the cross 0227 //! product "X Direction" ^ "Y Direction". 0228 //! This maintains the right-handed property of the 0229 //! coordinate system. 0230 Standard_NODISCARD Standard_EXPORT gp_Ax2 Mirrored (const gp_Ax1& A1) const; 0231 0232 //! Performs a symmetrical transformation of this coordinate 0233 //! system with respect to: 0234 //! - the plane defined by the origin, "X Direction" and "Y 0235 //! Direction" of coordinate system A2 and assigns the result to this coordinate systeme. 0236 //! Warning 0237 //! This transformation is always performed on the origin. 0238 //! In case of a reflection with respect to a point: 0239 //! - the main direction of the coordinate system is not changed, and 0240 //! - the "X Direction" and the "Y Direction" are simply reversed 0241 //! In case of a reflection with respect to an axis or a plane: 0242 //! - the transformation is applied to the "X Direction" 0243 //! and the "Y Direction", then 0244 //! - the "main Direction" is recomputed as the cross 0245 //! product "X Direction" ^ "Y Direction". 0246 //! This maintains the right-handed property of the 0247 //! coordinate system. 0248 Standard_EXPORT void Mirror (const gp_Ax2& A2); 0249 0250 //! Performs a symmetrical transformation of this coordinate 0251 //! system with respect to: 0252 //! - the plane defined by the origin, "X Direction" and "Y 0253 //! Direction" of coordinate system A2 and creates a new one. 0254 //! Warning 0255 //! This transformation is always performed on the origin. 0256 //! In case of a reflection with respect to a point: 0257 //! - the main direction of the coordinate system is not changed, and 0258 //! - the "X Direction" and the "Y Direction" are simply reversed 0259 //! In case of a reflection with respect to an axis or a plane: 0260 //! - the transformation is applied to the "X Direction" 0261 //! and the "Y Direction", then 0262 //! - the "main Direction" is recomputed as the cross 0263 //! product "X Direction" ^ "Y Direction". 0264 //! This maintains the right-handed property of the 0265 //! coordinate system. 0266 Standard_NODISCARD Standard_EXPORT gp_Ax2 Mirrored (const gp_Ax2& A2) const; 0267 0268 void Rotate (const gp_Ax1& theA1, const Standard_Real theAng) 0269 { 0270 gp_Pnt aTemp = axis.Location(); 0271 aTemp.Rotate (theA1, theAng); 0272 axis.SetLocation (aTemp); 0273 vxdir.Rotate (theA1, theAng); 0274 vydir.Rotate (theA1, theAng); 0275 axis.SetDirection (vxdir.Crossed (vydir)); 0276 } 0277 0278 //! Rotates an axis placement. <theA1> is the axis of the rotation. 0279 //! theAng is the angular value of the rotation in radians. 0280 Standard_NODISCARD gp_Ax2 Rotated (const gp_Ax1& theA1, const Standard_Real theAng) const 0281 { 0282 gp_Ax2 aTemp = *this; 0283 aTemp.Rotate (theA1, theAng); 0284 return aTemp; 0285 } 0286 0287 void Scale (const gp_Pnt& theP, const Standard_Real theS) 0288 { 0289 gp_Pnt aTemp = axis.Location(); 0290 aTemp.Scale (theP, theS); 0291 axis.SetLocation (aTemp); 0292 if (theS < 0.0) 0293 { 0294 vxdir.Reverse(); 0295 vydir.Reverse(); 0296 } 0297 } 0298 0299 //! Applies a scaling transformation on the axis placement. 0300 //! The "Location" point of the axisplacement is modified. 0301 //! Warnings : 0302 //! If the scale <S> is negative : 0303 //! . the main direction of the axis placement is not changed. 0304 //! . The "XDirection" and the "YDirection" are reversed. 0305 //! So the axis placement stay right handed. 0306 Standard_NODISCARD gp_Ax2 Scaled (const gp_Pnt& theP, const Standard_Real theS) const 0307 { 0308 gp_Ax2 aTemp = *this; 0309 aTemp.Scale (theP, theS); 0310 return aTemp; 0311 } 0312 0313 void Transform (const gp_Trsf& theT) 0314 { 0315 gp_Pnt aTemp = axis.Location(); 0316 aTemp.Transform (theT); 0317 axis.SetLocation (aTemp); 0318 vxdir.Transform (theT); 0319 vydir.Transform (theT); 0320 axis.SetDirection (vxdir.Crossed (vydir)); 0321 } 0322 0323 //! Transforms an axis placement with a Trsf. 0324 //! The "Location" point, the "XDirection" and the "YDirection" are transformed with theT. 0325 //! The resulting main "Direction" of <me> is the cross product between 0326 //! the "XDirection" and the "YDirection" after transformation. 0327 Standard_NODISCARD gp_Ax2 Transformed (const gp_Trsf& theT) const 0328 { 0329 gp_Ax2 aTemp = *this; 0330 aTemp.Transform (theT); 0331 return aTemp; 0332 } 0333 0334 void Translate (const gp_Vec& theV) { axis.Translate (theV); } 0335 0336 //! Translates an axis plaxement in the direction of the vector <theV>. 0337 //! The magnitude of the translation is the vector's magnitude. 0338 Standard_NODISCARD gp_Ax2 Translated (const gp_Vec& theV) const 0339 { 0340 gp_Ax2 aTemp = *this; 0341 aTemp.Translate (theV); 0342 return aTemp; 0343 } 0344 0345 void Translate (const gp_Pnt& theP1, const gp_Pnt& theP2) { axis.Translate (theP1, theP2); } 0346 0347 //! Translates an axis placement from the point <theP1> to the point <theP2>. 0348 Standard_NODISCARD gp_Ax2 Translated (const gp_Pnt& theP1, const gp_Pnt& theP2) const 0349 { 0350 gp_Ax2 aTemp = *this; 0351 aTemp.Translate (theP1, theP2); 0352 return aTemp; 0353 } 0354 0355 //! Dumps the content of me into the stream 0356 Standard_EXPORT void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const; 0357 0358 //! Inits the content of me from the stream 0359 Standard_EXPORT Standard_Boolean InitFromJson (const Standard_SStream& theSStream, Standard_Integer& theStreamPos); 0360 0361 private: 0362 0363 gp_Ax1 axis; 0364 gp_Dir vydir; 0365 gp_Dir vxdir; 0366 0367 }; 0368 0369 // ======================================================================= 0370 // function : SetAxis 0371 // purpose : 0372 // ======================================================================= 0373 inline void gp_Ax2::SetAxis (const gp_Ax1& theA1) 0374 { 0375 Standard_Real a = theA1.Direction() * vxdir; 0376 if (Abs(Abs(a) - 1.) <= Precision::Angular()) 0377 { 0378 if (a > 0.) 0379 { 0380 vxdir = vydir; 0381 vydir = axis.Direction(); 0382 axis = theA1; 0383 } 0384 else 0385 { 0386 vxdir = axis.Direction(); 0387 axis = theA1; 0388 } 0389 } 0390 else 0391 { 0392 axis = theA1; 0393 vxdir = axis.Direction().CrossCrossed (vxdir, axis.Direction()); 0394 vydir = axis.Direction().Crossed (vxdir); 0395 } 0396 } 0397 0398 // ======================================================================= 0399 // function : SetDirection 0400 // purpose : 0401 // ======================================================================= 0402 inline void gp_Ax2::SetDirection (const gp_Dir& theV) 0403 { 0404 Standard_Real a = theV * vxdir; 0405 if (Abs(Abs(a) - 1.) <= Precision::Angular()) 0406 { 0407 if(a > 0.) 0408 { 0409 vxdir = vydir; 0410 vydir = axis.Direction(); 0411 axis.SetDirection (theV); 0412 } 0413 else 0414 { 0415 vxdir = axis.Direction(); 0416 axis.SetDirection (theV); 0417 } 0418 } 0419 else 0420 { 0421 axis.SetDirection (theV); 0422 vxdir = theV.CrossCrossed (vxdir, theV); 0423 vydir = theV.Crossed (vxdir); 0424 } 0425 } 0426 0427 // ======================================================================= 0428 // function : IsCoplanar 0429 // purpose : 0430 // ======================================================================= 0431 inline Standard_Boolean gp_Ax2::IsCoplanar (const gp_Ax2& theOther, 0432 const Standard_Real theLinearTolerance, 0433 const Standard_Real theAngularTolerance) const 0434 { 0435 const gp_Dir& DD = axis.Direction(); 0436 const gp_Pnt& PP = axis.Location(); 0437 const gp_Pnt& OP = theOther.axis.Location(); 0438 Standard_Real D1 = (DD.X() * (OP.X() - PP.X()) 0439 + DD.Y() * (OP.Y() - PP.Y()) 0440 + DD.Z() * (OP.Z() - PP.Z())); 0441 if (D1 < 0) 0442 { 0443 D1 = -D1; 0444 } 0445 return D1 <= theLinearTolerance 0446 && axis.IsParallel (theOther.axis, theAngularTolerance); 0447 } 0448 0449 // ======================================================================= 0450 // function : IsCoplanar 0451 // purpose : 0452 // ======================================================================= 0453 inline Standard_Boolean gp_Ax2::IsCoplanar (const gp_Ax1& theA, 0454 const Standard_Real theLinearTolerance, 0455 const Standard_Real theAngularTolerance) const 0456 { 0457 const gp_Dir& DD = axis.Direction(); 0458 const gp_Pnt& PP = axis.Location(); 0459 const gp_Pnt& AP = theA.Location(); 0460 Standard_Real D1 = (DD.X() * (AP.X() - PP.X()) + 0461 DD.Y() * (AP.Y() - PP.Y()) + 0462 DD.Z() * (AP.Z() - PP.Z())); 0463 if (D1 < 0) 0464 { 0465 D1 = -D1; 0466 } 0467 return D1 <= theLinearTolerance 0468 && axis.IsNormal (theA, theAngularTolerance); 0469 } 0470 0471 #endif // _gp_Ax2_HeaderFile
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |