Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 10:04:12

0001 // Created on: 1997-01-17
0002 // Created by: Philippe MANGIN
0003 // Copyright (c) 1997-1999 Matra Datavision
0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS
0005 //
0006 // This file is part of Open CASCADE Technology software library.
0007 //
0008 // This library is free software; you can redistribute it and/or modify it under
0009 // the terms of the GNU Lesser General Public License version 2.1 as published
0010 // by the Free Software Foundation, with special exception defined in the file
0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
0012 // distribution for complete text of the license and disclaimer of any warranty.
0013 //
0014 // Alternatively, this file may be used under the terms of Open CASCADE
0015 // commercial license or contractual agreement.
0016 
0017 #ifndef _Law_BSplineKnotSplitting_HeaderFile
0018 #define _Law_BSplineKnotSplitting_HeaderFile
0019 
0020 #include <Standard.hxx>
0021 #include <Standard_DefineAlloc.hxx>
0022 #include <Standard_Handle.hxx>
0023 
0024 #include <TColStd_HArray1OfInteger.hxx>
0025 #include <Standard_Integer.hxx>
0026 #include <TColStd_Array1OfInteger.hxx>
0027 class Law_BSpline;
0028 
0029 
0030 
0031 //! For a B-spline curve the discontinuities are localised at the
0032 //! knot values and between two knots values the B-spline is
0033 //! infinitely continuously differentiable.
0034 //! At a knot of range index the continuity is equal to :
0035 //! Degree - Mult (Index)   where  Degree is the degree of the
0036 //! basis B-spline functions and Mult the multiplicity of the knot
0037 //! of range Index.
0038 //! If for your computation you need to have B-spline curves with a
0039 //! minima of continuity it can be interesting to know between which
0040 //! knot values, a B-spline curve arc, has a continuity of given order.
0041 //! This algorithm computes the indexes of the knots where you should
0042 //! split the curve, to obtain arcs with a constant continuity given
0043 //! at the construction time. The splitting values are in the range
0044 //! [FirstUKnotValue, LastUKnotValue] (See class B-spline curve from
0045 //! package Geom).
0046 //! If you just want to compute the local derivatives on the curve you
0047 //! don't need to create the B-spline curve arcs, you can use the
0048 //! functions LocalD1, LocalD2, LocalD3, LocalDN of the class
0049 //! BSplineCurve.
0050 class Law_BSplineKnotSplitting 
0051 {
0052 public:
0053 
0054   DEFINE_STANDARD_ALLOC
0055 
0056   
0057 
0058   //! Locates the knot values which correspond to the segmentation of
0059   //! the curve into arcs with a continuity equal to ContinuityRange.
0060   //!
0061   //! Raised if ContinuityRange is not greater or equal zero.
0062   Standard_EXPORT Law_BSplineKnotSplitting(const Handle(Law_BSpline)& BasisLaw, const Standard_Integer ContinuityRange);
0063   
0064 
0065   //! Returns the number of knots corresponding to the splitting.
0066   Standard_EXPORT Standard_Integer NbSplits() const;
0067   
0068 
0069   //! Returns the indexes of the BSpline curve knots corresponding to
0070   //! the splitting.
0071   //!
0072   //! Raised if the length of SplitValues is not equal to NbSPlit.
0073   Standard_EXPORT void Splitting (TColStd_Array1OfInteger& SplitValues) const;
0074   
0075 
0076   //! Returns the index of the knot corresponding to the splitting
0077   //! of range Index.
0078   //!
0079   //! Raised if Index < 1 or Index > NbSplits
0080   Standard_EXPORT Standard_Integer SplitValue (const Standard_Integer Index) const;
0081 
0082 
0083 
0084 
0085 protected:
0086 
0087 
0088 
0089 
0090 
0091 private:
0092 
0093 
0094 
0095   Handle(TColStd_HArray1OfInteger) splitIndexes;
0096 
0097 
0098 };
0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 #endif // _Law_BSplineKnotSplitting_HeaderFile