Warning, /include/opencascade/IntPatch_ImpImpIntersection_4.gxx is written in an unsupported language. File is not indexed.
0001 // Created on: 1992-05-07
0002 // Created by: Jacques GOUSSARD
0003 // Copyright (c) 1992-1999 Matra Datavision
0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS
0005 //
0006 // This file is part of Open CASCADE Technology software library.
0007 //
0008 // This library is free software; you can redistribute it and/or modify it under
0009 // the terms of the GNU Lesser General Public License version 2.1 as published
0010 // by the Free Software Foundation, with special exception defined in the file
0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
0012 // distribution for complete text of the license and disclaimer of any warranty.
0013 //
0014 // Alternatively, this file may be used under the terms of Open CASCADE
0015 // commercial license or contractual agreement.
0016
0017 #include <algorithm>
0018 #include <Bnd_Range.hxx>
0019 #include <IntAna_ListOfCurve.hxx>
0020 #include <math_Matrix.hxx>
0021 #include <NCollection_IncAllocator.hxx>
0022 #include <Standard_DivideByZero.hxx>
0023 #include <math_Vector.hxx>
0024
0025 //If Abs(a) <= aNulValue then it is considered that a = 0.
0026 static const Standard_Real aNulValue = 1.0e-11;
0027
0028 static void ShortCosForm( const Standard_Real theCosFactor,
0029 const Standard_Real theSinFactor,
0030 Standard_Real& theCoeff,
0031 Standard_Real& theAngle);
0032 //
0033 static Standard_Boolean ExploreCurve(const gp_Cone& theCo,
0034 IntAna_Curve& aC,
0035 const Standard_Real aTol,
0036 IntAna_ListOfCurve& aLC);
0037
0038 static Standard_Boolean InscribePoint(const Standard_Real theUfTarget,
0039 const Standard_Real theUlTarget,
0040 Standard_Real& theUGiven,
0041 const Standard_Real theTol2D,
0042 const Standard_Real thePeriod,
0043 const Standard_Boolean theFlForce);
0044
0045
0046 class ComputationMethods
0047 {
0048 //Every cylinder can be represented by the following equation in parametric form:
0049 // S(U,V) = L + R*cos(U)*Xd+R*sin(U)*Yd+V*Zd,
0050 //where location L, directions Xd, Yd and Zd have type gp_XYZ.
0051
0052 //Intersection points between two cylinders can be found from the following system:
0053 // S1(U1, V1) = S2(U2, V2)
0054 //or
0055 // {X01 + R1*cos(U1)*Xx1 + R1*sin(U1)*Yx1 + V1*Zx1 = X02 + R2*cos(U2)*Xx2 + R2*sin(U2)*Yx2 + V2*Zx2
0056 // {Y01 + R1*cos(U1)*Xy1 + R1*sin(U1)*Yy1 + V1*Zy1 = Y02 + R2*cos(U2)*Xy2 + R2*sin(U2)*Yy2 + V2*Zy2 (1)
0057 // {Z01 + R1*cos(U1)*Xz1 + R1*sin(U1)*Yz1 + V1*Zz1 = Z02 + R2*cos(U2)*Xz2 + R2*sin(U2)*Yz2 + V2*Zz2
0058
0059 //The formula (1) can be rewritten as follows
0060 // {C11*V1+C21*V2=A11*cos(U1)+B11*sin(U1)+A21*cos(U2)+B21*sin(U2)+D1
0061 // {C12*V1+C22*V2=A12*cos(U1)+B12*sin(U1)+A22*cos(U2)+B22*sin(U2)+D2 (2)
0062 // {C13*V1+C23*V2=A13*cos(U1)+B13*sin(U1)+A23*cos(U2)+B23*sin(U2)+D3
0063
0064 //Hereafter we consider that in system
0065 // {C11*V1+C21*V2=A11*cos(U1)+B11*sin(U1)+A21*cos(U2)+B21*sin(U2)+D1 (3)
0066 // {C12*V1+C22*V2=A12*cos(U1)+B12*sin(U1)+A22*cos(U2)+B22*sin(U2)+D2
0067 //variables V1 and V2 can be found unambiguously, i.e. determinant
0068 // |C11 C21|
0069 // | | != 0
0070 // |C12 C22|
0071 //
0072 //In this case, variables V1 and V2 can be found as follows:
0073 // {V1 = K11*sin(U1)+K21*sin(U2)+L11*cos(U1)+L21*cos(U2)+M1 = K1*cos(U1-FIV1)+L1*cos(U2-PSIV1)+M1 (4)
0074 // {V2 = K12*sin(U1)+K22*sin(U2)+L12*cos(U1)+L22*cos(U2)+M2 = K2*cos(U2-FIV2)+L2*cos(U2-PSIV2)+M2
0075
0076 //Having substituted result of (4) to the 3rd equation of (2), we will obtain equation
0077 // cos(U2-FI2) = B*cos(U1-FI1)+C. (5)
0078
0079 //I.e. when U1 is taken different given values (from domain), correspond U2 value can be computed
0080 //from equation (5). After that, V1 and V2 can be computed from the system (4) (see
0081 //CylCylComputeParameters(...) methods).
0082
0083 //It is important to remark that equation (5) (in general) has two solutions: U2=FI2 +/- f(U1).
0084 //Therefore, we are getting here two intersection lines.
0085
0086 public:
0087 //Stores equations coefficients
0088 struct stCoeffsValue
0089 {
0090 stCoeffsValue(const gp_Cylinder&, const gp_Cylinder&);
0091
0092 math_Vector mVecA1;
0093 math_Vector mVecA2;
0094 math_Vector mVecB1;
0095 math_Vector mVecB2;
0096 math_Vector mVecC1;
0097 math_Vector mVecC2;
0098 math_Vector mVecD;
0099
0100 Standard_Real mK21; //sinU2
0101 Standard_Real mK11; //sinU1
0102 Standard_Real mL21; //cosU2
0103 Standard_Real mL11; //cosU1
0104 Standard_Real mM1; //Free member
0105
0106 Standard_Real mK22; //sinU2
0107 Standard_Real mK12; //sinU1
0108 Standard_Real mL22; //cosU2
0109 Standard_Real mL12; //cosU1
0110 Standard_Real mM2; //Free member
0111
0112 Standard_Real mK1;
0113 Standard_Real mL1;
0114 Standard_Real mK2;
0115 Standard_Real mL2;
0116
0117 Standard_Real mFIV1;
0118 Standard_Real mPSIV1;
0119 Standard_Real mFIV2;
0120 Standard_Real mPSIV2;
0121
0122 Standard_Real mB;
0123 Standard_Real mC;
0124 Standard_Real mFI1;
0125 Standard_Real mFI2;
0126 };
0127
0128
0129 //! Determines, if U2(U1) function is increasing.
0130 static Standard_Boolean CylCylMonotonicity(const Standard_Real theU1par,
0131 const Standard_Integer theWLIndex,
0132 const stCoeffsValue& theCoeffs,
0133 const Standard_Real thePeriod,
0134 Standard_Boolean& theIsIncreasing);
0135
0136 //! Computes U2 (U-parameter of the 2nd cylinder) and, if theDelta != 0,
0137 //! esimates the tolerance of U2-computing (estimation result is
0138 //! assigned to *theDelta value).
0139 static Standard_Boolean CylCylComputeParameters(const Standard_Real theU1par,
0140 const Standard_Integer theWLIndex,
0141 const stCoeffsValue& theCoeffs,
0142 Standard_Real& theU2,
0143 Standard_Real* const theDelta = 0);
0144
0145 static Standard_Boolean CylCylComputeParameters(const Standard_Real theU1,
0146 const Standard_Real theU2,
0147 const stCoeffsValue& theCoeffs,
0148 Standard_Real& theV1,
0149 Standard_Real& theV2);
0150
0151 static Standard_Boolean CylCylComputeParameters(const Standard_Real theU1par,
0152 const Standard_Integer theWLIndex,
0153 const stCoeffsValue& theCoeffs,
0154 Standard_Real& theU2,
0155 Standard_Real& theV1,
0156 Standard_Real& theV2);
0157
0158 };
0159
0160 ComputationMethods::stCoeffsValue::stCoeffsValue(const gp_Cylinder& theCyl1,
0161 const gp_Cylinder& theCyl2):
0162 mVecA1(-theCyl1.Radius()*theCyl1.XAxis().Direction().XYZ()),
0163 mVecA2(theCyl2.Radius()*theCyl2.XAxis().Direction().XYZ()),
0164 mVecB1(-theCyl1.Radius()*theCyl1.YAxis().Direction().XYZ()),
0165 mVecB2(theCyl2.Radius()*theCyl2.YAxis().Direction().XYZ()),
0166 mVecC1(theCyl1.Axis().Direction().XYZ()),
0167 mVecC2(theCyl2.Axis().Direction().XYZ().Reversed()),
0168 mVecD(theCyl2.Location().XYZ() - theCyl1.Location().XYZ())
0169 {
0170 enum CoupleOfEquation
0171 {
0172 COENONE = 0,
0173 COE12 = 1,
0174 COE23 = 2,
0175 COE13 = 3
0176 }aFoundCouple = COENONE;
0177
0178
0179 Standard_Real aDetV1V2 = 0.0;
0180
0181 const Standard_Real aDelta1 = mVecC1(1)*mVecC2(2)-mVecC1(2)*mVecC2(1); //1-2
0182 const Standard_Real aDelta2 = mVecC1(2)*mVecC2(3)-mVecC1(3)*mVecC2(2); //2-3
0183 const Standard_Real aDelta3 = mVecC1(1)*mVecC2(3)-mVecC1(3)*mVecC2(1); //1-3
0184 const Standard_Real anAbsD1 = Abs(aDelta1); //1-2
0185 const Standard_Real anAbsD2 = Abs(aDelta2); //2-3
0186 const Standard_Real anAbsD3 = Abs(aDelta3); //1-3
0187
0188 if(anAbsD1 >= anAbsD2)
0189 {
0190 if(anAbsD3 > anAbsD1)
0191 {
0192 aFoundCouple = COE13;
0193 aDetV1V2 = aDelta3;
0194 }
0195 else
0196 {
0197 aFoundCouple = COE12;
0198 aDetV1V2 = aDelta1;
0199 }
0200 }
0201 else
0202 {
0203 if(anAbsD3 > anAbsD2)
0204 {
0205 aFoundCouple = COE13;
0206 aDetV1V2 = aDelta3;
0207 }
0208 else
0209 {
0210 aFoundCouple = COE23;
0211 aDetV1V2 = aDelta2;
0212 }
0213 }
0214
0215 // In point of fact, every determinant (aDelta1, aDelta2 and aDelta3) is
0216 // cross-product between directions (i.e. sine of angle).
0217 // If sine is too small then sine is (approx.) equal to angle itself.
0218 // Therefore, in this case we should compare sine with angular tolerance.
0219 // This constant is used for check if axes are parallel (see constructor
0220 // AxeOperator::AxeOperator(...) in IntAna_QuadQuadGeo.cxx file).
0221 if(Abs(aDetV1V2) < Precision::Angular())
0222 {
0223 throw Standard_Failure("Error. Exception in divide by zerro (IntCyCyTrim)!!!!");
0224 }
0225
0226 switch(aFoundCouple)
0227 {
0228 case COE12:
0229 break;
0230 case COE23:
0231 {
0232 math_Vector aVTemp(mVecA1);
0233 mVecA1(1) = aVTemp(2);
0234 mVecA1(2) = aVTemp(3);
0235 mVecA1(3) = aVTemp(1);
0236
0237 aVTemp = mVecA2;
0238 mVecA2(1) = aVTemp(2);
0239 mVecA2(2) = aVTemp(3);
0240 mVecA2(3) = aVTemp(1);
0241
0242 aVTemp = mVecB1;
0243 mVecB1(1) = aVTemp(2);
0244 mVecB1(2) = aVTemp(3);
0245 mVecB1(3) = aVTemp(1);
0246
0247 aVTemp = mVecB2;
0248 mVecB2(1) = aVTemp(2);
0249 mVecB2(2) = aVTemp(3);
0250 mVecB2(3) = aVTemp(1);
0251
0252 aVTemp = mVecC1;
0253 mVecC1(1) = aVTemp(2);
0254 mVecC1(2) = aVTemp(3);
0255 mVecC1(3) = aVTemp(1);
0256
0257 aVTemp = mVecC2;
0258 mVecC2(1) = aVTemp(2);
0259 mVecC2(2) = aVTemp(3);
0260 mVecC2(3) = aVTemp(1);
0261
0262 aVTemp = mVecD;
0263 mVecD(1) = aVTemp(2);
0264 mVecD(2) = aVTemp(3);
0265 mVecD(3) = aVTemp(1);
0266
0267 break;
0268 }
0269 case COE13:
0270 {
0271 math_Vector aVTemp = mVecA1;
0272 mVecA1(2) = aVTemp(3);
0273 mVecA1(3) = aVTemp(2);
0274
0275 aVTemp = mVecA2;
0276 mVecA2(2) = aVTemp(3);
0277 mVecA2(3) = aVTemp(2);
0278
0279 aVTemp = mVecB1;
0280 mVecB1(2) = aVTemp(3);
0281 mVecB1(3) = aVTemp(2);
0282
0283 aVTemp = mVecB2;
0284 mVecB2(2) = aVTemp(3);
0285 mVecB2(3) = aVTemp(2);
0286
0287 aVTemp = mVecC1;
0288 mVecC1(2) = aVTemp(3);
0289 mVecC1(3) = aVTemp(2);
0290
0291 aVTemp = mVecC2;
0292 mVecC2(2) = aVTemp(3);
0293 mVecC2(3) = aVTemp(2);
0294
0295 aVTemp = mVecD;
0296 mVecD(2) = aVTemp(3);
0297 mVecD(3) = aVTemp(2);
0298
0299 break;
0300 }
0301 default:
0302 break;
0303 }
0304
0305 //------- For V1 (begin)
0306 //sinU2
0307 mK21 = (mVecC2(2)*mVecB2(1)-mVecC2(1)*mVecB2(2))/aDetV1V2;
0308 //sinU1
0309 mK11 = (mVecC2(2)*mVecB1(1)-mVecC2(1)*mVecB1(2))/aDetV1V2;
0310 //cosU2
0311 mL21 = (mVecC2(2)*mVecA2(1)-mVecC2(1)*mVecA2(2))/aDetV1V2;
0312 //cosU1
0313 mL11 = (mVecC2(2)*mVecA1(1)-mVecC2(1)*mVecA1(2))/aDetV1V2;
0314 //Free member
0315 mM1 = (mVecC2(2)*mVecD(1)-mVecC2(1)*mVecD(2))/aDetV1V2;
0316 //------- For V1 (end)
0317
0318 //------- For V2 (begin)
0319 //sinU2
0320 mK22 = (mVecC1(1)*mVecB2(2)-mVecC1(2)*mVecB2(1))/aDetV1V2;
0321 //sinU1
0322 mK12 = (mVecC1(1)*mVecB1(2)-mVecC1(2)*mVecB1(1))/aDetV1V2;
0323 //cosU2
0324 mL22 = (mVecC1(1)*mVecA2(2)-mVecC1(2)*mVecA2(1))/aDetV1V2;
0325 //cosU1
0326 mL12 = (mVecC1(1)*mVecA1(2)-mVecC1(2)*mVecA1(1))/aDetV1V2;
0327 //Free member
0328 mM2 = (mVecC1(1)*mVecD(2)-mVecC1(2)*mVecD(1))/aDetV1V2;
0329 //------- For V1 (end)
0330
0331 ShortCosForm(mL11, mK11, mK1, mFIV1);
0332 ShortCosForm(mL21, mK21, mL1, mPSIV1);
0333 ShortCosForm(mL12, mK12, mK2, mFIV2);
0334 ShortCosForm(mL22, mK22, mL2, mPSIV2);
0335
0336 const Standard_Real aA1=mVecC1(3)*mK21+mVecC2(3)*mK22-mVecB2(3), //sinU2
0337 aA2=mVecC1(3)*mL21+mVecC2(3)*mL22-mVecA2(3), //cosU2
0338 aB1=mVecB1(3)-mVecC1(3)*mK11-mVecC2(3)*mK12, //sinU1
0339 aB2=mVecA1(3)-mVecC1(3)*mL11-mVecC2(3)*mL12; //cosU1
0340
0341 mC =mVecD(3) - mVecC1(3)*mM1 -mVecC2(3)*mM2; //Free
0342
0343 Standard_Real aA = 0.0;
0344
0345 ShortCosForm(aB2,aB1,mB,mFI1);
0346 ShortCosForm(aA2,aA1,aA,mFI2);
0347
0348 mB /= aA;
0349 mC /= aA;
0350 }
0351
0352 class WorkWithBoundaries
0353 {
0354 public:
0355 enum SearchBoundType
0356 {
0357 SearchNONE = 0,
0358 SearchV1 = 1,
0359 SearchV2 = 2
0360 };
0361
0362 struct StPInfo
0363 {
0364 StPInfo()
0365 {
0366 mySurfID = 0;
0367 myU1 = RealLast();
0368 myV1 = RealLast();
0369 myU2 = RealLast();
0370 myV2 = RealLast();
0371 }
0372
0373 //Equal to 0 for 1st surface non-zero for 2nd one.
0374 Standard_Integer mySurfID;
0375
0376 Standard_Real myU1;
0377 Standard_Real myV1;
0378 Standard_Real myU2;
0379 Standard_Real myV2;
0380
0381 bool operator>(const StPInfo& theOther) const
0382 {
0383 return myU1 > theOther.myU1;
0384 }
0385
0386 bool operator<(const StPInfo& theOther) const
0387 {
0388 return myU1 < theOther.myU1;
0389 }
0390
0391 bool operator==(const StPInfo& theOther) const
0392 {
0393 return myU1 == theOther.myU1;
0394 }
0395 };
0396
0397 WorkWithBoundaries(const IntSurf_Quadric& theQuad1,
0398 const IntSurf_Quadric& theQuad2,
0399 const ComputationMethods::stCoeffsValue& theCoeffs,
0400 const Bnd_Box2d& theUVSurf1,
0401 const Bnd_Box2d& theUVSurf2,
0402 const Standard_Integer theNbWLines,
0403 const Standard_Real thePeriod,
0404 const Standard_Real theTol3D,
0405 const Standard_Real theTol2D,
0406 const Standard_Boolean isTheReverse) :
0407 myQuad1(theQuad1), myQuad2(theQuad2), myCoeffs(theCoeffs),
0408 myUVSurf1(theUVSurf1), myUVSurf2(theUVSurf2), myNbWLines(theNbWLines),
0409 myPeriod(thePeriod), myTol3D(theTol3D), myTol2D(theTol2D),
0410 myIsReverse(isTheReverse)
0411 {
0412 };
0413
0414 // Returns parameters of system solved while finding
0415 // intersection line
0416 const ComputationMethods::stCoeffsValue &SICoeffs() const
0417 {
0418 return myCoeffs;
0419 }
0420
0421 // Returns quadric correspond to the index theIdx.
0422 const IntSurf_Quadric& GetQSurface(const Standard_Integer theIdx) const
0423 {
0424 if (theIdx <= 1)
0425 return myQuad1;
0426
0427 return myQuad2;
0428 }
0429
0430 // Returns TRUE in case of reverting surfaces
0431 Standard_Boolean IsReversed() const
0432 {
0433 return myIsReverse;
0434 }
0435
0436 // Returns 2D-tolerance
0437 Standard_Real Get2dTolerance() const
0438 {
0439 return myTol2D;
0440 }
0441
0442 // Returns 3D-tolerance
0443 Standard_Real Get3dTolerance() const
0444 {
0445 return myTol3D;
0446 }
0447
0448 // Returns UV-bounds of 1st surface
0449 const Bnd_Box2d& UVS1() const
0450 {
0451 return myUVSurf1;
0452 }
0453
0454 // Returns UV-bounds of 2nd surface
0455 const Bnd_Box2d& UVS2() const
0456 {
0457 return myUVSurf2;
0458 }
0459
0460 void AddBoundaryPoint(const Handle(IntPatch_WLine)& theWL,
0461 const Standard_Real theU1,
0462 const Standard_Real theU1Min,
0463 const Standard_Real theU2,
0464 const Standard_Real theV1,
0465 const Standard_Real theV1Prev,
0466 const Standard_Real theV2,
0467 const Standard_Real theV2Prev,
0468 const Standard_Integer theWLIndex,
0469 const Standard_Boolean theFlForce,
0470 Standard_Boolean& isTheFound1,
0471 Standard_Boolean& isTheFound2) const;
0472
0473 static Standard_Boolean BoundariesComputing(const ComputationMethods::stCoeffsValue &theCoeffs,
0474 const Standard_Real thePeriod,
0475 Bnd_Range theURange[]);
0476
0477 void BoundaryEstimation(const gp_Cylinder& theCy1,
0478 const gp_Cylinder& theCy2,
0479 Bnd_Range& theOutBoxS1,
0480 Bnd_Range& theOutBoxS2) const;
0481
0482 protected:
0483
0484 //Solves equation (2) (see declaration of ComputationMethods class) in case,
0485 //when V1 or V2 (is set by theSBType argument) is known (corresponds to the boundary
0486 //and equal to theVzad) but U1 is unknown. Computation is made by numeric methods and
0487 //requires initial values (theVInit, theInitU2 and theInitMainVar).
0488 Standard_Boolean
0489 SearchOnVBounds(const SearchBoundType theSBType,
0490 const Standard_Real theVzad,
0491 const Standard_Real theVInit,
0492 const Standard_Real theInitU2,
0493 const Standard_Real theInitMainVar,
0494 Standard_Real& theMainVariableValue) const;
0495
0496 const WorkWithBoundaries& operator=(const WorkWithBoundaries&);
0497
0498 private:
0499 friend class ComputationMethods;
0500
0501 const IntSurf_Quadric& myQuad1;
0502 const IntSurf_Quadric& myQuad2;
0503 const ComputationMethods::stCoeffsValue& myCoeffs;
0504 const Bnd_Box2d& myUVSurf1;
0505 const Bnd_Box2d& myUVSurf2;
0506 const Standard_Integer myNbWLines;
0507 const Standard_Real myPeriod;
0508 const Standard_Real myTol3D;
0509 const Standard_Real myTol2D;
0510 const Standard_Boolean myIsReverse;
0511 };
0512
0513 static void SeekAdditionalPoints( const IntSurf_Quadric& theQuad1,
0514 const IntSurf_Quadric& theQuad2,
0515 const Handle(IntSurf_LineOn2S)& theLine,
0516 const ComputationMethods::stCoeffsValue& theCoeffs,
0517 const Standard_Integer theWLIndex,
0518 const Standard_Integer theMinNbPoints,
0519 const Standard_Integer theStartPointOnLine,
0520 const Standard_Integer theEndPointOnLine,
0521 const Standard_Real theTol2D,
0522 const Standard_Real thePeriodOfSurf2,
0523 const Standard_Boolean isTheReverse);
0524
0525 //=======================================================================
0526 //function : MinMax
0527 //purpose : Replaces theParMIN = MIN(theParMIN, theParMAX),
0528 // theParMAX = MAX(theParMIN, theParMAX).
0529 //=======================================================================
0530 static inline void MinMax(Standard_Real& theParMIN, Standard_Real& theParMAX)
0531 {
0532 if(theParMIN > theParMAX)
0533 {
0534 const Standard_Real aux = theParMAX;
0535 theParMAX = theParMIN;
0536 theParMIN = aux;
0537 }
0538 }
0539
0540 //=======================================================================
0541 //function : ExtremaLineLine
0542 //purpose : Computes extrema between the given lines. Returns parameters
0543 // on correspond curve (see correspond method for Extrema_ExtElC class).
0544 //=======================================================================
0545 static inline void ExtremaLineLine(const gp_Ax1& theC1,
0546 const gp_Ax1& theC2,
0547 const Standard_Real theCosA,
0548 const Standard_Real theSqSinA,
0549 Standard_Real& thePar1,
0550 Standard_Real& thePar2)
0551 {
0552 const gp_Dir &aD1 = theC1.Direction(),
0553 &aD2 = theC2.Direction();
0554
0555 const gp_XYZ aL1L2 = theC2.Location().XYZ() - theC1.Location().XYZ();
0556 const Standard_Real aD1L = aD1.XYZ().Dot(aL1L2),
0557 aD2L = aD2.XYZ().Dot(aL1L2);
0558
0559 thePar1 = (aD1L - theCosA * aD2L) / theSqSinA;
0560 thePar2 = (theCosA * aD1L - aD2L) / theSqSinA;
0561 }
0562
0563 //=======================================================================
0564 //function : VBoundaryPrecise
0565 //purpose : By default, we shall consider, that V1 and V2 will be increased
0566 // if U1 is increased. But if it is not, new V1set and/or V2set
0567 // must be computed as [V1current - DeltaV1] (analogically
0568 // for V2). This function processes this case.
0569 //=======================================================================
0570 static void VBoundaryPrecise( const math_Matrix& theMatr,
0571 const Standard_Real theV1AfterDecrByDelta,
0572 const Standard_Real theV2AfterDecrByDelta,
0573 Standard_Real& theV1Set,
0574 Standard_Real& theV2Set)
0575 {
0576 //Now we are going to define if V1 (and V2) increases
0577 //(or decreases) when U1 will increase.
0578 const Standard_Integer aNbDim = 3;
0579 math_Matrix aSyst(1, aNbDim, 1, aNbDim);
0580
0581 aSyst.SetCol(1, theMatr.Col(1));
0582 aSyst.SetCol(2, theMatr.Col(2));
0583 aSyst.SetCol(3, theMatr.Col(4));
0584
0585 //We have the system (see comment to StepComputing(...) function)
0586 // {a11*dV1 + a12*dV2 + a14*dU2 = -a13*dU1
0587 // {a21*dV1 + a22*dV2 + a24*dU2 = -a23*dU1
0588 // {a31*dV1 + a32*dV2 + a34*dU2 = -a33*dU1
0589
0590 const Standard_Real aDet = aSyst.Determinant();
0591
0592 aSyst.SetCol(1, theMatr.Col(3));
0593 const Standard_Real aDet1 = aSyst.Determinant();
0594
0595 aSyst.SetCol(1, theMatr.Col(1));
0596 aSyst.SetCol(2, theMatr.Col(3));
0597
0598 const Standard_Real aDet2 = aSyst.Determinant();
0599
0600 //Now,
0601 // dV1 = -dU1*aDet1/aDet
0602 // dV2 = -dU1*aDet2/aDet
0603
0604 //If U1 is increased then dU1 > 0.
0605 //If (aDet1/aDet > 0) then dV1 < 0 and
0606 //V1 will be decreased after increasing U1.
0607
0608 //We have analogical situation with V2-parameter.
0609
0610 if(aDet*aDet1 > 0.0)
0611 {
0612 theV1Set = theV1AfterDecrByDelta;
0613 }
0614
0615 if(aDet*aDet2 > 0.0)
0616 {
0617 theV2Set = theV2AfterDecrByDelta;
0618 }
0619 }
0620
0621 //=======================================================================
0622 //function : DeltaU1Computing
0623 //purpose : Computes new step for U1 parameter.
0624 //=======================================================================
0625 static inline
0626 Standard_Boolean DeltaU1Computing(const math_Matrix& theSyst,
0627 const math_Vector& theFree,
0628 Standard_Real& theDeltaU1Found)
0629 {
0630 Standard_Real aDet = theSyst.Determinant();
0631
0632 if(Abs(aDet) > aNulValue)
0633 {
0634 math_Matrix aSyst1(theSyst);
0635 aSyst1.SetCol(2, theFree);
0636
0637 theDeltaU1Found = Abs(aSyst1.Determinant()/aDet);
0638 return Standard_True;
0639 }
0640
0641 return Standard_False;
0642 }
0643
0644 //=======================================================================
0645 //function : StepComputing
0646 //purpose :
0647 //
0648 //Attention!!!:
0649 // theMatr must have 3*5-dimension strictly.
0650 // For system
0651 // {a11*V1+a12*V2+a13*dU1+a14*dU2=b1;
0652 // {a21*V1+a22*V2+a23*dU1+a24*dU2=b2;
0653 // {a31*V1+a32*V2+a33*dU1+a34*dU2=b3;
0654 // theMatr must be following:
0655 // (a11 a12 a13 a14 b1)
0656 // (a21 a22 a23 a24 b2)
0657 // (a31 a32 a33 a34 b3)
0658 //=======================================================================
0659 static Standard_Boolean StepComputing(const math_Matrix& theMatr,
0660 const Standard_Real theV1Cur,
0661 const Standard_Real theV2Cur,
0662 const Standard_Real theDeltaV1,
0663 const Standard_Real theDeltaV2,
0664 Standard_Real& theDeltaU1Found/*,
0665 Standard_Real& theDeltaU2Found,
0666 Standard_Real& theV1Found,
0667 Standard_Real& theV2Found*/)
0668 {
0669 #ifdef INTPATCH_IMPIMPINTERSECTION_DEBUG
0670 bool flShow = false;
0671
0672 if(flShow)
0673 {
0674 printf("{%+10.20f*V1 + %+10.20f*V2 + %+10.20f*dU1 + %+10.20f*dU2 = %+10.20f\n",
0675 theMatr(1,1), theMatr(1,2), theMatr(1,3), theMatr(1,4), theMatr(1,5));
0676 printf("{%+10.20f*V1 + %+10.20f*V2 + %+10.20f*dU1 + %+10.20f*dU2 = %+10.20f\n",
0677 theMatr(2,1), theMatr(2,2), theMatr(2,3), theMatr(2,4), theMatr(2,5));
0678 printf("{%+10.20f*V1 + %+10.20f*V2 + %+10.20f*dU1 + %+10.20f*dU2 = %+10.20f\n",
0679 theMatr(3,1), theMatr(3,2), theMatr(3,3), theMatr(3,4), theMatr(3,5));
0680 }
0681 #endif
0682
0683 Standard_Boolean isSuccess = Standard_False;
0684 theDeltaU1Found/* = theDeltaU2Found*/ = RealLast();
0685 //theV1Found = theV1set;
0686 //theV2Found = theV2Set;
0687 const Standard_Integer aNbDim = 3;
0688
0689 math_Matrix aSyst(1, aNbDim, 1, aNbDim);
0690 math_Vector aFree(1, aNbDim);
0691
0692 //By default, increasing V1(U1) and V2(U1) functions is
0693 //considered
0694 Standard_Real aV1Set = theV1Cur + theDeltaV1,
0695 aV2Set = theV2Cur + theDeltaV2;
0696
0697 //However, what is indeed?
0698 VBoundaryPrecise( theMatr, theV1Cur - theDeltaV1,
0699 theV2Cur - theDeltaV2, aV1Set, aV2Set);
0700
0701 aSyst.SetCol(2, theMatr.Col(3));
0702 aSyst.SetCol(3, theMatr.Col(4));
0703
0704 for(Standard_Integer i = 0; i < 2; i++)
0705 {
0706 if(i == 0)
0707 {//V1 is known
0708 aSyst.SetCol(1, theMatr.Col(2));
0709 aFree.Set(1, aNbDim, theMatr.Col(5)-aV1Set*theMatr.Col(1));
0710 }
0711 else
0712 {//i==1 => V2 is known
0713 aSyst.SetCol(1, theMatr.Col(1));
0714 aFree.Set(1, aNbDim, theMatr.Col(5)-aV2Set*theMatr.Col(2));
0715 }
0716
0717 Standard_Real aNewDU = theDeltaU1Found;
0718 if(DeltaU1Computing(aSyst, aFree, aNewDU))
0719 {
0720 isSuccess = Standard_True;
0721 if(aNewDU < theDeltaU1Found)
0722 {
0723 theDeltaU1Found = aNewDU;
0724 }
0725 }
0726 }
0727
0728 if(!isSuccess)
0729 {
0730 aFree = theMatr.Col(5) - aV1Set*theMatr.Col(1) - aV2Set*theMatr.Col(2);
0731 math_Matrix aSyst1(1, aNbDim, 1, 2);
0732 aSyst1.SetCol(1, aSyst.Col(2));
0733 aSyst1.SetCol(2, aSyst.Col(3));
0734
0735 //Now we have overdetermined system.
0736
0737 const Standard_Real aDet1 = theMatr(1,3)*theMatr(2,4) - theMatr(2,3)*theMatr(1,4);
0738 const Standard_Real aDet2 = theMatr(1,3)*theMatr(3,4) - theMatr(3,3)*theMatr(1,4);
0739 const Standard_Real aDet3 = theMatr(2,3)*theMatr(3,4) - theMatr(3,3)*theMatr(2,4);
0740 const Standard_Real anAbsD1 = Abs(aDet1);
0741 const Standard_Real anAbsD2 = Abs(aDet2);
0742 const Standard_Real anAbsD3 = Abs(aDet3);
0743
0744 if(anAbsD1 >= anAbsD2)
0745 {
0746 if(anAbsD1 >= anAbsD3)
0747 {
0748 //Det1
0749 if(anAbsD1 <= aNulValue)
0750 return isSuccess;
0751
0752 theDeltaU1Found = Abs(aFree(1)*theMatr(2,4) - aFree(2)*theMatr(1,4))/anAbsD1;
0753 isSuccess = Standard_True;
0754 }
0755 else
0756 {
0757 //Det3
0758 if(anAbsD3 <= aNulValue)
0759 return isSuccess;
0760
0761 theDeltaU1Found = Abs(aFree(2)*theMatr(3,4) - aFree(3)*theMatr(2,4))/anAbsD3;
0762 isSuccess = Standard_True;
0763 }
0764 }
0765 else
0766 {
0767 if(anAbsD2 >= anAbsD3)
0768 {
0769 //Det2
0770 if(anAbsD2 <= aNulValue)
0771 return isSuccess;
0772
0773 theDeltaU1Found = Abs(aFree(1)*theMatr(3,4) - aFree(3)*theMatr(1,4))/anAbsD2;
0774 isSuccess = Standard_True;
0775 }
0776 else
0777 {
0778 //Det3
0779 if(anAbsD3 <= aNulValue)
0780 return isSuccess;
0781
0782 theDeltaU1Found = Abs(aFree(2)*theMatr(3,4) - aFree(3)*theMatr(2,4))/anAbsD3;
0783 isSuccess = Standard_True;
0784 }
0785 }
0786 }
0787
0788 return isSuccess;
0789 }
0790
0791 //=======================================================================
0792 //function : ProcessBounds
0793 //purpose :
0794 //=======================================================================
0795 void ProcessBounds(const Handle(IntPatch_ALine)& alig, //-- ligne courante
0796 const IntPatch_SequenceOfLine& slin,
0797 const IntSurf_Quadric& Quad1,
0798 const IntSurf_Quadric& Quad2,
0799 Standard_Boolean& procf,
0800 const gp_Pnt& ptf, //-- Debut Ligne Courante
0801 const Standard_Real first, //-- Paramf
0802 Standard_Boolean& procl,
0803 const gp_Pnt& ptl, //-- Fin Ligne courante
0804 const Standard_Real last, //-- Paraml
0805 Standard_Boolean& Multpoint,
0806 const Standard_Real Tol)
0807 {
0808 Standard_Integer j,k;
0809 Standard_Real U1,V1,U2,V2;
0810 IntPatch_Point ptsol;
0811 Standard_Real d;
0812
0813 if (procf && procl) {
0814 j = slin.Length() + 1;
0815 }
0816 else {
0817 j = 1;
0818 }
0819
0820
0821 //-- On prend les lignes deja enregistrees
0822
0823 while (j <= slin.Length()) {
0824 if(slin.Value(j)->ArcType() == IntPatch_Analytic) {
0825 const Handle(IntPatch_ALine)& aligold = *((Handle(IntPatch_ALine)*)&slin.Value(j));
0826 k = 1;
0827
0828 //-- On prend les vertex des lignes deja enregistrees
0829
0830 while (k <= aligold->NbVertex()) {
0831 ptsol = aligold->Vertex(k);
0832 if (!procf) {
0833 d=ptf.Distance(ptsol.Value());
0834 if (d <= Tol) {
0835 ptsol.SetTolerance(Tol);
0836 if (!ptsol.IsMultiple()) {
0837 //-- le point ptsol (de aligold) est declare multiple sur aligold
0838 Multpoint = Standard_True;
0839 ptsol.SetMultiple(Standard_True);
0840 aligold->Replace(k,ptsol);
0841 }
0842 ptsol.SetParameter(first);
0843 alig->AddVertex(ptsol);
0844 alig->SetFirstPoint(alig->NbVertex());
0845 procf = Standard_True;
0846
0847 //-- On restore le point avec son parametre sur aligold
0848 ptsol = aligold->Vertex(k);
0849
0850 }
0851 }
0852 if (!procl) {
0853 if (ptl.Distance(ptsol.Value()) <= Tol) {
0854 ptsol.SetTolerance(Tol);
0855 if (!ptsol.IsMultiple()) {
0856 Multpoint = Standard_True;
0857 ptsol.SetMultiple(Standard_True);
0858 aligold->Replace(k,ptsol);
0859 }
0860 ptsol.SetParameter(last);
0861 alig->AddVertex(ptsol);
0862 alig->SetLastPoint(alig->NbVertex());
0863 procl = Standard_True;
0864
0865 //-- On restore le point avec son parametre sur aligold
0866 ptsol = aligold->Vertex(k);
0867
0868 }
0869 }
0870 if (procf && procl) {
0871 k = aligold->NbVertex()+1;
0872 }
0873 else {
0874 k = k+1;
0875 }
0876 }
0877 if (procf && procl) {
0878 j = slin.Length()+1;
0879 }
0880 else {
0881 j = j+1;
0882 }
0883 }
0884 }
0885
0886 ptsol.SetTolerance(Tol);
0887 if (!procf && !procl) {
0888 Quad1.Parameters(ptf,U1,V1);
0889 Quad2.Parameters(ptf,U2,V2);
0890 ptsol.SetValue(ptf,Tol,Standard_False);
0891 ptsol.SetParameters(U1,V1,U2,V2);
0892 ptsol.SetParameter(first);
0893 if (ptf.Distance(ptl) <= Tol) {
0894 ptsol.SetMultiple(Standard_True); // a voir
0895 Multpoint = Standard_True; // a voir de meme
0896 alig->AddVertex(ptsol);
0897 alig->SetFirstPoint(alig->NbVertex());
0898
0899 ptsol.SetParameter(last);
0900 alig->AddVertex(ptsol);
0901 alig->SetLastPoint(alig->NbVertex());
0902 }
0903 else {
0904 alig->AddVertex(ptsol);
0905 alig->SetFirstPoint(alig->NbVertex());
0906 Quad1.Parameters(ptl,U1,V1);
0907 Quad2.Parameters(ptl,U2,V2);
0908 ptsol.SetValue(ptl,Tol,Standard_False);
0909 ptsol.SetParameters(U1,V1,U2,V2);
0910 ptsol.SetParameter(last);
0911 alig->AddVertex(ptsol);
0912 alig->SetLastPoint(alig->NbVertex());
0913 }
0914 }
0915 else if (!procf) {
0916 Quad1.Parameters(ptf,U1,V1);
0917 Quad2.Parameters(ptf,U2,V2);
0918 ptsol.SetValue(ptf,Tol,Standard_False);
0919 ptsol.SetParameters(U1,V1,U2,V2);
0920 ptsol.SetParameter(first);
0921 alig->AddVertex(ptsol);
0922 alig->SetFirstPoint(alig->NbVertex());
0923 }
0924 else if (!procl) {
0925 Quad1.Parameters(ptl,U1,V1);
0926 Quad2.Parameters(ptl,U2,V2);
0927 ptsol.SetValue(ptl,Tol,Standard_False);
0928 ptsol.SetParameters(U1,V1,U2,V2);
0929 ptsol.SetParameter(last);
0930 alig->AddVertex(ptsol);
0931 alig->SetLastPoint(alig->NbVertex());
0932 }
0933 }
0934
0935 //=======================================================================
0936 //function : CyCyAnalyticalIntersect
0937 //purpose : Checks if intersection curve is analytical (line, circle, ellipse)
0938 // and returns these curves.
0939 //=======================================================================
0940 Standard_Boolean CyCyAnalyticalIntersect( const IntSurf_Quadric& Quad1,
0941 const IntSurf_Quadric& Quad2,
0942 const IntAna_QuadQuadGeo& theInter,
0943 const Standard_Real Tol,
0944 Standard_Boolean& Empty,
0945 Standard_Boolean& Same,
0946 Standard_Boolean& Multpoint,
0947 IntPatch_SequenceOfLine& slin,
0948 IntPatch_SequenceOfPoint& spnt)
0949 {
0950 IntPatch_Point ptsol;
0951
0952 Standard_Integer i;
0953
0954 IntSurf_TypeTrans trans1,trans2;
0955 IntAna_ResultType typint;
0956
0957 gp_Elips elipsol;
0958 gp_Lin linsol;
0959
0960 gp_Cylinder Cy1(Quad1.Cylinder());
0961 gp_Cylinder Cy2(Quad2.Cylinder());
0962
0963 typint = theInter.TypeInter();
0964 Standard_Integer NbSol = theInter.NbSolutions();
0965 Empty = Standard_False;
0966 Same = Standard_False;
0967
0968 switch (typint)
0969 {
0970 case IntAna_Empty:
0971 {
0972 Empty = Standard_True;
0973 }
0974 break;
0975
0976 case IntAna_Same:
0977 {
0978 Same = Standard_True;
0979 }
0980 break;
0981
0982 case IntAna_Point:
0983 {
0984 gp_Pnt psol(theInter.Point(1));
0985 ptsol.SetValue(psol,Tol,Standard_True);
0986
0987 Standard_Real U1,V1,U2,V2;
0988 Quad1.Parameters(psol, U1, V1);
0989 Quad2.Parameters(psol, U2, V2);
0990
0991 ptsol.SetParameters(U1,V1,U2,V2);
0992 spnt.Append(ptsol);
0993 }
0994 break;
0995
0996 case IntAna_Line:
0997 {
0998 gp_Pnt ptref;
0999 if (NbSol == 1)
1000 { // Cylinders are tangent to each other by line
1001 linsol = theInter.Line(1);
1002 ptref = linsol.Location();
1003
1004 //Radius-vectors
1005 gp_Dir crb1(gp_Vec(ptref,Cy1.Location()));
1006 gp_Dir crb2(gp_Vec(ptref,Cy2.Location()));
1007
1008 //outer normal lines
1009 gp_Vec norm1(Quad1.Normale(ptref));
1010 gp_Vec norm2(Quad2.Normale(ptref));
1011 IntSurf_Situation situcyl1;
1012 IntSurf_Situation situcyl2;
1013
1014 if (crb1.Dot(crb2) < 0.)
1015 { // centre de courbures "opposes"
1016 //ATTENTION!!!
1017 // Normal and Radius-vector of the 1st(!) cylinder
1018 // is used for judging what the situation of the 2nd(!)
1019 // cylinder is.
1020
1021 if (norm1.Dot(crb1) > 0.)
1022 {
1023 situcyl2 = IntSurf_Inside;
1024 }
1025 else
1026 {
1027 situcyl2 = IntSurf_Outside;
1028 }
1029
1030 if (norm2.Dot(crb2) > 0.)
1031 {
1032 situcyl1 = IntSurf_Inside;
1033 }
1034 else
1035 {
1036 situcyl1 = IntSurf_Outside;
1037 }
1038 }
1039 else
1040 {
1041 if (Cy1.Radius() < Cy2.Radius())
1042 {
1043 if (norm1.Dot(crb1) > 0.)
1044 {
1045 situcyl2 = IntSurf_Inside;
1046 }
1047 else
1048 {
1049 situcyl2 = IntSurf_Outside;
1050 }
1051
1052 if (norm2.Dot(crb2) > 0.)
1053 {
1054 situcyl1 = IntSurf_Outside;
1055 }
1056 else
1057 {
1058 situcyl1 = IntSurf_Inside;
1059 }
1060 }
1061 else
1062 {
1063 if (norm1.Dot(crb1) > 0.)
1064 {
1065 situcyl2 = IntSurf_Outside;
1066 }
1067 else
1068 {
1069 situcyl2 = IntSurf_Inside;
1070 }
1071
1072 if (norm2.Dot(crb2) > 0.)
1073 {
1074 situcyl1 = IntSurf_Inside;
1075 }
1076 else
1077 {
1078 situcyl1 = IntSurf_Outside;
1079 }
1080 }
1081 }
1082
1083 Handle(IntPatch_GLine) glig = new IntPatch_GLine(linsol, Standard_True, situcyl1, situcyl2);
1084 slin.Append(glig);
1085 }
1086 else
1087 {
1088 for (i=1; i <= NbSol; i++)
1089 {
1090 linsol = theInter.Line(i);
1091 ptref = linsol.Location();
1092 gp_Vec lsd = linsol.Direction();
1093
1094 //Theoretically, qwe = +/- 1.0.
1095 Standard_Real qwe = lsd.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref));
1096 if (qwe >0.00000001)
1097 {
1098 trans1 = IntSurf_Out;
1099 trans2 = IntSurf_In;
1100 }
1101 else if (qwe <-0.00000001)
1102 {
1103 trans1 = IntSurf_In;
1104 trans2 = IntSurf_Out;
1105 }
1106 else
1107 {
1108 trans1=trans2=IntSurf_Undecided;
1109 }
1110
1111 Handle(IntPatch_GLine) glig = new IntPatch_GLine(linsol, Standard_False,trans1,trans2);
1112 slin.Append(glig);
1113 }
1114 }
1115 }
1116 break;
1117
1118 case IntAna_Ellipse:
1119 {
1120 gp_Vec Tgt;
1121 gp_Pnt ptref;
1122 IntPatch_Point pmult1, pmult2;
1123
1124 elipsol = theInter.Ellipse(1);
1125
1126 gp_Pnt pttang1(ElCLib::Value(0.5*M_PI, elipsol));
1127 gp_Pnt pttang2(ElCLib::Value(1.5*M_PI, elipsol));
1128
1129 Multpoint = Standard_True;
1130 pmult1.SetValue(pttang1,Tol,Standard_True);
1131 pmult2.SetValue(pttang2,Tol,Standard_True);
1132 pmult1.SetMultiple(Standard_True);
1133 pmult2.SetMultiple(Standard_True);
1134
1135 Standard_Real oU1,oV1,oU2,oV2;
1136 Quad1.Parameters(pttang1, oU1, oV1);
1137 Quad2.Parameters(pttang1, oU2, oV2);
1138
1139 pmult1.SetParameters(oU1,oV1,oU2,oV2);
1140 Quad1.Parameters(pttang2,oU1,oV1);
1141 Quad2.Parameters(pttang2,oU2,oV2);
1142
1143 pmult2.SetParameters(oU1,oV1,oU2,oV2);
1144
1145 // on traite la premiere ellipse
1146
1147 //-- Calcul de la Transition de la ligne
1148 ElCLib::D1(0.,elipsol,ptref,Tgt);
1149
1150 //Theoretically, qwe = +/- |Tgt|.
1151 Standard_Real qwe=Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref));
1152 if (qwe>0.00000001)
1153 {
1154 trans1 = IntSurf_Out;
1155 trans2 = IntSurf_In;
1156 }
1157 else if (qwe<-0.00000001)
1158 {
1159 trans1 = IntSurf_In;
1160 trans2 = IntSurf_Out;
1161 }
1162 else
1163 {
1164 trans1=trans2=IntSurf_Undecided;
1165 }
1166
1167 //-- Transition calculee au point 0 -> Trans2 , Trans1
1168 //-- car ici, on devarit calculer en PI
1169 Handle(IntPatch_GLine) glig = new IntPatch_GLine(elipsol,Standard_False,trans2,trans1);
1170 //
1171 {
1172 Standard_Real aU1, aV1, aU2, aV2;
1173 IntPatch_Point aIP;
1174 gp_Pnt aP (ElCLib::Value(0., elipsol));
1175 //
1176 aIP.SetValue(aP,Tol,Standard_False);
1177 aIP.SetMultiple(Standard_False);
1178 //
1179 Quad1.Parameters(aP, aU1, aV1);
1180 Quad2.Parameters(aP, aU2, aV2);
1181
1182 aIP.SetParameters(aU1, aV1, aU2, aV2);
1183 //
1184 aIP.SetParameter(0.);
1185 glig->AddVertex(aIP);
1186 glig->SetFirstPoint(1);
1187 //
1188 aIP.SetParameter(2.*M_PI);
1189 glig->AddVertex(aIP);
1190 glig->SetLastPoint(2);
1191 }
1192 //
1193 pmult1.SetParameter(0.5*M_PI);
1194 glig->AddVertex(pmult1);
1195 //
1196 pmult2.SetParameter(1.5*M_PI);
1197 glig->AddVertex(pmult2);
1198
1199 //
1200 slin.Append(glig);
1201
1202 //-- Transitions calculee au point 0 OK
1203 //
1204 // on traite la deuxieme ellipse
1205 elipsol = theInter.Ellipse(2);
1206
1207 Standard_Real param1 = ElCLib::Parameter(elipsol,pttang1);
1208 Standard_Real param2 = ElCLib::Parameter(elipsol,pttang2);
1209 Standard_Real parampourtransition = 0.0;
1210 if (param1 < param2)
1211 {
1212 pmult1.SetParameter(0.5*M_PI);
1213 pmult2.SetParameter(1.5*M_PI);
1214 parampourtransition = M_PI;
1215 }
1216 else {
1217 pmult1.SetParameter(1.5*M_PI);
1218 pmult2.SetParameter(0.5*M_PI);
1219 parampourtransition = 0.0;
1220 }
1221
1222 //-- Calcul des transitions de ligne pour la premiere ligne
1223 ElCLib::D1(parampourtransition,elipsol,ptref,Tgt);
1224
1225 //Theoretically, qwe = +/- |Tgt|.
1226 qwe=Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref));
1227 if(qwe> 0.00000001)
1228 {
1229 trans1 = IntSurf_Out;
1230 trans2 = IntSurf_In;
1231 }
1232 else if(qwe< -0.00000001)
1233 {
1234 trans1 = IntSurf_In;
1235 trans2 = IntSurf_Out;
1236 }
1237 else
1238 {
1239 trans1=trans2=IntSurf_Undecided;
1240 }
1241
1242 //-- La transition a ete calculee sur un point de cette ligne
1243 glig = new IntPatch_GLine(elipsol,Standard_False,trans1,trans2);
1244 //
1245 {
1246 Standard_Real aU1, aV1, aU2, aV2;
1247 IntPatch_Point aIP;
1248 gp_Pnt aP (ElCLib::Value(0., elipsol));
1249 //
1250 aIP.SetValue(aP,Tol,Standard_False);
1251 aIP.SetMultiple(Standard_False);
1252 //
1253
1254 Quad1.Parameters(aP, aU1, aV1);
1255 Quad2.Parameters(aP, aU2, aV2);
1256
1257 aIP.SetParameters(aU1, aV1, aU2, aV2);
1258 //
1259 aIP.SetParameter(0.);
1260 glig->AddVertex(aIP);
1261 glig->SetFirstPoint(1);
1262 //
1263 aIP.SetParameter(2.*M_PI);
1264 glig->AddVertex(aIP);
1265 glig->SetLastPoint(2);
1266 }
1267 //
1268 glig->AddVertex(pmult1);
1269 glig->AddVertex(pmult2);
1270 //
1271 slin.Append(glig);
1272 }
1273 break;
1274
1275 case IntAna_Parabola:
1276 case IntAna_Hyperbola:
1277 throw Standard_Failure("IntCyCy(): Wrong intersection type!");
1278
1279 case IntAna_Circle:
1280 // Circle is useful when we will work with trimmed surfaces
1281 // (two cylinders can be tangent by their basises, e.g. circle)
1282 case IntAna_NoGeometricSolution:
1283 default:
1284 return Standard_False;
1285 }
1286
1287 return Standard_True;
1288 }
1289
1290 //=======================================================================
1291 //function : ShortCosForm
1292 //purpose : Represents theCosFactor*cosA+theSinFactor*sinA as
1293 // theCoeff*cos(A-theAngle) if it is possibly (all angles are
1294 // in radians).
1295 //=======================================================================
1296 static void ShortCosForm( const Standard_Real theCosFactor,
1297 const Standard_Real theSinFactor,
1298 Standard_Real& theCoeff,
1299 Standard_Real& theAngle)
1300 {
1301 theCoeff = sqrt(theCosFactor*theCosFactor+theSinFactor*theSinFactor);
1302 theAngle = 0.0;
1303 if(IsEqual(theCoeff, 0.0))
1304 {
1305 theAngle = 0.0;
1306 return;
1307 }
1308
1309 theAngle = acos(Abs(theCosFactor/theCoeff));
1310
1311 if(theSinFactor > 0.0)
1312 {
1313 if(IsEqual(theCosFactor, 0.0))
1314 {
1315 theAngle = M_PI/2.0;
1316 }
1317 else if(theCosFactor < 0.0)
1318 {
1319 theAngle = M_PI-theAngle;
1320 }
1321 }
1322 else if(IsEqual(theSinFactor, 0.0))
1323 {
1324 if(theCosFactor < 0.0)
1325 {
1326 theAngle = M_PI;
1327 }
1328 }
1329 if(theSinFactor < 0.0)
1330 {
1331 if(theCosFactor > 0.0)
1332 {
1333 theAngle = 2.0*M_PI-theAngle;
1334 }
1335 else if(IsEqual(theCosFactor, 0.0))
1336 {
1337 theAngle = 3.0*M_PI/2.0;
1338 }
1339 else if(theCosFactor < 0.0)
1340 {
1341 theAngle = M_PI+theAngle;
1342 }
1343 }
1344 }
1345
1346 //=======================================================================
1347 //function : CylCylMonotonicity
1348 //purpose : Determines, if U2(U1) function is increasing.
1349 //=======================================================================
1350 Standard_Boolean ComputationMethods::CylCylMonotonicity(const Standard_Real theU1par,
1351 const Standard_Integer theWLIndex,
1352 const stCoeffsValue& theCoeffs,
1353 const Standard_Real thePeriod,
1354 Standard_Boolean& theIsIncreasing)
1355 {
1356 // U2(U1) = FI2 + (+/-)acos(B*cos(U1 - FI1) + C);
1357 //Accordingly,
1358 //Func. U2(X1) = FI2 + X1;
1359 //Func. X1(X2) = anArccosFactor*X2;
1360 //Func. X2(X3) = acos(X3);
1361 //Func. X3(X4) = B*X4 + C;
1362 //Func. X4(U1) = cos(U1 - FI1).
1363 //
1364 //Consequently,
1365 //U2(X1) is always increasing.
1366 //X1(X2) is increasing if anArccosFactor > 0.0 and
1367 //is decreasing otherwise.
1368 //X2(X3) is always decreasing.
1369 //Therefore, U2(X3) is decreasing if anArccosFactor > 0.0 and
1370 //is increasing otherwise.
1371 //X3(X4) is increasing if B > 0 and is decreasing otherwise.
1372 //X4(U1) is increasing if U1 - FI1 in [PI, 2*PI) and
1373 //is decreasing U1 - FI1 in [0, PI) or if (U1 - FI1 == 2PI).
1374 //After that, we can predict behaviour of U2(U1) function:
1375 //if it is increasing or decreasing.
1376
1377 //For "+/-" sign. If isPlus == TRUE, "+" is chosen, otherwise, we choose "-".
1378 Standard_Boolean isPlus = Standard_False;
1379
1380 switch(theWLIndex)
1381 {
1382 case 0:
1383 isPlus = Standard_True;
1384 break;
1385 case 1:
1386 isPlus = Standard_False;
1387 break;
1388 default:
1389 //throw Standard_Failure("Error. Range Error!!!!");
1390 return Standard_False;
1391 }
1392
1393 Standard_Real aU1Temp = theU1par - theCoeffs.mFI1;
1394 InscribePoint(0, thePeriod, aU1Temp, 0.0, thePeriod, Standard_False);
1395
1396 theIsIncreasing = Standard_True;
1397
1398 if(((M_PI - aU1Temp) < RealSmall()) && (aU1Temp < thePeriod))
1399 {
1400 theIsIncreasing = Standard_False;
1401 }
1402
1403 if(theCoeffs.mB < 0.0)
1404 {
1405 theIsIncreasing = !theIsIncreasing;
1406 }
1407
1408 if(!isPlus)
1409 {
1410 theIsIncreasing = !theIsIncreasing;
1411 }
1412
1413 return Standard_True;
1414 }
1415
1416 //=======================================================================
1417 //function : CylCylComputeParameters
1418 //purpose : Computes U2 (U-parameter of the 2nd cylinder) and, if theDelta != 0,
1419 // estimates the tolerance of U2-computing (estimation result is
1420 // assigned to *theDelta value).
1421 //=======================================================================
1422 Standard_Boolean ComputationMethods::CylCylComputeParameters(const Standard_Real theU1par,
1423 const Standard_Integer theWLIndex,
1424 const stCoeffsValue& theCoeffs,
1425 Standard_Real& theU2,
1426 Standard_Real* const theDelta)
1427 {
1428 //This formula is got from some experience and can be changed.
1429 const Standard_Real aTol0 = Min(10.0*Epsilon(1.0)*theCoeffs.mB, aNulValue);
1430 const Standard_Real aTol = 1.0 - aTol0;
1431
1432 if(theWLIndex < 0 || theWLIndex > 1)
1433 return Standard_False;
1434
1435 const Standard_Real aSign = theWLIndex ? -1.0 : 1.0;
1436
1437 Standard_Real anArg = cos(theU1par - theCoeffs.mFI1);
1438 anArg = theCoeffs.mB*anArg + theCoeffs.mC;
1439
1440 if(anArg >= aTol)
1441 {
1442 if(theDelta)
1443 *theDelta = 0.0;
1444
1445 anArg = 1.0;
1446 }
1447 else if(anArg <= -aTol)
1448 {
1449 if(theDelta)
1450 *theDelta = 0.0;
1451
1452 anArg = -1.0;
1453 }
1454 else if(theDelta)
1455 {
1456 //There is a case, when
1457 // const double aPar = 0.99999999999721167;
1458 // const double aFI2 = 2.3593296083566181e-006;
1459
1460 //Then
1461 // aPar - cos(aFI2) == -5.10703e-015 ==> cos(aFI2) == aPar.
1462 //Theoretically, in this case
1463 // aFI2 == +/- acos(aPar).
1464 //However,
1465 // acos(aPar) - aFI2 == 2.16362e-009.
1466 //Error is quite big.
1467
1468 //This error should be estimated. Let use following way, which is based
1469 //on expanding to Taylor series.
1470
1471 // acos(p)-acos(p+x) = x/sqrt(1-p*p).
1472
1473 //If p == (1-d) (when p > 0) or p == (-1+d) (when p < 0) then
1474 // acos(p)-acos(p+x) = x/sqrt(d*(2-d)).
1475
1476 //Here always aTol0 <= d <= 1. Max(x) is considered (!) to be equal to aTol0.
1477 //In this case
1478 // 8*aTol0 <= acos(p)-acos(p+x) <= sqrt(2/(2-aTol0)-1),
1479 // because 0 < aTol0 < 1.
1480 //E.g. when aTol0 = 1.0e-11,
1481 // 8.0e-11 <= acos(p)-acos(p+x) < 2.24e-6.
1482
1483 const Standard_Real aDelta = Min(1.0-anArg, 1.0+anArg);
1484 Standard_DivideByZero_Raise_if((aDelta*aDelta < RealSmall()) || (aDelta >= 2.0),
1485 "IntPatch_ImpImpIntersection_4.gxx, CylCylComputeParameters()");
1486 *theDelta = aTol0/sqrt(aDelta*(2.0-aDelta));
1487 }
1488
1489 theU2 = acos(anArg);
1490 theU2 = theCoeffs.mFI2 + aSign*theU2;
1491
1492 return Standard_True;
1493 }
1494
1495 //=======================================================================
1496 //function : CylCylComputeParameters
1497 //purpose : Computes V1 and V2 (V-parameters of the 1st and 2nd cylinder respectively).
1498 //=======================================================================
1499 Standard_Boolean ComputationMethods::CylCylComputeParameters(const Standard_Real theU1,
1500 const Standard_Real theU2,
1501 const stCoeffsValue& theCoeffs,
1502 Standard_Real& theV1,
1503 Standard_Real& theV2)
1504 {
1505 theV1 = theCoeffs.mK21 * sin(theU2) +
1506 theCoeffs.mK11 * sin(theU1) +
1507 theCoeffs.mL21 * cos(theU2) +
1508 theCoeffs.mL11 * cos(theU1) + theCoeffs.mM1;
1509
1510 theV2 = theCoeffs.mK22 * sin(theU2) +
1511 theCoeffs.mK12 * sin(theU1) +
1512 theCoeffs.mL22 * cos(theU2) +
1513 theCoeffs.mL12 * cos(theU1) + theCoeffs.mM2;
1514
1515 return Standard_True;
1516 }
1517
1518 //=======================================================================
1519 //function : CylCylComputeParameters
1520 //purpose : Computes U2 (U-parameter of the 2nd cylinder),
1521 // V1 and V2 (V-parameters of the 1st and 2nd cylinder respectively).
1522 //=======================================================================
1523 Standard_Boolean ComputationMethods::CylCylComputeParameters(const Standard_Real theU1par,
1524 const Standard_Integer theWLIndex,
1525 const stCoeffsValue& theCoeffs,
1526 Standard_Real& theU2,
1527 Standard_Real& theV1,
1528 Standard_Real& theV2)
1529 {
1530 if(!CylCylComputeParameters(theU1par, theWLIndex, theCoeffs, theU2))
1531 return Standard_False;
1532
1533 if(!CylCylComputeParameters(theU1par, theU2, theCoeffs, theV1, theV2))
1534 return Standard_False;
1535
1536 return Standard_True;
1537 }
1538
1539 //=======================================================================
1540 //function : SearchOnVBounds
1541 //purpose :
1542 //=======================================================================
1543 Standard_Boolean WorkWithBoundaries::
1544 SearchOnVBounds(const SearchBoundType theSBType,
1545 const Standard_Real theVzad,
1546 const Standard_Real theVInit,
1547 const Standard_Real theInitU2,
1548 const Standard_Real theInitMainVar,
1549 Standard_Real& theMainVariableValue) const
1550 {
1551 const Standard_Integer aNbDim = 3;
1552 const Standard_Real aMaxError = 4.0*M_PI; // two periods
1553
1554 theMainVariableValue = theInitMainVar;
1555 const Standard_Real aTol2 = 1.0e-18;
1556 Standard_Real aMainVarPrev = theInitMainVar, aU2Prev = theInitU2, anOtherVar = theVInit;
1557
1558 //Structure of aMatr:
1559 // C_{1}*U_{1} & C_{2}*U_{2} & C_{3}*V_{*},
1560 //where C_{1}, C_{2} and C_{3} are math_Vector.
1561 math_Matrix aMatr(1, aNbDim, 1, aNbDim);
1562
1563 Standard_Real anError = RealLast();
1564 Standard_Real anErrorPrev = anError;
1565 Standard_Integer aNbIter = 0;
1566 do
1567 {
1568 if(++aNbIter > 1000)
1569 return Standard_False;
1570
1571 const Standard_Real aSinU1 = sin(aMainVarPrev),
1572 aCosU1 = cos(aMainVarPrev),
1573 aSinU2 = sin(aU2Prev),
1574 aCosU2 = cos(aU2Prev);
1575
1576 math_Vector aVecFreeMem = (myCoeffs.mVecA2 * aU2Prev +
1577 myCoeffs.mVecB2) * aSinU2 -
1578 (myCoeffs.mVecB2 * aU2Prev -
1579 myCoeffs.mVecA2) * aCosU2 +
1580 (myCoeffs.mVecA1 * aMainVarPrev +
1581 myCoeffs.mVecB1) * aSinU1 -
1582 (myCoeffs.mVecB1 * aMainVarPrev -
1583 myCoeffs.mVecA1) * aCosU1 +
1584 myCoeffs.mVecD;
1585
1586 math_Vector aMSum(1, 3);
1587
1588 switch(theSBType)
1589 {
1590 case SearchV1:
1591 aMatr.SetCol(3, myCoeffs.mVecC2);
1592 aMSum = myCoeffs.mVecC1 * theVzad;
1593 aVecFreeMem -= aMSum;
1594 aMSum += myCoeffs.mVecC2*anOtherVar;
1595 break;
1596
1597 case SearchV2:
1598 aMatr.SetCol(3, myCoeffs.mVecC1);
1599 aMSum = myCoeffs.mVecC2 * theVzad;
1600 aVecFreeMem -= aMSum;
1601 aMSum += myCoeffs.mVecC1*anOtherVar;
1602 break;
1603
1604 default:
1605 return Standard_False;
1606 }
1607
1608 aMatr.SetCol(1, myCoeffs.mVecA1 * aSinU1 - myCoeffs.mVecB1 * aCosU1);
1609 aMatr.SetCol(2, myCoeffs.mVecA2 * aSinU2 - myCoeffs.mVecB2 * aCosU2);
1610
1611 Standard_Real aDetMainSyst = aMatr.Determinant();
1612
1613 if(Abs(aDetMainSyst) < aNulValue)
1614 {
1615 return Standard_False;
1616 }
1617
1618 math_Matrix aM1(aMatr), aM2(aMatr), aM3(aMatr);
1619 aM1.SetCol(1, aVecFreeMem);
1620 aM2.SetCol(2, aVecFreeMem);
1621 aM3.SetCol(3, aVecFreeMem);
1622
1623 const Standard_Real aDetMainVar = aM1.Determinant();
1624 const Standard_Real aDetVar1 = aM2.Determinant();
1625 const Standard_Real aDetVar2 = aM3.Determinant();
1626
1627 Standard_Real aDelta = aDetMainVar/aDetMainSyst-aMainVarPrev;
1628
1629 if(Abs(aDelta) > aMaxError)
1630 return Standard_False;
1631
1632 anError = aDelta*aDelta;
1633 aMainVarPrev += aDelta;
1634
1635 ///
1636 aDelta = aDetVar1/aDetMainSyst-aU2Prev;
1637
1638 if(Abs(aDelta) > aMaxError)
1639 return Standard_False;
1640
1641 anError += aDelta*aDelta;
1642 aU2Prev += aDelta;
1643
1644 ///
1645 aDelta = aDetVar2/aDetMainSyst-anOtherVar;
1646 anError += aDelta*aDelta;
1647 anOtherVar += aDelta;
1648
1649 if(anError > anErrorPrev)
1650 {//Method diverges. Keep the best result
1651 const Standard_Real aSinU1Last = sin(aMainVarPrev),
1652 aCosU1Last = cos(aMainVarPrev),
1653 aSinU2Last = sin(aU2Prev),
1654 aCosU2Last = cos(aU2Prev);
1655 aMSum -= (myCoeffs.mVecA1*aCosU1Last +
1656 myCoeffs.mVecB1*aSinU1Last +
1657 myCoeffs.mVecA2*aCosU2Last +
1658 myCoeffs.mVecB2*aSinU2Last +
1659 myCoeffs.mVecD);
1660 const Standard_Real aSQNorm = aMSum.Norm2();
1661 return (aSQNorm < aTol2);
1662 }
1663 else
1664 {
1665 theMainVariableValue = aMainVarPrev;
1666 }
1667
1668 anErrorPrev = anError;
1669 }
1670 while(anError > aTol2);
1671
1672 theMainVariableValue = aMainVarPrev;
1673
1674 return Standard_True;
1675 }
1676
1677 //=======================================================================
1678 //function : InscribePoint
1679 //purpose : If theFlForce==TRUE theUGiven will be changed forcefully
1680 // even if theUGiven is already inscibed in the boundary
1681 // (if it is possible; i.e. if new theUGiven is inscribed
1682 // in the boundary, too).
1683 //=======================================================================
1684 Standard_Boolean InscribePoint( const Standard_Real theUfTarget,
1685 const Standard_Real theUlTarget,
1686 Standard_Real& theUGiven,
1687 const Standard_Real theTol2D,
1688 const Standard_Real thePeriod,
1689 const Standard_Boolean theFlForce)
1690 {
1691 if(Precision::IsInfinite(theUGiven))
1692 {
1693 return Standard_False;
1694 }
1695
1696 if((theUfTarget - theUGiven <= theTol2D) &&
1697 (theUGiven - theUlTarget <= theTol2D))
1698 {//it has already inscribed
1699
1700 /*
1701 Utf U Utl
1702 + * +
1703 */
1704
1705 if(theFlForce)
1706 {
1707 Standard_Real anUtemp = theUGiven + thePeriod;
1708 if((theUfTarget - anUtemp <= theTol2D) &&
1709 (anUtemp - theUlTarget <= theTol2D))
1710 {
1711 theUGiven = anUtemp;
1712 return Standard_True;
1713 }
1714
1715 anUtemp = theUGiven - thePeriod;
1716 if((theUfTarget - anUtemp <= theTol2D) &&
1717 (anUtemp - theUlTarget <= theTol2D))
1718 {
1719 theUGiven = anUtemp;
1720 }
1721 }
1722
1723 return Standard_True;
1724 }
1725
1726 const Standard_Real aUf = theUfTarget - theTol2D;
1727 const Standard_Real aUl = aUf + thePeriod;
1728
1729 theUGiven = ElCLib::InPeriod(theUGiven, aUf, aUl);
1730
1731 return ((theUfTarget - theUGiven <= theTol2D) &&
1732 (theUGiven - theUlTarget <= theTol2D));
1733 }
1734
1735 //=======================================================================
1736 //function : InscribeInterval
1737 //purpose : Shifts theRange in order to make at least one of its
1738 // boundary in the range [theUfTarget, theUlTarget]
1739 //=======================================================================
1740 static Standard_Boolean InscribeInterval(const Standard_Real theUfTarget,
1741 const Standard_Real theUlTarget,
1742 Bnd_Range &theRange,
1743 const Standard_Real theTol2D,
1744 const Standard_Real thePeriod)
1745 {
1746 Standard_Real anUpar = 0.0;
1747 if (!theRange.GetMin(anUpar))
1748 {
1749 return Standard_False;
1750 }
1751
1752 const Standard_Real aDelta = theRange.Delta();
1753 if(InscribePoint(theUfTarget, theUlTarget, anUpar,
1754 theTol2D, thePeriod, (Abs(theUlTarget-anUpar) < theTol2D)))
1755 {
1756 theRange.SetVoid();
1757 theRange.Add(anUpar);
1758 theRange.Add(anUpar + aDelta);
1759 }
1760 else
1761 {
1762 if (!theRange.GetMax (anUpar))
1763 {
1764 return Standard_False;
1765 }
1766
1767 if(InscribePoint(theUfTarget, theUlTarget, anUpar,
1768 theTol2D, thePeriod, (Abs(theUfTarget-anUpar) < theTol2D)))
1769 {
1770 theRange.SetVoid();
1771 theRange.Add(anUpar);
1772 theRange.Add(anUpar - aDelta);
1773 }
1774 else
1775 {
1776 return Standard_False;
1777 }
1778 }
1779
1780 return Standard_True;
1781 }
1782
1783 //=======================================================================
1784 //function : ExcludeNearElements
1785 //purpose : Checks if theArr contains two almost equal elements.
1786 // If it is true then one of equal elements will be excluded
1787 // (made infinite).
1788 // Returns TRUE if at least one element of theArr has been changed.
1789 //ATTENTION!!!
1790 // 1. Every not infinite element of theArr is considered to be
1791 // in [0, T] interval (where T is the period);
1792 // 2. theArr must be sorted in ascending order.
1793 //=======================================================================
1794 static Standard_Boolean ExcludeNearElements(Standard_Real theArr[],
1795 const Standard_Integer theNOfMembers,
1796 const Standard_Real theUSurf1f,
1797 const Standard_Real theUSurf1l,
1798 const Standard_Real theTol)
1799 {
1800 Standard_Boolean aRetVal = Standard_False;
1801 for(Standard_Integer i = 1; i < theNOfMembers; i++)
1802 {
1803 Standard_Real &anA = theArr[i],
1804 &anB = theArr[i-1];
1805
1806 //Here, anA >= anB
1807
1808 if(Precision::IsInfinite(anA))
1809 break;
1810
1811 if((anA-anB) < theTol)
1812 {
1813 if((anB != 0.0) && (anB != theUSurf1f) && (anB != theUSurf1l))
1814 anA = (anA + anB)/2.0;
1815 else
1816 anA = anB;
1817
1818 //Make this element infinite an forget it
1819 //(we will not use it in next iterations).
1820 anB = Precision::Infinite();
1821 aRetVal = Standard_True;
1822 }
1823 }
1824
1825 return aRetVal;
1826 }
1827
1828 //=======================================================================
1829 //function : AddPointIntoWL
1830 //purpose : Surf1 is a surface, whose U-par is variable.
1831 // If theFlBefore == TRUE then we enable the U1-parameter
1832 // of the added point to be less than U1-parameter of
1833 // previously added point (in general U1-parameter is
1834 // always increased; therefore, this situation is abnormal).
1835 // If theOnlyCheck==TRUE then no point will be added to theLine.
1836 //=======================================================================
1837 static Standard_Boolean AddPointIntoWL( const IntSurf_Quadric& theQuad1,
1838 const IntSurf_Quadric& theQuad2,
1839 const ComputationMethods::stCoeffsValue& theCoeffs,
1840 const Standard_Boolean isTheReverse,
1841 const Standard_Boolean isThePrecise,
1842 const gp_Pnt2d& thePntOnSurf1,
1843 const gp_Pnt2d& thePntOnSurf2,
1844 const Standard_Real theUfSurf1,
1845 const Standard_Real theUlSurf1,
1846 const Standard_Real theUfSurf2,
1847 const Standard_Real theUlSurf2,
1848 const Standard_Real theVfSurf1,
1849 const Standard_Real theVlSurf1,
1850 const Standard_Real theVfSurf2,
1851 const Standard_Real theVlSurf2,
1852 const Standard_Real thePeriodOfSurf1,
1853 const Handle(IntSurf_LineOn2S)& theLine,
1854 const Standard_Integer theWLIndex,
1855 const Standard_Real theTol3D,
1856 const Standard_Real theTol2D,
1857 const Standard_Boolean theFlBefore = Standard_False,
1858 const Standard_Boolean theOnlyCheck = Standard_False)
1859 {
1860 //Check if the point is in the domain or can be inscribed in the domain after adjusting.
1861
1862 gp_Pnt aPt1(theQuad1.Value(thePntOnSurf1.X(), thePntOnSurf1.Y())),
1863 aPt2(theQuad2.Value(thePntOnSurf2.X(), thePntOnSurf2.Y()));
1864
1865 Standard_Real aU1par = thePntOnSurf1.X();
1866
1867 // aU1par always increases. Therefore, we must reduce its
1868 // value in order to continue creation of WLine.
1869 if(!InscribePoint(theUfSurf1, theUlSurf1, aU1par, theTol2D,
1870 thePeriodOfSurf1, aU1par > 0.5*(theUfSurf1+theUlSurf1)))
1871 return Standard_False;
1872
1873 if ((theLine->NbPoints() > 0) &&
1874 ((theUlSurf1 - theUfSurf1) >= (thePeriodOfSurf1 - theTol2D)) &&
1875 (((aU1par + thePeriodOfSurf1 - theUlSurf1) <= theTol2D) ||
1876 ((aU1par - thePeriodOfSurf1 - theUfSurf1) >= theTol2D)))
1877 {
1878 // aU1par can be adjusted to both theUlSurf1 and theUfSurf1
1879 // with equal possibilities. This code fragment allows choosing
1880 // correct parameter from these two variants.
1881
1882 Standard_Real aU1 = 0.0, aV1 = 0.0;
1883 if (isTheReverse)
1884 {
1885 theLine->Value(theLine->NbPoints()).ParametersOnS2(aU1, aV1);
1886 }
1887 else
1888 {
1889 theLine->Value(theLine->NbPoints()).ParametersOnS1(aU1, aV1);
1890 }
1891
1892 const Standard_Real aDelta = aU1 - aU1par;
1893 if (2.0*Abs(aDelta) > thePeriodOfSurf1)
1894 {
1895 aU1par += Sign(thePeriodOfSurf1, aDelta);
1896 }
1897 }
1898
1899 Standard_Real aU2par = thePntOnSurf2.X();
1900 if(!InscribePoint(theUfSurf2, theUlSurf2, aU2par, theTol2D,
1901 thePeriodOfSurf1, Standard_False))
1902 return Standard_False;
1903
1904 Standard_Real aV1par = thePntOnSurf1.Y();
1905 if((aV1par - theVlSurf1 > theTol2D) || (theVfSurf1 - aV1par > theTol2D))
1906 return Standard_False;
1907
1908 Standard_Real aV2par = thePntOnSurf2.Y();
1909 if((aV2par - theVlSurf2 > theTol2D) || (theVfSurf2 - aV2par > theTol2D))
1910 return Standard_False;
1911
1912 //Get intersection point and add it in the WL
1913 IntSurf_PntOn2S aPnt;
1914
1915 if(isTheReverse)
1916 {
1917 aPnt.SetValue((aPt1.XYZ()+aPt2.XYZ())/2.0,
1918 aU2par, aV2par,
1919 aU1par, aV1par);
1920 }
1921 else
1922 {
1923 aPnt.SetValue((aPt1.XYZ()+aPt2.XYZ())/2.0,
1924 aU1par, aV1par,
1925 aU2par, aV2par);
1926 }
1927
1928 Standard_Integer aNbPnts = theLine->NbPoints();
1929 if(aNbPnts > 0)
1930 {
1931 Standard_Real aUl = 0.0, aVl = 0.0;
1932 const IntSurf_PntOn2S aPlast = theLine->Value(aNbPnts);
1933 if(isTheReverse)
1934 aPlast.ParametersOnS2(aUl, aVl);
1935 else
1936 aPlast.ParametersOnS1(aUl, aVl);
1937
1938 if(!theFlBefore && (aU1par <= aUl))
1939 {
1940 //Parameter value must be increased if theFlBefore == FALSE.
1941
1942 aU1par += thePeriodOfSurf1;
1943
1944 //The condition is as same as in
1945 //InscribePoint(...) function
1946 if((theUfSurf1 - aU1par > theTol2D) ||
1947 (aU1par - theUlSurf1 > theTol2D))
1948 {
1949 //New aU1par is out of target interval.
1950 //Go back to old value.
1951
1952 return Standard_False;
1953 }
1954 }
1955
1956 if (theOnlyCheck)
1957 return Standard_True;
1958
1959 //theTol2D is minimal step along parameter changed.
1960 //Therefore, if we apply this minimal step two
1961 //neighbour points will be always "same". Consequently,
1962 //we should reduce tolerance for IsSame checking.
1963 const Standard_Real aDTol = 1.0-Epsilon(1.0);
1964 if(aPnt.IsSame(aPlast, theTol3D*aDTol, theTol2D*aDTol))
1965 {
1966 theLine->RemovePoint(aNbPnts);
1967 }
1968 }
1969
1970 if (theOnlyCheck)
1971 return Standard_True;
1972
1973 theLine->Add(aPnt);
1974
1975 if(!isThePrecise)
1976 return Standard_True;
1977
1978 //Try to precise existing WLine
1979 aNbPnts = theLine->NbPoints();
1980 if(aNbPnts >= 3)
1981 {
1982 Standard_Real aU1 = 0.0, aU2 = 0.0, aU3 = 0.0, aV = 0.0;
1983 if(isTheReverse)
1984 {
1985 theLine->Value(aNbPnts).ParametersOnS2(aU3, aV);
1986 theLine->Value(aNbPnts-1).ParametersOnS2(aU2, aV);
1987 theLine->Value(aNbPnts-2).ParametersOnS2(aU1, aV);
1988 }
1989 else
1990 {
1991 theLine->Value(aNbPnts).ParametersOnS1(aU3, aV);
1992 theLine->Value(aNbPnts-1).ParametersOnS1(aU2, aV);
1993 theLine->Value(aNbPnts-2).ParametersOnS1(aU1, aV);
1994 }
1995
1996 const Standard_Real aStepPrev = aU2-aU1;
1997 const Standard_Real aStep = aU3-aU2;
1998
1999 const Standard_Integer aDeltaStep = RealToInt(aStepPrev/aStep);
2000
2001 if((1 < aDeltaStep) && (aDeltaStep < 2000))
2002 {
2003 //Add new points in case of non-uniform distribution of existing points
2004 SeekAdditionalPoints( theQuad1, theQuad2, theLine,
2005 theCoeffs, theWLIndex, aDeltaStep, aNbPnts-2,
2006 aNbPnts-1, theTol2D, thePeriodOfSurf1, isTheReverse);
2007 }
2008 }
2009
2010 return Standard_True;
2011 }
2012
2013 //=======================================================================
2014 //function : AddBoundaryPoint
2015 //purpose : Find intersection point on V-boundary.
2016 //=======================================================================
2017 void WorkWithBoundaries::AddBoundaryPoint(const Handle(IntPatch_WLine)& theWL,
2018 const Standard_Real theU1,
2019 const Standard_Real theU1Min,
2020 const Standard_Real theU2,
2021 const Standard_Real theV1,
2022 const Standard_Real theV1Prev,
2023 const Standard_Real theV2,
2024 const Standard_Real theV2Prev,
2025 const Standard_Integer theWLIndex,
2026 const Standard_Boolean theFlForce,
2027 Standard_Boolean& isTheFound1,
2028 Standard_Boolean& isTheFound2) const
2029 {
2030 Standard_Real aUSurf1f = 0.0, //const
2031 aUSurf1l = 0.0,
2032 aVSurf1f = 0.0,
2033 aVSurf1l = 0.0;
2034 Standard_Real aUSurf2f = 0.0, //const
2035 aUSurf2l = 0.0,
2036 aVSurf2f = 0.0,
2037 aVSurf2l = 0.0;
2038
2039 myUVSurf1.Get(aUSurf1f, aVSurf1f, aUSurf1l, aVSurf1l);
2040 myUVSurf2.Get(aUSurf2f, aVSurf2f, aUSurf2l, aVSurf2l);
2041
2042 const Standard_Integer aSize = 4;
2043 const Standard_Real anArrVzad[aSize] = {aVSurf1f, aVSurf1l, aVSurf2f, aVSurf2l};
2044
2045 StPInfo aUVPoint[aSize];
2046
2047 for(Standard_Integer anIDSurf = 0; anIDSurf < 4; anIDSurf+=2)
2048 {
2049 const Standard_Real aVf = (anIDSurf == 0) ? theV1 : theV2,
2050 aVl = (anIDSurf == 0) ? theV1Prev : theV2Prev;
2051
2052 const SearchBoundType aTS = (anIDSurf == 0) ? SearchV1 : SearchV2;
2053
2054 for(Standard_Integer anIDBound = 0; anIDBound < 2; anIDBound++)
2055 {
2056 const Standard_Integer anIndex = anIDSurf+anIDBound;
2057
2058 aUVPoint[anIndex].mySurfID = anIDSurf;
2059
2060 if((Abs(aVf-anArrVzad[anIndex]) > myTol2D) &&
2061 ((aVf-anArrVzad[anIndex])*(aVl-anArrVzad[anIndex]) > 0.0))
2062 {
2063 continue;
2064 }
2065
2066 //Segment [aVf, aVl] intersects at least one V-boundary (first or last)
2067 // (in general, case is possible, when aVf > aVl).
2068
2069 // Precise intersection point
2070 const Standard_Boolean aRes = SearchOnVBounds(aTS, anArrVzad[anIndex],
2071 (anIDSurf == 0) ? theV2 : theV1,
2072 theU2, theU1,
2073 aUVPoint[anIndex].myU1);
2074
2075 // aUVPoint[anIndex].myU1 is considered to be nearer to theU1 than
2076 // to theU1+/-Period
2077 if (!aRes || (aUVPoint[anIndex].myU1 >= theU1) ||
2078 (aUVPoint[anIndex].myU1 < theU1Min))
2079 {
2080 //Intersection point is not found or out of the domain
2081 aUVPoint[anIndex].myU1 = RealLast();
2082 continue;
2083 }
2084 else
2085 {
2086 //intersection point is found
2087
2088 Standard_Real &aU1 = aUVPoint[anIndex].myU1,
2089 &aU2 = aUVPoint[anIndex].myU2,
2090 &aV1 = aUVPoint[anIndex].myV1,
2091 &aV2 = aUVPoint[anIndex].myV2;
2092 aU2 = theU2;
2093 aV1 = theV1;
2094 aV2 = theV2;
2095
2096 if(!ComputationMethods::
2097 CylCylComputeParameters(aU1, theWLIndex, myCoeffs, aU2, aV1, aV2))
2098 {
2099 // Found point is wrong
2100 aU1 = RealLast();
2101 continue;
2102 }
2103
2104 //Point on true V-boundary.
2105 if(aTS == SearchV1)
2106 aV1 = anArrVzad[anIndex];
2107 else //if(aTS[anIndex] == SearchV2)
2108 aV2 = anArrVzad[anIndex];
2109 }
2110 }
2111 }
2112
2113 // Sort with acceding U1-parameter.
2114 std::sort(aUVPoint, aUVPoint+aSize);
2115
2116 isTheFound1 = isTheFound2 = Standard_False;
2117
2118 //Adding found points on boundary in the WLine.
2119 for(Standard_Integer i = 0; i < aSize; i++)
2120 {
2121 if(aUVPoint[i].myU1 == RealLast())
2122 break;
2123
2124 if(!AddPointIntoWL(myQuad1, myQuad2, myCoeffs, myIsReverse, Standard_False,
2125 gp_Pnt2d(aUVPoint[i].myU1, aUVPoint[i].myV1),
2126 gp_Pnt2d(aUVPoint[i].myU2, aUVPoint[i].myV2),
2127 aUSurf1f, aUSurf1l, aUSurf2f, aUSurf2l,
2128 aVSurf1f, aVSurf1l, aVSurf2f, aVSurf2l, myPeriod,
2129 theWL->Curve(), theWLIndex, myTol3D, myTol2D, theFlForce))
2130 {
2131 continue;
2132 }
2133
2134 if(aUVPoint[i].mySurfID == 0)
2135 {
2136 isTheFound1 = Standard_True;
2137 }
2138 else
2139 {
2140 isTheFound2 = Standard_True;
2141 }
2142 }
2143 }
2144
2145 //=======================================================================
2146 //function : SeekAdditionalPoints
2147 //purpose : Inserts additional intersection points between neighbor points.
2148 // This action is bone with several iterations. During every iteration,
2149 // new point is inserted in middle of every interval.
2150 // The process will be finished if NbPoints >= theMinNbPoints.
2151 //=======================================================================
2152 static void SeekAdditionalPoints( const IntSurf_Quadric& theQuad1,
2153 const IntSurf_Quadric& theQuad2,
2154 const Handle(IntSurf_LineOn2S)& theLine,
2155 const ComputationMethods::stCoeffsValue& theCoeffs,
2156 const Standard_Integer theWLIndex,
2157 const Standard_Integer theMinNbPoints,
2158 const Standard_Integer theStartPointOnLine,
2159 const Standard_Integer theEndPointOnLine,
2160 const Standard_Real theTol2D,
2161 const Standard_Real thePeriodOfSurf2,
2162 const Standard_Boolean isTheReverse)
2163 {
2164 if(theLine.IsNull())
2165 return;
2166
2167 Standard_Integer aNbPoints = theEndPointOnLine - theStartPointOnLine + 1;
2168
2169 Standard_Real aMinDeltaParam = theTol2D;
2170
2171 {
2172 Standard_Real u1 = 0.0, v1 = 0.0, u2 = 0.0, v2 = 0.0;
2173
2174 if(isTheReverse)
2175 {
2176 theLine->Value(theStartPointOnLine).ParametersOnS2(u1, v1);
2177 theLine->Value(theEndPointOnLine).ParametersOnS2(u2, v2);
2178 }
2179 else
2180 {
2181 theLine->Value(theStartPointOnLine).ParametersOnS1(u1, v1);
2182 theLine->Value(theEndPointOnLine).ParametersOnS1(u2, v2);
2183 }
2184
2185 aMinDeltaParam = Max(Abs(u2 - u1)/IntToReal(theMinNbPoints), aMinDeltaParam);
2186 }
2187
2188 Standard_Integer aLastPointIndex = theEndPointOnLine;
2189 Standard_Real U1prec = 0.0, V1prec = 0.0, U2prec = 0.0, V2prec = 0.0;
2190
2191 Standard_Integer aNbPointsPrev = 0;
2192 do
2193 {
2194 aNbPointsPrev = aNbPoints;
2195 for(Standard_Integer fp = theStartPointOnLine, lp = 0; fp < aLastPointIndex; fp = lp + 1)
2196 {
2197 Standard_Real U1f = 0.0, V1f = 0.0; //first point in 1st suraface
2198 Standard_Real U1l = 0.0, V1l = 0.0; //last point in 1st suraface
2199
2200 Standard_Real U2f = 0.0, V2f = 0.0; //first point in 2nd suraface
2201 Standard_Real U2l = 0.0, V2l = 0.0; //last point in 2nd suraface
2202
2203 lp = fp+1;
2204
2205 if(isTheReverse)
2206 {
2207 theLine->Value(fp).ParametersOnS2(U1f, V1f);
2208 theLine->Value(lp).ParametersOnS2(U1l, V1l);
2209
2210 theLine->Value(fp).ParametersOnS1(U2f, V2f);
2211 theLine->Value(lp).ParametersOnS1(U2l, V2l);
2212 }
2213 else
2214 {
2215 theLine->Value(fp).ParametersOnS1(U1f, V1f);
2216 theLine->Value(lp).ParametersOnS1(U1l, V1l);
2217
2218 theLine->Value(fp).ParametersOnS2(U2f, V2f);
2219 theLine->Value(lp).ParametersOnS2(U2l, V2l);
2220 }
2221
2222 if(Abs(U1l - U1f) <= aMinDeltaParam)
2223 {
2224 //Step is minimal. It is not necessary to divide it.
2225 continue;
2226 }
2227
2228 U1prec = 0.5*(U1f+U1l);
2229
2230 if(!ComputationMethods::
2231 CylCylComputeParameters(U1prec, theWLIndex, theCoeffs, U2prec, V1prec, V2prec))
2232 {
2233 continue;
2234 }
2235
2236 MinMax(U2f, U2l);
2237 if(!InscribePoint(U2f, U2l, U2prec, theTol2D, thePeriodOfSurf2, Standard_False))
2238 {
2239 continue;
2240 }
2241
2242 const gp_Pnt aP1(theQuad1.Value(U1prec, V1prec)), aP2(theQuad2.Value(U2prec, V2prec));
2243 const gp_Pnt aPInt(0.5*(aP1.XYZ() + aP2.XYZ()));
2244
2245 #ifdef INTPATCH_IMPIMPINTERSECTION_DEBUG
2246 std::cout << "|P1Pi| = " << aP1.SquareDistance(aPInt) << "; |P2Pi| = " << aP2.SquareDistance(aPInt) << std::endl;
2247 #endif
2248
2249 IntSurf_PntOn2S anIP;
2250 if(isTheReverse)
2251 {
2252 anIP.SetValue(aPInt, U2prec, V2prec, U1prec, V1prec);
2253 }
2254 else
2255 {
2256 anIP.SetValue(aPInt, U1prec, V1prec, U2prec, V2prec);
2257 }
2258
2259 theLine->InsertBefore(lp, anIP);
2260
2261 aNbPoints++;
2262 aLastPointIndex++;
2263 }
2264
2265 if(aNbPoints >= theMinNbPoints)
2266 {
2267 return;
2268 }
2269 } while(aNbPoints < theMinNbPoints && (aNbPoints != aNbPointsPrev));
2270 }
2271
2272 //=======================================================================
2273 //function : BoundariesComputing
2274 //purpose : Computes true domain of future intersection curve (allows
2275 // avoiding excess iterations)
2276 //=======================================================================
2277 Standard_Boolean WorkWithBoundaries::
2278 BoundariesComputing(const ComputationMethods::stCoeffsValue &theCoeffs,
2279 const Standard_Real thePeriod,
2280 Bnd_Range theURange[])
2281 {
2282 //All comments to this method is related to the comment
2283 //to ComputationMethods class
2284
2285 //So, we have the equation
2286 // cos(U2-FI2)=B*cos(U1-FI1)+C
2287 //Evidently,
2288 // -1 <= B*cos(U1-FI1)+C <= 1
2289
2290 if (theCoeffs.mB > 0.0)
2291 {
2292 // -(1+C)/B <= cos(U1-FI1) <= (1-C)/B
2293
2294 if (theCoeffs.mB + Abs(theCoeffs.mC) < -1.0)
2295 {
2296 //(1-C)/B < -1 or -(1+C)/B > 1 ==> No solution
2297
2298 return Standard_False;
2299 }
2300 else if (theCoeffs.mB + Abs(theCoeffs.mC) <= 1.0)
2301 {
2302 //(1-C)/B >= 1 and -(1+C)/B <= -1 ==> U=[0;2*PI]+aFI1
2303 theURange[0].Add(theCoeffs.mFI1);
2304 theURange[0].Add(thePeriod + theCoeffs.mFI1);
2305 }
2306 else if ((1 + theCoeffs.mC <= theCoeffs.mB) &&
2307 (theCoeffs.mB <= 1 - theCoeffs.mC))
2308 {
2309 //(1-C)/B >= 1 and -(1+C)/B >= -1 ==>
2310 //(U=[0;aDAngle]+aFI1) || (U=[2*PI-aDAngle;2*PI]+aFI1),
2311 //where aDAngle = acos(-(myCoeffs.mC + 1) / myCoeffs.mB)
2312
2313 Standard_Real anArg = -(theCoeffs.mC + 1) / theCoeffs.mB;
2314 if(anArg > 1.0)
2315 anArg = 1.0;
2316 if(anArg < -1.0)
2317 anArg = -1.0;
2318
2319 const Standard_Real aDAngle = acos(anArg);
2320 theURange[0].Add(theCoeffs.mFI1);
2321 theURange[0].Add(aDAngle + theCoeffs.mFI1);
2322 theURange[1].Add(thePeriod - aDAngle + theCoeffs.mFI1);
2323 theURange[1].Add(thePeriod + theCoeffs.mFI1);
2324 }
2325 else if ((1 - theCoeffs.mC <= theCoeffs.mB) &&
2326 (theCoeffs.mB <= 1 + theCoeffs.mC))
2327 {
2328 //(1-C)/B <= 1 and -(1+C)/B <= -1 ==> U=[aDAngle;2*PI-aDAngle]+aFI1
2329 //where aDAngle = acos((1 - myCoeffs.mC) / myCoeffs.mB)
2330
2331 Standard_Real anArg = (1 - theCoeffs.mC) / theCoeffs.mB;
2332 if(anArg > 1.0)
2333 anArg = 1.0;
2334 if(anArg < -1.0)
2335 anArg = -1.0;
2336
2337 const Standard_Real aDAngle = acos(anArg);
2338 theURange[0].Add(aDAngle + theCoeffs.mFI1);
2339 theURange[0].Add(thePeriod - aDAngle + theCoeffs.mFI1);
2340 }
2341 else if (theCoeffs.mB - Abs(theCoeffs.mC) >= 1.0)
2342 {
2343 //(1-C)/B <= 1 and -(1+C)/B >= -1 ==>
2344 //(U=[aDAngle1;aDAngle2]+aFI1) ||
2345 //(U=[2*PI-aDAngle2;2*PI-aDAngle1]+aFI1)
2346 //where aDAngle1 = acos((1 - myCoeffs.mC) / myCoeffs.mB),
2347 // aDAngle2 = acos(-(myCoeffs.mC + 1) / myCoeffs.mB).
2348
2349 Standard_Real anArg1 = (1 - theCoeffs.mC) / theCoeffs.mB,
2350 anArg2 = -(theCoeffs.mC + 1) / theCoeffs.mB;
2351 if(anArg1 > 1.0)
2352 anArg1 = 1.0;
2353 if(anArg1 < -1.0)
2354 anArg1 = -1.0;
2355
2356 if(anArg2 > 1.0)
2357 anArg2 = 1.0;
2358 if(anArg2 < -1.0)
2359 anArg2 = -1.0;
2360
2361 const Standard_Real aDAngle1 = acos(anArg1), aDAngle2 = acos(anArg2);
2362 //(U=[aDAngle1;aDAngle2]+aFI1) ||
2363 //(U=[2*PI-aDAngle2;2*PI-aDAngle1]+aFI1)
2364 theURange[0].Add(aDAngle1 + theCoeffs.mFI1);
2365 theURange[0].Add(aDAngle2 + theCoeffs.mFI1);
2366 theURange[1].Add(thePeriod - aDAngle2 + theCoeffs.mFI1);
2367 theURange[1].Add(thePeriod - aDAngle1 + theCoeffs.mFI1);
2368 }
2369 else
2370 {
2371 return Standard_False;
2372 }
2373 }
2374 else if (theCoeffs.mB < 0.0)
2375 {
2376 // (1-C)/B <= cos(U1-FI1) <= -(1+C)/B
2377
2378 if (theCoeffs.mB + Abs(theCoeffs.mC) > 1.0)
2379 {
2380 // -(1+C)/B < -1 or (1-C)/B > 1 ==> No solutions
2381 return Standard_False;
2382 }
2383 else if (-theCoeffs.mB + Abs(theCoeffs.mC) <= 1.0)
2384 {
2385 // -(1+C)/B >= 1 and (1-C)/B <= -1 ==> U=[0;2*PI]+aFI1
2386 theURange[0].Add(theCoeffs.mFI1);
2387 theURange[0].Add(thePeriod + theCoeffs.mFI1);
2388 }
2389 else if ((-theCoeffs.mC - 1 <= theCoeffs.mB) &&
2390 (theCoeffs.mB <= theCoeffs.mC - 1))
2391 {
2392 // -(1+C)/B >= 1 and (1-C)/B >= -1 ==>
2393 //(U=[0;aDAngle]+aFI1) || (U=[2*PI-aDAngle;2*PI]+aFI1),
2394 //where aDAngle = acos((1 - myCoeffs.mC) / myCoeffs.mB)
2395
2396 Standard_Real anArg = (1 - theCoeffs.mC) / theCoeffs.mB;
2397 if(anArg > 1.0)
2398 anArg = 1.0;
2399 if(anArg < -1.0)
2400 anArg = -1.0;
2401
2402 const Standard_Real aDAngle = acos(anArg);
2403 theURange[0].Add(theCoeffs.mFI1);
2404 theURange[0].Add(aDAngle + theCoeffs.mFI1);
2405 theURange[1].Add(thePeriod - aDAngle + theCoeffs.mFI1);
2406 theURange[1].Add(thePeriod + theCoeffs.mFI1);
2407 }
2408 else if ((theCoeffs.mC - 1 <= theCoeffs.mB) &&
2409 (theCoeffs.mB <= -theCoeffs.mB - 1))
2410 {
2411 // -(1+C)/B <= 1 and (1-C)/B <= -1 ==> U=[aDAngle;2*PI-aDAngle]+aFI1,
2412 //where aDAngle = acos(-(myCoeffs.mC + 1) / myCoeffs.mB).
2413
2414 Standard_Real anArg = -(theCoeffs.mC + 1) / theCoeffs.mB;
2415 if(anArg > 1.0)
2416 anArg = 1.0;
2417 if(anArg < -1.0)
2418 anArg = -1.0;
2419
2420 const Standard_Real aDAngle = acos(anArg);
2421 theURange[0].Add(aDAngle + theCoeffs.mFI1);
2422 theURange[0].Add(thePeriod - aDAngle + theCoeffs.mFI1);
2423 }
2424 else if (-theCoeffs.mB - Abs(theCoeffs.mC) >= 1.0)
2425 {
2426 // -(1+C)/B <= 1 and (1-C)/B >= -1 ==>
2427 //(U=[aDAngle1;aDAngle2]+aFI1) || (U=[2*PI-aDAngle2;2*PI-aDAngle1]+aFI1),
2428 //where aDAngle1 = acos(-(myCoeffs.mC + 1) / myCoeffs.mB),
2429 // aDAngle2 = acos((1 - myCoeffs.mC) / myCoeffs.mB)
2430
2431 Standard_Real anArg1 = -(theCoeffs.mC + 1) / theCoeffs.mB,
2432 anArg2 = (1 - theCoeffs.mC) / theCoeffs.mB;
2433 if(anArg1 > 1.0)
2434 anArg1 = 1.0;
2435 if(anArg1 < -1.0)
2436 anArg1 = -1.0;
2437
2438 if(anArg2 > 1.0)
2439 anArg2 = 1.0;
2440 if(anArg2 < -1.0)
2441 anArg2 = -1.0;
2442
2443 const Standard_Real aDAngle1 = acos(anArg1), aDAngle2 = acos(anArg2);
2444 theURange[0].Add(aDAngle1 + theCoeffs.mFI1);
2445 theURange[0].Add(aDAngle2 + theCoeffs.mFI1);
2446 theURange[1].Add(thePeriod - aDAngle2 + theCoeffs.mFI1);
2447 theURange[1].Add(thePeriod - aDAngle1 + theCoeffs.mFI1);
2448 }
2449 else
2450 {
2451 return Standard_False;
2452 }
2453 }
2454 else
2455 {
2456 return Standard_False;
2457 }
2458
2459 return Standard_True;
2460 }
2461
2462 //=======================================================================
2463 //function : CriticalPointsComputing
2464 //purpose : theNbCritPointsMax contains true number of critical points.
2465 // It must be initialized correctly before function calling
2466 //=======================================================================
2467 static void CriticalPointsComputing(const ComputationMethods::stCoeffsValue& theCoeffs,
2468 const Standard_Real theUSurf1f,
2469 const Standard_Real theUSurf1l,
2470 const Standard_Real theUSurf2f,
2471 const Standard_Real theUSurf2l,
2472 const Standard_Real thePeriod,
2473 const Standard_Real theTol2D,
2474 Standard_Integer& theNbCritPointsMax,
2475 Standard_Real theU1crit[])
2476 {
2477 //[0...1] - in these points parameter U1 goes through
2478 // the seam-edge of the first cylinder.
2479 //[2...3] - First and last U1 parameter.
2480 //[4...5] - in these points parameter U2 goes through
2481 // the seam-edge of the second cylinder.
2482 //[6...9] - in these points an intersection line goes through
2483 // U-boundaries of the second surface.
2484 //[10...11] - Boundary of monotonicity interval of U2(U1) function
2485 // (see CylCylMonotonicity() function)
2486
2487 theU1crit[0] = 0.0;
2488 theU1crit[1] = thePeriod;
2489 theU1crit[2] = theUSurf1f;
2490 theU1crit[3] = theUSurf1l;
2491
2492 const Standard_Real aCOS = cos(theCoeffs.mFI2);
2493 const Standard_Real aBSB = Abs(theCoeffs.mB);
2494 if((theCoeffs.mC - aBSB <= aCOS) && (aCOS <= theCoeffs.mC + aBSB))
2495 {
2496 Standard_Real anArg = (aCOS - theCoeffs.mC) / theCoeffs.mB;
2497 if(anArg > 1.0)
2498 anArg = 1.0;
2499 if(anArg < -1.0)
2500 anArg = -1.0;
2501
2502 theU1crit[4] = -acos(anArg) + theCoeffs.mFI1;
2503 theU1crit[5] = acos(anArg) + theCoeffs.mFI1;
2504 }
2505
2506 Standard_Real aSf = cos(theUSurf2f - theCoeffs.mFI2);
2507 Standard_Real aSl = cos(theUSurf2l - theCoeffs.mFI2);
2508 MinMax(aSf, aSl);
2509
2510 //In accorance with pure mathematic, theU1crit[6] and [8]
2511 //must be -Precision::Infinite() instead of used +Precision::Infinite()
2512 theU1crit[6] = Abs((aSl - theCoeffs.mC) / theCoeffs.mB) < 1.0 ?
2513 -acos((aSl - theCoeffs.mC) / theCoeffs.mB) + theCoeffs.mFI1 :
2514 Precision::Infinite();
2515 theU1crit[7] = Abs((aSf - theCoeffs.mC) / theCoeffs.mB) < 1.0 ?
2516 -acos((aSf - theCoeffs.mC) / theCoeffs.mB) + theCoeffs.mFI1 :
2517 Precision::Infinite();
2518 theU1crit[8] = Abs((aSf - theCoeffs.mC) / theCoeffs.mB) < 1.0 ?
2519 acos((aSf - theCoeffs.mC) / theCoeffs.mB) + theCoeffs.mFI1 :
2520 Precision::Infinite();
2521 theU1crit[9] = Abs((aSl - theCoeffs.mC) / theCoeffs.mB) < 1.0 ?
2522 acos((aSl - theCoeffs.mC) / theCoeffs.mB) + theCoeffs.mFI1 :
2523 Precision::Infinite();
2524
2525 theU1crit[10] = theCoeffs.mFI1;
2526 theU1crit[11] = M_PI+theCoeffs.mFI1;
2527
2528 //preparative treatment of array. This array must have faled to contain negative
2529 //infinity number
2530
2531 for(Standard_Integer i = 0; i < theNbCritPointsMax; i++)
2532 {
2533 if(Precision::IsInfinite(theU1crit[i]))
2534 {
2535 continue;
2536 }
2537
2538 theU1crit[i] = fmod(theU1crit[i], thePeriod);
2539 if(theU1crit[i] < 0.0)
2540 theU1crit[i] += thePeriod;
2541 }
2542
2543 //Here all not infinite elements of theU1crit are in [0, thePeriod) range
2544
2545 do
2546 {
2547 std::sort(theU1crit, theU1crit + theNbCritPointsMax);
2548 }
2549 while(ExcludeNearElements(theU1crit, theNbCritPointsMax,
2550 theUSurf1f, theUSurf1l, theTol2D));
2551
2552 //Here all not infinite elements in theU1crit are different and sorted.
2553
2554 while(theNbCritPointsMax > 0)
2555 {
2556 Standard_Real &anB = theU1crit[theNbCritPointsMax-1];
2557 if(Precision::IsInfinite(anB))
2558 {
2559 theNbCritPointsMax--;
2560 continue;
2561 }
2562
2563 //1st not infinte element is found
2564
2565 if(theNbCritPointsMax == 1)
2566 break;
2567
2568 //Here theNbCritPointsMax > 1
2569
2570 Standard_Real &anA = theU1crit[0];
2571
2572 //Compare 1st and last significant elements of theU1crit
2573 //They may still differs by period.
2574
2575 if (Abs(anB - anA - thePeriod) < theTol2D)
2576 {//E.g. anA == 2.0e-17, anB == (thePeriod-1.0e-18)
2577 anA = (anA + anB - thePeriod)/2.0;
2578 anB = Precision::Infinite();
2579 theNbCritPointsMax--;
2580 }
2581
2582 //Out of "while(theNbCritPointsMax > 0)" cycle.
2583 break;
2584 }
2585
2586 //Attention! Here theU1crit may be unsorted.
2587 }
2588
2589 //=======================================================================
2590 //function : BoundaryEstimation
2591 //purpose : Rough estimation of the parameter range.
2592 //=======================================================================
2593 void WorkWithBoundaries::BoundaryEstimation(const gp_Cylinder& theCy1,
2594 const gp_Cylinder& theCy2,
2595 Bnd_Range& theOutBoxS1,
2596 Bnd_Range& theOutBoxS2) const
2597 {
2598 const gp_Dir &aD1 = theCy1.Axis().Direction(),
2599 &aD2 = theCy2.Axis().Direction();
2600 const Standard_Real aR1 = theCy1.Radius(),
2601 aR2 = theCy2.Radius();
2602
2603 //Let consider a parallelogram. Its edges are parallel to aD1 and aD2.
2604 //Its altitudes are equal to 2*aR1 and 2*aR2 (diameters of the cylinders).
2605 //In fact, this parallelogram is a projection of the cylinders to the plane
2606 //created by the intersected axes aD1 and aD2 (if the axes are skewed then
2607 //one axis can be translated by parallel shifting till intersection).
2608
2609 const Standard_Real aCosA = aD1.Dot(aD2);
2610 const Standard_Real aSqSinA = aD1.XYZ().CrossSquareMagnitude(aD2.XYZ());
2611
2612 //If sine is small then it can be compared with angle.
2613 if (aSqSinA < Precision::Angular()*Precision::Angular())
2614 return;
2615
2616 //Half of delta V. Delta V is a distance between
2617 //projections of two opposite parallelogram vertices
2618 //(joined by the maximal diagonal) to the cylinder axis.
2619 const Standard_Real aSinA = sqrt(aSqSinA);
2620 const Standard_Real anAbsCosA = Abs(aCosA);
2621 const Standard_Real aHDV1 = (aR1 * anAbsCosA + aR2) / aSinA,
2622 aHDV2 = (aR2 * anAbsCosA + aR1) / aSinA;
2623
2624 #ifdef INTPATCH_IMPIMPINTERSECTION_DEBUG
2625 //The code in this block is created for test only.It is stupidly to create
2626 //OCCT-test for the method, which will be changed possibly never.
2627 std::cout << "Reference values: aHDV1 = " << aHDV1 << "; aHDV2 = " << aHDV2 << std::endl;
2628 #endif
2629
2630 //V-parameters of intersection point of the axes (in case of skewed axes,
2631 //see comment above).
2632 Standard_Real aV01 = 0.0, aV02 = 0.0;
2633 ExtremaLineLine(theCy1.Axis(), theCy2.Axis(), aCosA, aSqSinA, aV01, aV02);
2634
2635 theOutBoxS1.Add(aV01 - aHDV1);
2636 theOutBoxS1.Add(aV01 + aHDV1);
2637
2638 theOutBoxS2.Add(aV02 - aHDV2);
2639 theOutBoxS2.Add(aV02 + aHDV2);
2640
2641 theOutBoxS1.Enlarge(Precision::Confusion());
2642 theOutBoxS2.Enlarge(Precision::Confusion());
2643
2644 Standard_Real aU1 = 0.0, aV1 = 0.0, aU2 = 0.0, aV2 = 0.0;
2645 myUVSurf1.Get(aU1, aV1, aU2, aV2);
2646 theOutBoxS1.Common(Bnd_Range(aV1, aV2));
2647
2648 myUVSurf2.Get(aU1, aV1, aU2, aV2);
2649 theOutBoxS2.Common(Bnd_Range(aV1, aV2));
2650 }
2651
2652 //=======================================================================
2653 //function : CyCyNoGeometric
2654 //purpose :
2655 //=======================================================================
2656 static IntPatch_ImpImpIntersection::IntStatus
2657 CyCyNoGeometric(const gp_Cylinder &theCyl1,
2658 const gp_Cylinder &theCyl2,
2659 const WorkWithBoundaries &theBW,
2660 Bnd_Range theRange[],
2661 const Standard_Integer theNbOfRanges /*=2*/,
2662 Standard_Boolean& isTheEmpty,
2663 IntPatch_SequenceOfLine& theSlin,
2664 IntPatch_SequenceOfPoint& theSPnt)
2665 {
2666 Standard_Real aUSurf1f = 0.0, aUSurf1l = 0.0,
2667 aUSurf2f = 0.0, aUSurf2l = 0.0,
2668 aVSurf1f = 0.0, aVSurf1l = 0.0,
2669 aVSurf2f = 0.0, aVSurf2l = 0.0;
2670
2671 theBW.UVS1().Get(aUSurf1f, aVSurf1f, aUSurf1l, aVSurf1l);
2672 theBW.UVS2().Get(aUSurf2f, aVSurf2f, aUSurf2l, aVSurf2l);
2673
2674 Bnd_Range aRangeS1, aRangeS2;
2675 theBW.BoundaryEstimation(theCyl1, theCyl2, aRangeS1, aRangeS2);
2676 if (aRangeS1.IsVoid() || aRangeS2.IsVoid())
2677 return IntPatch_ImpImpIntersection::IntStatus_OK;
2678
2679 {
2680 //Quotation of the message from issue #26894 (author MSV):
2681 //"We should return fail status from intersector if the result should be an
2682 //infinite curve of non-analytical type... I propose to define the limit for the
2683 //extent as the radius divided by 1e+2 and multiplied by 1e+7.
2684 //Thus, taking into account the number of valuable digits (15), we provide reliable
2685 //computations with an error not exceeding R/100."
2686 const Standard_Real aF = 1.0e+5;
2687 const Standard_Real aMaxV1Range = aF*theCyl1.Radius(), aMaxV2Range = aF*theCyl2.Radius();
2688 if ((aRangeS1.Delta() > aMaxV1Range) || (aRangeS2.Delta() > aMaxV2Range))
2689 return IntPatch_ImpImpIntersection::IntStatus_InfiniteSectionCurve;
2690 }
2691 //
2692 Standard_Boolean isGoodIntersection = Standard_False;
2693 Standard_Real anOptdu = 0.;
2694 for (;;)
2695 {
2696 //Checking parameters of cylinders in order to define "good intersection"
2697 //"Good intersection" means that axes of cylinders are almost perpendicular and
2698 // one radius is much smaller than the other and small cylinder is "inside" big one.
2699 const Standard_Real aToMuchCoeff = 3.;
2700 const Standard_Real aCritAngle = M_PI / 18.; // 10 degree
2701 Standard_Real anR1 = theCyl1.Radius();
2702 Standard_Real anR2 = theCyl2.Radius();
2703 Standard_Real anRmin = 0., anRmax = 0.;
2704 //Radius criterion
2705 if (anR1 > aToMuchCoeff * anR2)
2706 {
2707 anRmax = anR1; anRmin = anR2;
2708 }
2709 else if (anR2 > aToMuchCoeff * anR1)
2710 {
2711 anRmax = anR2; anRmin = anR1;
2712 }
2713 else
2714 {
2715 break;
2716 }
2717 //Angle criterion
2718 const gp_Ax1& anAx1 = theCyl1.Axis();
2719 const gp_Ax1& anAx2 = theCyl2.Axis();
2720 if (!anAx1.IsNormal(anAx2, aCritAngle))
2721 {
2722 break;
2723 }
2724 //Placement criterion
2725 gp_Lin anL1(anAx1), anL2(anAx2);
2726 Standard_Real aDist = anL1.Distance(anL2);
2727 if (aDist > anRmax / 2.)
2728 {
2729 break;
2730 }
2731
2732 isGoodIntersection = Standard_True;
2733 //Estimation of "optimal" du
2734 //Relative deflection, absolut deflection is Rmin*aDeflection
2735 Standard_Real aDeflection = 0.001;
2736 Standard_Integer aNbP = 3;
2737 if (anRmin * aDeflection > 1.e-3)
2738 {
2739 Standard_Real anAngle = 1.0e0 - aDeflection;
2740 anAngle = 2.0e0 * ACos(anAngle);
2741 aNbP = (Standard_Integer)(2. * M_PI / anAngle) + 1;
2742 }
2743 anOptdu = 2. * M_PI_2 / (Standard_Real)(aNbP - 1);
2744 break;
2745 }
2746 //
2747 const ComputationMethods::stCoeffsValue &anEquationCoeffs = theBW.SICoeffs();
2748 const IntSurf_Quadric& aQuad1 = theBW.GetQSurface(1);
2749 const IntSurf_Quadric& aQuad2 = theBW.GetQSurface(2);
2750 const Standard_Boolean isReversed = theBW.IsReversed();
2751 const Standard_Real aTol2D = theBW.Get2dTolerance();
2752 const Standard_Real aTol3D = theBW.Get3dTolerance();
2753 const Standard_Real aPeriod = 2.0*M_PI;
2754 Standard_Integer aNbMaxPoints = 1000;
2755 Standard_Integer aNbMinPoints = 200;
2756 Standard_Real du;
2757 if (isGoodIntersection)
2758 {
2759 du = anOptdu;
2760 aNbMaxPoints = 200;
2761 aNbMinPoints = 50;
2762 }
2763 else
2764 {
2765 du = 2. * M_PI / aNbMaxPoints;
2766 }
2767 Standard_Integer aNbPts = Min(RealToInt((aUSurf1l - aUSurf1f) / du) + 1,
2768 RealToInt(20.0*theCyl1.Radius()));
2769 const Standard_Integer aNbPoints = Min(Max(aNbMinPoints, aNbPts), aNbMaxPoints);
2770 const Standard_Real aStepMin = Max(aTol2D, Precision::PConfusion()),
2771 aStepMax = (aUSurf1l - aUSurf1f > M_PI / 100.0) ?
2772 (aUSurf1l - aUSurf1f) / IntToReal(aNbPoints) : aUSurf1l - aUSurf1f;
2773
2774
2775 //The main idea of the algorithm is to change U1-parameter
2776 //(U-parameter of theCyl1) from aU1f to aU1l with some step
2777 //(step is adaptive) and to obtain set of intersection points.
2778
2779 for (Standard_Integer i = 0; i < theNbOfRanges; i++)
2780 {
2781 if (theRange[i].IsVoid())
2782 continue;
2783
2784 InscribeInterval(aUSurf1f, aUSurf1l, theRange[i], aTol2D, aPeriod);
2785 }
2786
2787 if (theRange[0].Union(theRange[1]))
2788 {
2789 // Works only if (theNbOfRanges == 2).
2790 theRange[1].SetVoid();
2791 }
2792
2793 //Critical points are the value of U1-parameter in the points
2794 //where WL must be decomposed.
2795
2796 //When U1 goes through critical points its value is set up to this
2797 //parameter forcefully and the intersection point is added in the line.
2798 //After that, the WL is broken (next U1 value will be correspond to the new WL).
2799
2800 //See CriticalPointsComputing(...) function to get detail information about this array.
2801 const Standard_Integer aNbCritPointsMax = 12;
2802 Standard_Real anU1crit[aNbCritPointsMax] = { Precision::Infinite(),
2803 Precision::Infinite(),
2804 Precision::Infinite(),
2805 Precision::Infinite(),
2806 Precision::Infinite(),
2807 Precision::Infinite(),
2808 Precision::Infinite(),
2809 Precision::Infinite(),
2810 Precision::Infinite(),
2811 Precision::Infinite(),
2812 Precision::Infinite(),
2813 Precision::Infinite() };
2814
2815 //This list of critical points is not full because it does not contain any points
2816 //which intersection line goes through V-bounds of cylinders in.
2817 //They are computed by numerical methods on - line (during algorithm working).
2818 //The moment is caught, when intersection line goes through V-bounds of any cylinder.
2819
2820 Standard_Integer aNbCritPoints = aNbCritPointsMax;
2821 CriticalPointsComputing(anEquationCoeffs, aUSurf1f, aUSurf1l, aUSurf2f, aUSurf2l,
2822 aPeriod, aTol2D, aNbCritPoints, anU1crit);
2823
2824 //Getting Walking-line
2825
2826 enum WLFStatus
2827 {
2828 // No points have been added in WL
2829 WLFStatus_Absent = 0,
2830 // WL contains at least one point
2831 WLFStatus_Exist = 1,
2832 // WL has been finished in some critical point
2833 // We should start new line
2834 WLFStatus_Broken = 2
2835 };
2836
2837 const Standard_Integer aNbWLines = 2;
2838 for (Standard_Integer aCurInterval = 0; aCurInterval < theNbOfRanges; aCurInterval++)
2839 {
2840 //Process every continuous region
2841 Standard_Boolean isAddedIntoWL[aNbWLines];
2842 for (Standard_Integer i = 0; i < aNbWLines; i++)
2843 isAddedIntoWL[i] = Standard_False;
2844
2845 Standard_Real anUf = 1.0, anUl = 0.0;
2846 if (!theRange[aCurInterval].GetBounds(anUf, anUl))
2847 continue;
2848
2849 const Standard_Boolean isDeltaPeriod = IsEqual(anUl - anUf, aPeriod);
2850
2851 //Inscribe and sort critical points
2852 for (Standard_Integer i = 0; i < aNbCritPoints; i++)
2853 {
2854 InscribePoint(anUf, anUl, anU1crit[i], 0.0, aPeriod, Standard_False);
2855 }
2856
2857 std::sort(anU1crit, anU1crit + aNbCritPoints);
2858
2859 while (anUf < anUl)
2860 {
2861 //Change value of U-parameter on the 1st surface from anUf to anUl
2862 //(anUf will be modified in the cycle body).
2863 //Step is computed adaptively (see comments below).
2864
2865 Standard_Real aU2[aNbWLines], aV1[aNbWLines], aV2[aNbWLines];
2866 WLFStatus aWLFindStatus[aNbWLines];
2867 Standard_Real aV1Prev[aNbWLines], aV2Prev[aNbWLines];
2868 Standard_Real anUexpect[aNbWLines];
2869 Standard_Boolean isAddingWLEnabled[aNbWLines];
2870
2871 Handle(IntSurf_LineOn2S) aL2S[aNbWLines];
2872 Handle(IntPatch_WLine) aWLine[aNbWLines];
2873 for (Standard_Integer i = 0; i < aNbWLines; i++)
2874 {
2875 aL2S[i] = new IntSurf_LineOn2S();
2876 aWLine[i] = new IntPatch_WLine(aL2S[i], Standard_False);
2877 aWLine[i]->SetCreatingWayInfo(IntPatch_WLine::IntPatch_WLImpImp);
2878 aWLFindStatus[i] = WLFStatus_Absent;
2879 isAddingWLEnabled[i] = Standard_True;
2880 aU2[i] = aV1[i] = aV2[i] = 0.0;
2881 aV1Prev[i] = aV2Prev[i] = 0.0;
2882 anUexpect[i] = anUf;
2883 }
2884
2885 Standard_Real aCriticalDelta[aNbCritPointsMax] = { 0 };
2886 for (Standard_Integer aCritPID = 0; aCritPID < aNbCritPoints; aCritPID++)
2887 { //We are not interested in elements of aCriticalDelta array
2888 //if their index is greater than or equal to aNbCritPoints
2889
2890 aCriticalDelta[aCritPID] = anUf - anU1crit[aCritPID];
2891 }
2892
2893 Standard_Real anU1 = anUf, aMinCriticalParam = anUf;
2894 Standard_Boolean isFirst = Standard_True;
2895
2896 while (anU1 <= anUl)
2897 {
2898 //Change value of U-parameter on the 1st surface from anUf to anUl
2899 //(anUf will be modified in the cycle body). However, this cycle
2900 //can be broken if WL goes though some critical point.
2901 //Step is computed adaptively (see comments below).
2902
2903 for (Standard_Integer i = 0; i < aNbCritPoints; i++)
2904 {
2905 if ((anU1 - anU1crit[i])*aCriticalDelta[i] < 0.0)
2906 {
2907 //WL has gone through i-th critical point
2908 anU1 = anU1crit[i];
2909
2910 for (Standard_Integer j = 0; j < aNbWLines; j++)
2911 {
2912 aWLFindStatus[j] = WLFStatus_Broken;
2913 anUexpect[j] = anU1;
2914 }
2915
2916 break;
2917 }
2918 }
2919
2920 if (IsEqual(anU1, anUl))
2921 {
2922 for (Standard_Integer i = 0; i < aNbWLines; i++)
2923 {
2924 aWLFindStatus[i] = WLFStatus_Broken;
2925 anUexpect[i] = anU1;
2926
2927 if (isDeltaPeriod)
2928 {
2929 //if isAddedIntoWL[i] == TRUE WLine contains only one point
2930 //(which was end point of previous WLine). If we will
2931 //add point found on the current step WLine will contain only
2932 //two points. At that both these points will be equal to the
2933 //points found earlier. Therefore, new WLine will repeat
2934 //already existing WLine. Consequently, it is necessary
2935 //to forbid building new line in this case.
2936
2937 isAddingWLEnabled[i] = (!isAddedIntoWL[i]);
2938 }
2939 else
2940 {
2941 isAddingWLEnabled[i] = ((aTol2D >= (anUexpect[i] - anU1)) ||
2942 (aWLFindStatus[i] == WLFStatus_Absent));
2943 }
2944 }//for(Standard_Integer i = 0; i < aNbWLines; i++)
2945 }
2946 else
2947 {
2948 for (Standard_Integer i = 0; i < aNbWLines; i++)
2949 {
2950 isAddingWLEnabled[i] = ((aTol2D >= (anUexpect[i] - anU1)) ||
2951 (aWLFindStatus[i] == WLFStatus_Absent));
2952 }//for(Standard_Integer i = 0; i < aNbWLines; i++)
2953 }
2954
2955 for (Standard_Integer i = 0; i < aNbWLines; i++)
2956 {
2957 const Standard_Integer aNbPntsWL = aWLine[i].IsNull() ? 0 :
2958 aWLine[i]->Curve()->NbPoints();
2959
2960 if ((aWLFindStatus[i] == WLFStatus_Broken) ||
2961 (aWLFindStatus[i] == WLFStatus_Absent))
2962 {//Begin and end of WLine must be on boundary point
2963 //or on seam-edge strictly (if it is possible).
2964
2965 Standard_Real aTol = aTol2D;
2966 ComputationMethods::CylCylComputeParameters(anU1, i, anEquationCoeffs,
2967 aU2[i], &aTol);
2968 InscribePoint(aUSurf2f, aUSurf2l, aU2[i], aTol2D, aPeriod, Standard_False);
2969
2970 aTol = Max(aTol, aTol2D);
2971
2972 if (Abs(aU2[i]) <= aTol)
2973 aU2[i] = 0.0;
2974 else if (Abs(aU2[i] - aPeriod) <= aTol)
2975 aU2[i] = aPeriod;
2976 else if (Abs(aU2[i] - aUSurf2f) <= aTol)
2977 aU2[i] = aUSurf2f;
2978 else if (Abs(aU2[i] - aUSurf2l) <= aTol)
2979 aU2[i] = aUSurf2l;
2980 }
2981 else
2982 {
2983 ComputationMethods::CylCylComputeParameters(anU1, i, anEquationCoeffs, aU2[i]);
2984 InscribePoint(aUSurf2f, aUSurf2l, aU2[i], aTol2D, aPeriod, Standard_False);
2985 }
2986
2987 if (aNbPntsWL == 0)
2988 {//the line has not contained any points yet
2989 if (((aUSurf2f + aPeriod - aUSurf2l) <= 2.0*aTol2D) &&
2990 ((Abs(aU2[i] - aUSurf2f) < aTol2D) ||
2991 (Abs(aU2[i] - aUSurf2l) < aTol2D)))
2992 {
2993 //In this case aU2[i] can have two values: current aU2[i] or
2994 //aU2[i]+aPeriod (aU2[i]-aPeriod). It is necessary to choose
2995 //correct value.
2996
2997 Standard_Boolean isIncreasing = Standard_True;
2998 ComputationMethods::CylCylMonotonicity(anU1+aStepMin, i, anEquationCoeffs,
2999 aPeriod, isIncreasing);
3000
3001 //If U2(U1) is increasing and U2 is considered to be equal aUSurf2l
3002 //then after the next step (when U1 will be increased) U2 will be
3003 //increased too. And we will go out of surface boundary.
3004 //Therefore, If U2(U1) is increasing then U2 must be equal aUSurf2f.
3005 //Analogically, if U2(U1) is decreasing.
3006 if (isIncreasing)
3007 {
3008 aU2[i] = aUSurf2f;
3009 }
3010 else
3011 {
3012 aU2[i] = aUSurf2l;
3013 }
3014 }
3015 }
3016 else
3017 {//aNbPntsWL > 0
3018 if (((aUSurf2l - aUSurf2f) >= aPeriod) &&
3019 ((Abs(aU2[i] - aUSurf2f) < aTol2D) ||
3020 (Abs(aU2[i] - aUSurf2l) < aTol2D)))
3021 {//end of the line
3022 Standard_Real aU2prev = 0.0, aV2prev = 0.0;
3023 if (isReversed)
3024 aWLine[i]->Curve()->Value(aNbPntsWL).ParametersOnS1(aU2prev, aV2prev);
3025 else
3026 aWLine[i]->Curve()->Value(aNbPntsWL).ParametersOnS2(aU2prev, aV2prev);
3027
3028 if (2.0*Abs(aU2prev - aU2[i]) > aPeriod)
3029 {
3030 if (aU2prev > aU2[i])
3031 aU2[i] += aPeriod;
3032 else
3033 aU2[i] -= aPeriod;
3034 }
3035 }
3036 }
3037
3038 ComputationMethods::CylCylComputeParameters(anU1, aU2[i], anEquationCoeffs,
3039 aV1[i], aV2[i]);
3040
3041 if (isFirst)
3042 {
3043 aV1Prev[i] = aV1[i];
3044 aV2Prev[i] = aV2[i];
3045 }
3046 }//for(Standard_Integer i = 0; i < aNbWLines; i++)
3047
3048 isFirst = Standard_False;
3049
3050 //Looking for points into WLine
3051 Standard_Boolean isBroken = Standard_False;
3052 for (Standard_Integer i = 0; i < aNbWLines; i++)
3053 {
3054 if (!isAddingWLEnabled[i])
3055 {
3056 Standard_Boolean isBoundIntersect = Standard_False;
3057 if ((Abs(aV1[i] - aVSurf1f) <= aTol2D) ||
3058 ((aV1[i] - aVSurf1f)*(aV1Prev[i] - aVSurf1f) < 0.0))
3059 {
3060 isBoundIntersect = Standard_True;
3061 }
3062 else if ((Abs(aV1[i] - aVSurf1l) <= aTol2D) ||
3063 ((aV1[i] - aVSurf1l)*(aV1Prev[i] - aVSurf1l) < 0.0))
3064 {
3065 isBoundIntersect = Standard_True;
3066 }
3067 else if ((Abs(aV2[i] - aVSurf2f) <= aTol2D) ||
3068 ((aV2[i] - aVSurf2f)*(aV2Prev[i] - aVSurf2f) < 0.0))
3069 {
3070 isBoundIntersect = Standard_True;
3071 }
3072 else if ((Abs(aV2[i] - aVSurf2l) <= aTol2D) ||
3073 ((aV2[i] - aVSurf2l)*(aV2Prev[i] - aVSurf2l) < 0.0))
3074 {
3075 isBoundIntersect = Standard_True;
3076 }
3077
3078 if (aWLFindStatus[i] == WLFStatus_Broken)
3079 isBroken = Standard_True;
3080
3081 if (!isBoundIntersect)
3082 {
3083 continue;
3084 }
3085 else
3086 {
3087 anUexpect[i] = anU1;
3088 }
3089 }
3090
3091 // True if the current point already in the domain
3092 const Standard_Boolean isInscribe =
3093 ((aUSurf2f - aU2[i]) <= aTol2D) && ((aU2[i] - aUSurf2l) <= aTol2D) &&
3094 ((aVSurf1f - aV1[i]) <= aTol2D) && ((aV1[i] - aVSurf1l) <= aTol2D) &&
3095 ((aVSurf2f - aV2[i]) <= aTol2D) && ((aV2[i] - aVSurf2l) <= aTol2D);
3096
3097 //isVIntersect == TRUE if intersection line intersects two (!)
3098 //V-bounds of cylinder (1st or 2nd - no matter)
3099 const Standard_Boolean isVIntersect =
3100 (((aVSurf1f - aV1[i])*(aVSurf1f - aV1Prev[i]) < RealSmall()) &&
3101 ((aVSurf1l - aV1[i])*(aVSurf1l - aV1Prev[i]) < RealSmall())) ||
3102 (((aVSurf2f - aV2[i])*(aVSurf2f - aV2Prev[i]) < RealSmall()) &&
3103 ((aVSurf2l - aV2[i])*(aVSurf2l - aV2Prev[i]) < RealSmall()));
3104
3105 //isFound1 == TRUE if intersection line intersects V-bounds
3106 // (First or Last - no matter) of the 1st cylynder
3107 //isFound2 == TRUE if intersection line intersects V-bounds
3108 // (First or Last - no matter) of the 2nd cylynder
3109 Standard_Boolean isFound1 = Standard_False, isFound2 = Standard_False;
3110 Standard_Boolean isForce = Standard_False;
3111
3112 if (aWLFindStatus[i] == WLFStatus_Absent)
3113 {
3114 if (((aUSurf2l - aUSurf2f) >= aPeriod) && (Abs(anU1 - aUSurf1l) < aTol2D))
3115 {
3116 isForce = Standard_True;
3117 }
3118 }
3119
3120 theBW.AddBoundaryPoint(aWLine[i], anU1, aMinCriticalParam, aU2[i],
3121 aV1[i], aV1Prev[i], aV2[i], aV2Prev[i], i, isForce,
3122 isFound1, isFound2);
3123
3124 const Standard_Boolean isPrevVBound = !isVIntersect &&
3125 ((Abs(aV1Prev[i] - aVSurf1f) <= aTol2D) ||
3126 (Abs(aV1Prev[i] - aVSurf1l) <= aTol2D) ||
3127 (Abs(aV2Prev[i] - aVSurf2f) <= aTol2D) ||
3128 (Abs(aV2Prev[i] - aVSurf2l) <= aTol2D));
3129
3130 aV1Prev[i] = aV1[i];
3131 aV2Prev[i] = aV2[i];
3132
3133 if ((aWLFindStatus[i] == WLFStatus_Exist) && (isFound1 || isFound2) && !isPrevVBound)
3134 {
3135 aWLFindStatus[i] = WLFStatus_Broken; //start a new line
3136 }
3137 else if (isInscribe)
3138 {
3139 if ((aWLFindStatus[i] == WLFStatus_Absent) && (isFound1 || isFound2))
3140 {
3141 aWLFindStatus[i] = WLFStatus_Exist;
3142 }
3143
3144 if ((aWLFindStatus[i] != WLFStatus_Broken) ||
3145 (aWLine[i]->NbPnts() >= 1) || IsEqual(anU1, anUl))
3146 {
3147 if (aWLine[i]->NbPnts() > 0)
3148 {
3149 Standard_Real aU2p = 0.0, aV2p = 0.0;
3150 if (isReversed)
3151 aWLine[i]->Point(aWLine[i]->NbPnts()).ParametersOnS1(aU2p, aV2p);
3152 else
3153 aWLine[i]->Point(aWLine[i]->NbPnts()).ParametersOnS2(aU2p, aV2p);
3154
3155 const Standard_Real aDelta = aU2[i] - aU2p;
3156
3157 if (2.0 * Abs(aDelta) > aPeriod)
3158 {
3159 if (aDelta > 0.0)
3160 {
3161 aU2[i] -= aPeriod;
3162 }
3163 else
3164 {
3165 aU2[i] += aPeriod;
3166 }
3167 }
3168 }
3169
3170 if(AddPointIntoWL(aQuad1, aQuad2, anEquationCoeffs, isReversed, Standard_True,
3171 gp_Pnt2d(anU1, aV1[i]), gp_Pnt2d(aU2[i], aV2[i]),
3172 aUSurf1f, aUSurf1l, aUSurf2f, aUSurf2l,
3173 aVSurf1f, aVSurf1l, aVSurf2f, aVSurf2l, aPeriod,
3174 aWLine[i]->Curve(), i, aTol3D, aTol2D, isForce))
3175 {
3176 if (aWLFindStatus[i] == WLFStatus_Absent)
3177 {
3178 aWLFindStatus[i] = WLFStatus_Exist;
3179 }
3180 }
3181 else if (!isFound1 && !isFound2)
3182 {//We do not add any point while doing this iteration
3183 if (aWLFindStatus[i] == WLFStatus_Exist)
3184 {
3185 aWLFindStatus[i] = WLFStatus_Broken;
3186 }
3187 }
3188 }
3189 }
3190 else
3191 {//We do not add any point while doing this iteration
3192 if (aWLFindStatus[i] == WLFStatus_Exist)
3193 {
3194 aWLFindStatus[i] = WLFStatus_Broken;
3195 }
3196 }
3197
3198 if (aWLFindStatus[i] == WLFStatus_Broken)
3199 isBroken = Standard_True;
3200 }//for(Standard_Integer i = 0; i < aNbWLines; i++)
3201
3202 if (isBroken)
3203 {//current lines are filled. Go to the next lines
3204 anUf = anU1;
3205
3206 Standard_Boolean isAdded = Standard_True;
3207
3208 for (Standard_Integer i = 0; i < aNbWLines; i++)
3209 {
3210 if (isAddingWLEnabled[i])
3211 {
3212 continue;
3213 }
3214
3215 isAdded = Standard_False;
3216
3217 Standard_Boolean isFound1 = Standard_False, isFound2 = Standard_False;
3218
3219 theBW.AddBoundaryPoint(aWLine[i], anU1, aMinCriticalParam, aU2[i],
3220 aV1[i], aV1Prev[i], aV2[i], aV2Prev[i], i,
3221 Standard_False, isFound1, isFound2);
3222
3223 if (isFound1 || isFound2)
3224 {
3225 isAdded = Standard_True;
3226 }
3227
3228 if (aWLine[i]->NbPnts() > 0)
3229 {
3230 Standard_Real aU2p = 0.0, aV2p = 0.0;
3231 if (isReversed)
3232 aWLine[i]->Point(aWLine[i]->NbPnts()).ParametersOnS1(aU2p, aV2p);
3233 else
3234 aWLine[i]->Point(aWLine[i]->NbPnts()).ParametersOnS2(aU2p, aV2p);
3235
3236 const Standard_Real aDelta = aU2[i] - aU2p;
3237
3238 if (2 * Abs(aDelta) > aPeriod)
3239 {
3240 if (aDelta > 0.0)
3241 {
3242 aU2[i] -= aPeriod;
3243 }
3244 else
3245 {
3246 aU2[i] += aPeriod;
3247 }
3248 }
3249 }
3250
3251 if(AddPointIntoWL(aQuad1, aQuad2, anEquationCoeffs, isReversed,
3252 Standard_True, gp_Pnt2d(anU1, aV1[i]),
3253 gp_Pnt2d(aU2[i], aV2[i]), aUSurf1f, aUSurf1l,
3254 aUSurf2f, aUSurf2l, aVSurf1f, aVSurf1l,
3255 aVSurf2f, aVSurf2l, aPeriod, aWLine[i]->Curve(),
3256 i, aTol3D, aTol2D, Standard_False))
3257 {
3258 isAdded = Standard_True;
3259 }
3260 }
3261
3262 if (!isAdded)
3263 {
3264 //Before breaking WL, we must complete it correctly
3265 //(e.g. to prolong to the surface boundary).
3266 //Therefore, we take the point last added in some WL
3267 //(have maximal U1-parameter) and try to add it in
3268 //the current WL.
3269 Standard_Real anUmaxAdded = RealFirst();
3270
3271 {
3272 Standard_Boolean isChanged = Standard_False;
3273 for (Standard_Integer i = 0; i < aNbWLines; i++)
3274 {
3275 if ((aWLFindStatus[i] == WLFStatus_Absent) || (aWLine[i]->NbPnts() == 0))
3276 continue;
3277
3278 Standard_Real aU1c = 0.0, aV1c = 0.0;
3279 if (isReversed)
3280 aWLine[i]->Curve()->Value(aWLine[i]->NbPnts()).ParametersOnS2(aU1c, aV1c);
3281 else
3282 aWLine[i]->Curve()->Value(aWLine[i]->NbPnts()).ParametersOnS1(aU1c, aV1c);
3283
3284 anUmaxAdded = Max(anUmaxAdded, aU1c);
3285 isChanged = Standard_True;
3286 }
3287
3288 if (!isChanged)
3289 { //If anUmaxAdded were not changed in previous cycle then
3290 //we would break existing WLines.
3291 break;
3292 }
3293 }
3294
3295 for (Standard_Integer i = 0; i < aNbWLines; i++)
3296 {
3297 if (isAddingWLEnabled[i])
3298 {
3299 continue;
3300 }
3301
3302 ComputationMethods::CylCylComputeParameters(anUmaxAdded, i, anEquationCoeffs,
3303 aU2[i], aV1[i], aV2[i]);
3304
3305 AddPointIntoWL(aQuad1, aQuad2, anEquationCoeffs, isReversed,
3306 Standard_True, gp_Pnt2d(anUmaxAdded, aV1[i]),
3307 gp_Pnt2d(aU2[i], aV2[i]), aUSurf1f, aUSurf1l,
3308 aUSurf2f, aUSurf2l, aVSurf1f, aVSurf1l,
3309 aVSurf2f, aVSurf2l, aPeriod, aWLine[i]->Curve(),
3310 i, aTol3D, aTol2D, Standard_False);
3311 }
3312 }
3313
3314 break;
3315 }
3316
3317 //Step computing
3318
3319 {
3320 //Step of aU1-parameter is computed adaptively. The algorithm
3321 //aims to provide given aDeltaV1 and aDeltaV2 values (if it is
3322 //possible because the intersection line can go along V-isoline)
3323 //in every iteration. It allows avoiding "flying" intersection
3324 //points too far each from other (see issue #24915).
3325
3326 const Standard_Real aDeltaV1 = aRangeS1.Delta() / IntToReal(aNbPoints),
3327 aDeltaV2 = aRangeS2.Delta() / IntToReal(aNbPoints);
3328
3329 math_Matrix aMatr(1, 3, 1, 5);
3330
3331 Standard_Real aMinUexp = RealLast();
3332
3333 for (Standard_Integer i = 0; i < aNbWLines; i++)
3334 {
3335 if (aTol2D < (anUexpect[i] - anU1))
3336 {
3337 continue;
3338 }
3339
3340 if (aWLFindStatus[i] == WLFStatus_Absent)
3341 {
3342 anUexpect[i] += aStepMax;
3343 aMinUexp = Min(aMinUexp, anUexpect[i]);
3344 continue;
3345 }
3346 //
3347 if (isGoodIntersection)
3348 {
3349 //Use constant step
3350 anUexpect[i] += aStepMax;
3351 aMinUexp = Min(aMinUexp, anUexpect[i]);
3352
3353 continue;
3354 }
3355 //
3356
3357 Standard_Real aStepTmp = aStepMax;
3358
3359 const Standard_Real aSinU1 = sin(anU1),
3360 aCosU1 = cos(anU1),
3361 aSinU2 = sin(aU2[i]),
3362 aCosU2 = cos(aU2[i]);
3363
3364 aMatr.SetCol(1, anEquationCoeffs.mVecC1);
3365 aMatr.SetCol(2, anEquationCoeffs.mVecC2);
3366 aMatr.SetCol(3, anEquationCoeffs.mVecA1*aSinU1 - anEquationCoeffs.mVecB1*aCosU1);
3367 aMatr.SetCol(4, anEquationCoeffs.mVecA2*aSinU2 - anEquationCoeffs.mVecB2*aCosU2);
3368 aMatr.SetCol(5, anEquationCoeffs.mVecA1*aCosU1 + anEquationCoeffs.mVecB1*aSinU1 +
3369 anEquationCoeffs.mVecA2*aCosU2 + anEquationCoeffs.mVecB2*aSinU2 +
3370 anEquationCoeffs.mVecD);
3371
3372 //The main idea is in solving of linearized system (2)
3373 //(see description to ComputationMethods class) in order to find new U1-value
3374 //to provide new value V1 or V2, which differs from current one by aDeltaV1 or
3375 //aDeltaV2 respectively.
3376
3377 //While linearizing, following Taylor formulas are used:
3378 // cos(x0+dx) = cos(x0) - sin(x0)*dx
3379 // sin(x0+dx) = sin(x0) + cos(x0)*dx
3380
3381 //Consequently cos(U1), cos(U2), sin(U1) and sin(U2) in the system (2)
3382 //must be substituted by corresponding values.
3383
3384 //ATTENTION!!!
3385 //The solution is approximate. More over, all requirements to the
3386 //linearization must be satisfied in order to obtain quality result.
3387
3388 if (!StepComputing(aMatr, aV1[i], aV2[i], aDeltaV1, aDeltaV2, aStepTmp))
3389 {
3390 //To avoid cycling-up
3391 anUexpect[i] += aStepMax;
3392 aMinUexp = Min(aMinUexp, anUexpect[i]);
3393
3394 continue;
3395 }
3396
3397 if (aStepTmp < aStepMin)
3398 aStepTmp = aStepMin;
3399
3400 if (aStepTmp > aStepMax)
3401 aStepTmp = aStepMax;
3402
3403 anUexpect[i] = anU1 + aStepTmp;
3404 aMinUexp = Min(aMinUexp, anUexpect[i]);
3405 }
3406
3407 anU1 = aMinUexp;
3408 }
3409
3410 if (Precision::PConfusion() >= (anUl - anU1))
3411 anU1 = anUl;
3412
3413 anUf = anU1;
3414
3415 for (Standard_Integer i = 0; i < aNbWLines; i++)
3416 {
3417 if (aWLine[i]->NbPnts() != 1)
3418 isAddedIntoWL[i] = Standard_False;
3419
3420 if (anU1 == anUl)
3421 {//strictly equal. Tolerance is considered above.
3422 anUexpect[i] = anUl;
3423 }
3424 }
3425 }
3426
3427 for (Standard_Integer i = 0; i < aNbWLines; i++)
3428 {
3429 if ((aWLine[i]->NbPnts() == 1) && (!isAddedIntoWL[i]))
3430 {
3431 isTheEmpty = Standard_False;
3432 Standard_Real u1, v1, u2, v2;
3433 aWLine[i]->Point(1).Parameters(u1, v1, u2, v2);
3434 IntPatch_Point aP;
3435 aP.SetParameter(u1);
3436 aP.SetParameters(u1, v1, u2, v2);
3437 aP.SetTolerance(aTol3D);
3438 aP.SetValue(aWLine[i]->Point(1).Value());
3439
3440 //Check whether the added point exists.
3441 //It is enough to check the last point.
3442 if (theSPnt.IsEmpty() ||
3443 !theSPnt.Last().PntOn2S().IsSame(aP.PntOn2S(), Precision::Confusion()))
3444 {
3445 theSPnt.Append(aP);
3446 }
3447 }
3448 else if (aWLine[i]->NbPnts() > 1)
3449 {
3450 Standard_Boolean isGood = Standard_True;
3451
3452 if (aWLine[i]->NbPnts() == 2)
3453 {
3454 const IntSurf_PntOn2S& aPf = aWLine[i]->Point(1);
3455 const IntSurf_PntOn2S& aPl = aWLine[i]->Point(2);
3456
3457 if (aPf.IsSame(aPl, Precision::Confusion()))
3458 isGood = Standard_False;
3459 }
3460 else if (aWLine[i]->NbPnts() > 2)
3461 {
3462 // Sometimes points of the WLine are distributed
3463 // linearly and uniformly. However, such position
3464 // of the points does not always describe the real intersection
3465 // curve. I.e. real tangents at the ends of the intersection
3466 // curve can significantly deviate from this "line" direction.
3467 // Here we are processing this case by inserting additional points
3468 // to the beginning/end of the WLine to make it more precise.
3469 // See description to the issue #30082.
3470
3471 const Standard_Real aSqTol3D = aTol3D*aTol3D;
3472 for (Standard_Integer j = 0; j < 2; j++)
3473 {
3474 // If j == 0 ==> add point at begin of WLine.
3475 // If j == 1 ==> add point at end of WLine.
3476
3477 for (;;)
3478 {
3479 if (aWLine[i]->NbPnts() >= aNbMaxPoints)
3480 {
3481 break;
3482 }
3483
3484 // Take 1st and 2nd point to compute the "line" direction.
3485 // For our convenience, we make 2nd point be the ends of the WLine
3486 // because it will be used for computation of the normals
3487 // to the surfaces.
3488 const Standard_Integer anIdx1 = j ? aWLine[i]->NbPnts() - 1 : 2;
3489 const Standard_Integer anIdx2 = j ? aWLine[i]->NbPnts() : 1;
3490
3491 const gp_Pnt &aP1 = aWLine[i]->Point(anIdx1).Value();
3492 const gp_Pnt &aP2 = aWLine[i]->Point(anIdx2).Value();
3493
3494 const gp_Vec aDir(aP1, aP2);
3495
3496 if (aDir.SquareMagnitude() < aSqTol3D)
3497 {
3498 break;
3499 }
3500
3501 // Compute tangent in first/last point of the WLine.
3502 // We do not take into account the flag "isReversed"
3503 // because strict direction of the tangent is not
3504 // important here (we are interested in the tangent
3505 // line itself and nothing to fear if its direction
3506 // is reversed).
3507 const gp_Vec aN1 = aQuad1.Normale(aP2);
3508 const gp_Vec aN2 = aQuad2.Normale(aP2);
3509 const gp_Vec aTg(aN1.Crossed(aN2));
3510
3511 if (aTg.SquareMagnitude() < Precision::SquareConfusion())
3512 {
3513 // Tangent zone
3514 break;
3515 }
3516
3517 // Check of the bending
3518 Standard_Real anAngle = aDir.Angle(aTg);
3519
3520 if (anAngle > M_PI_2)
3521 anAngle -= M_PI;
3522
3523 if (Abs(anAngle) > 0.25) // ~ 14deg.
3524 {
3525 const Standard_Integer aNbPntsPrev = aWLine[i]->NbPnts();
3526 SeekAdditionalPoints(aQuad1, aQuad2, aWLine[i]->Curve(),
3527 anEquationCoeffs, i, 3, anIdx1, anIdx2,
3528 aTol2D, aPeriod, isReversed);
3529
3530 if (aWLine[i]->NbPnts() == aNbPntsPrev)
3531 {
3532 // No points have been added. ==> Exit from a loop.
3533 break;
3534 }
3535 }
3536 else
3537 {
3538 // Good result has been achieved. ==> Exit from a loop.
3539 break;
3540 }
3541 } // for (;;)
3542 }
3543 }
3544
3545 if (isGood)
3546 {
3547 isTheEmpty = Standard_False;
3548 isAddedIntoWL[i] = Standard_True;
3549 SeekAdditionalPoints(aQuad1, aQuad2, aWLine[i]->Curve(),
3550 anEquationCoeffs, i, aNbPoints, 1,
3551 aWLine[i]->NbPnts(), aTol2D, aPeriod,
3552 isReversed);
3553
3554 aWLine[i]->ComputeVertexParameters(aTol3D);
3555 theSlin.Append(aWLine[i]);
3556 }
3557 }
3558 else
3559 {
3560 isAddedIntoWL[i] = Standard_False;
3561 }
3562
3563 #ifdef INTPATCH_IMPIMPINTERSECTION_DEBUG
3564 aWLine[i]->Dump(0);
3565 #endif
3566 }
3567 }
3568 }
3569
3570
3571 //Delete the points in theSPnt, which
3572 //lie at least in one of the line in theSlin.
3573 for (Standard_Integer aNbPnt = 1; aNbPnt <= theSPnt.Length(); aNbPnt++)
3574 {
3575 for (Standard_Integer aNbLin = 1; aNbLin <= theSlin.Length(); aNbLin++)
3576 {
3577 Handle(IntPatch_WLine) aWLine1(Handle(IntPatch_WLine)::
3578 DownCast(theSlin.Value(aNbLin)));
3579
3580 const IntSurf_PntOn2S& aPntFWL1 = aWLine1->Point(1);
3581 const IntSurf_PntOn2S& aPntLWL1 = aWLine1->Point(aWLine1->NbPnts());
3582
3583 const IntSurf_PntOn2S aPntCur = theSPnt.Value(aNbPnt).PntOn2S();
3584 if (aPntCur.IsSame(aPntFWL1, aTol3D) ||
3585 aPntCur.IsSame(aPntLWL1, aTol3D))
3586 {
3587 theSPnt.Remove(aNbPnt);
3588 aNbPnt--;
3589 break;
3590 }
3591 }
3592 }
3593
3594 //Try to add new points in the neighborhood of existing point
3595 for (Standard_Integer aNbPnt = 1; aNbPnt <= theSPnt.Length(); aNbPnt++)
3596 {
3597 // Standard algorithm (implemented above) could not find any
3598 // continuous curve in neighborhood of aPnt2S (e.g. because
3599 // this curve is too small; see tests\bugs\modalg_5\bug25292_35 and _36).
3600 // Here, we will try to find several new points nearer to aPnt2S.
3601
3602 // The algorithm below tries to find two points in every
3603 // intervals [u1 - aStepMax, u1] and [u1, u1 + aStepMax]
3604 // and every new point will be in maximal distance from
3605 // u1. If these two points exist they will be joined
3606 // by the intersection curve.
3607
3608 const IntPatch_Point& aPnt2S = theSPnt.Value(aNbPnt);
3609
3610 Standard_Real u1, v1, u2, v2;
3611 aPnt2S.Parameters(u1, v1, u2, v2);
3612
3613 Handle(IntSurf_LineOn2S) aL2S = new IntSurf_LineOn2S();
3614 Handle(IntPatch_WLine) aWLine = new IntPatch_WLine(aL2S, Standard_False);
3615 aWLine->SetCreatingWayInfo(IntPatch_WLine::IntPatch_WLImpImp);
3616
3617 //Define the index of WLine, which lies the point aPnt2S in.
3618 Standard_Integer anIndex = 0;
3619
3620 Standard_Real anUf = 0.0, anUl = 0.0, aCurU2 = 0.0;
3621 if (isReversed)
3622 {
3623 anUf = Max(u2 - aStepMax, aUSurf1f);
3624 anUl = Min(u2 + aStepMax, aUSurf1l);
3625 aCurU2 = u1;
3626 }
3627 else
3628 {
3629 anUf = Max(u1 - aStepMax, aUSurf1f);
3630 anUl = Min(u1 + aStepMax, aUSurf1l);
3631 aCurU2 = u2;
3632 }
3633
3634 const Standard_Real anUinf = anUf, anUsup = anUl, anUmid = 0.5*(anUf + anUl);
3635
3636 {
3637 //Find the value of anIndex variable.
3638 Standard_Real aDelta = RealLast();
3639 for (Standard_Integer i = 0; i < aNbWLines; i++)
3640 {
3641 Standard_Real anU2t = 0.0;
3642 if (!ComputationMethods::CylCylComputeParameters(anUmid, i, anEquationCoeffs, anU2t))
3643 continue;
3644
3645 Standard_Real aDU2 = fmod(Abs(anU2t - aCurU2), aPeriod);
3646 aDU2 = Min(aDU2, Abs(aDU2 - aPeriod));
3647 if (aDU2 < aDelta)
3648 {
3649 aDelta = aDU2;
3650 anIndex = i;
3651 }
3652 }
3653 }
3654
3655 // Bisection method is used in order to find every new point.
3656 // I.e. if we need to find intersection point in the interval [anUinf, anUmid]
3657 // we check the point anUC = 0.5*(anUinf+anUmid). If it is an intersection point
3658 // we try to find another point in the interval [anUinf, anUC] (because we find the point in
3659 // maximal distance from anUmid). If it is not then we try to find another point in the
3660 // interval [anUC, anUmid]. Next iterations will be made analogically.
3661 // When we find intersection point in the interval [anUmid, anUsup] we try to find
3662 // another point in the interval [anUC, anUsup] if anUC is intersection point and
3663 // in the interval [anUmid, anUC], otherwise.
3664
3665 Standard_Real anAddedPar[2] = {isReversed ? u2 : u1, isReversed ? u2 : u1};
3666
3667 for (Standard_Integer aParID = 0; aParID < 2; aParID++)
3668 {
3669 if (aParID == 0)
3670 {
3671 anUf = anUinf;
3672 anUl = anUmid;
3673 }
3674 else // if(aParID == 1)
3675 {
3676 anUf = anUmid;
3677 anUl = anUsup;
3678 }
3679
3680 Standard_Real &aPar1 = (aParID == 0) ? anUf : anUl,
3681 &aPar2 = (aParID == 0) ? anUl : anUf;
3682
3683 while (Abs(aPar2 - aPar1) > aStepMin)
3684 {
3685 Standard_Real anUC = 0.5*(anUf + anUl);
3686 Standard_Real aU2 = 0.0, aV1 = 0.0, aV2 = 0.0;
3687 Standard_Boolean isDone = ComputationMethods::
3688 CylCylComputeParameters(anUC, anIndex, anEquationCoeffs, aU2, aV1, aV2);
3689
3690 if (isDone)
3691 {
3692 if (Abs(aV1 - aVSurf1f) <= aTol2D)
3693 aV1 = aVSurf1f;
3694
3695 if (Abs(aV1 - aVSurf1l) <= aTol2D)
3696 aV1 = aVSurf1l;
3697
3698 if (Abs(aV2 - aVSurf2f) <= aTol2D)
3699 aV2 = aVSurf2f;
3700
3701 if (Abs(aV2 - aVSurf2l) <= aTol2D)
3702 aV2 = aVSurf2l;
3703
3704 isDone = AddPointIntoWL(aQuad1, aQuad2, anEquationCoeffs, isReversed,
3705 Standard_True, gp_Pnt2d(anUC, aV1), gp_Pnt2d(aU2, aV2),
3706 aUSurf1f, aUSurf1l, aUSurf2f, aUSurf2l,
3707 aVSurf1f, aVSurf1l, aVSurf2f, aVSurf2l,
3708 aPeriod, aWLine->Curve(), anIndex, aTol3D,
3709 aTol2D, Standard_False, Standard_True);
3710 }
3711
3712 if (isDone)
3713 {
3714 anAddedPar[0] = Min(anAddedPar[0], anUC);
3715 anAddedPar[1] = Max(anAddedPar[1], anUC);
3716 aPar2 = anUC;
3717 }
3718 else
3719 {
3720 aPar1 = anUC;
3721 }
3722 }
3723 }
3724
3725 //Fill aWLine by additional points
3726 if (anAddedPar[1] - anAddedPar[0] > aStepMin)
3727 {
3728 for (Standard_Integer aParID = 0; aParID < 2; aParID++)
3729 {
3730 Standard_Real aU2 = 0.0, aV1 = 0.0, aV2 = 0.0;
3731 ComputationMethods::CylCylComputeParameters(anAddedPar[aParID], anIndex,
3732 anEquationCoeffs, aU2, aV1, aV2);
3733
3734 AddPointIntoWL(aQuad1, aQuad2, anEquationCoeffs, isReversed, Standard_True,
3735 gp_Pnt2d(anAddedPar[aParID], aV1), gp_Pnt2d(aU2, aV2),
3736 aUSurf1f, aUSurf1l, aUSurf2f, aUSurf2l,
3737 aVSurf1f, aVSurf1l, aVSurf2f, aVSurf2l, aPeriod, aWLine->Curve(),
3738 anIndex, aTol3D, aTol2D, Standard_False, Standard_False);
3739 }
3740
3741 SeekAdditionalPoints(aQuad1, aQuad2, aWLine->Curve(),
3742 anEquationCoeffs, anIndex, aNbMinPoints,
3743 1, aWLine->NbPnts(), aTol2D, aPeriod,
3744 isReversed);
3745
3746 aWLine->ComputeVertexParameters(aTol3D);
3747 theSlin.Append(aWLine);
3748
3749 theSPnt.Remove(aNbPnt);
3750 aNbPnt--;
3751 }
3752 }
3753
3754 return IntPatch_ImpImpIntersection::IntStatus_OK;
3755 }
3756
3757 //=======================================================================
3758 //function : IntCyCy
3759 //purpose :
3760 //=======================================================================
3761 IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
3762 const IntSurf_Quadric& theQuad2,
3763 const Standard_Real theTol3D,
3764 const Standard_Real theTol2D,
3765 const Bnd_Box2d& theUVSurf1,
3766 const Bnd_Box2d& theUVSurf2,
3767 Standard_Boolean& isTheEmpty,
3768 Standard_Boolean& isTheSameSurface,
3769 Standard_Boolean& isTheMultiplePoint,
3770 IntPatch_SequenceOfLine& theSlin,
3771 IntPatch_SequenceOfPoint& theSPnt)
3772 {
3773 isTheEmpty = Standard_True;
3774 isTheSameSurface = Standard_False;
3775 isTheMultiplePoint = Standard_False;
3776 theSlin.Clear();
3777 theSPnt.Clear();
3778
3779 const gp_Cylinder aCyl1 = theQuad1.Cylinder(),
3780 aCyl2 = theQuad2.Cylinder();
3781
3782 IntAna_QuadQuadGeo anInter(aCyl1,aCyl2,theTol3D);
3783
3784 if (!anInter.IsDone())
3785 {
3786 return IntPatch_ImpImpIntersection::IntStatus_Fail;
3787 }
3788
3789 if(anInter.TypeInter() != IntAna_NoGeometricSolution)
3790 {
3791 if (CyCyAnalyticalIntersect(theQuad1, theQuad2, anInter,
3792 theTol3D, isTheEmpty,
3793 isTheSameSurface, isTheMultiplePoint,
3794 theSlin, theSPnt))
3795 {
3796 return IntPatch_ImpImpIntersection::IntStatus_OK;
3797 }
3798 }
3799
3800 //Here, intersection line is not an analytical curve(line, circle, ellipsis etc.)
3801
3802 Standard_Real aUSBou[2][2], aVSBou[2][2]; //const
3803
3804 theUVSurf1.Get(aUSBou[0][0], aVSBou[0][0], aUSBou[0][1], aVSBou[0][1]);
3805 theUVSurf2.Get(aUSBou[1][0], aVSBou[1][0], aUSBou[1][1], aVSBou[1][1]);
3806
3807 const Standard_Real aPeriod = 2.0*M_PI;
3808 const Standard_Integer aNbWLines = 2;
3809
3810 const ComputationMethods::stCoeffsValue anEquationCoeffs1(aCyl1, aCyl2);
3811 const ComputationMethods::stCoeffsValue anEquationCoeffs2(aCyl2, aCyl1);
3812
3813 //Boundaries.
3814 //Intersection result can include two non-connected regions
3815 //(see WorkWithBoundaries::BoundariesComputing(...) method).
3816 const Standard_Integer aNbOfBoundaries = 2;
3817 Bnd_Range anURange[2][aNbOfBoundaries]; //const
3818
3819 if (!WorkWithBoundaries::BoundariesComputing(anEquationCoeffs1, aPeriod, anURange[0]))
3820 return IntPatch_ImpImpIntersection::IntStatus_OK;
3821
3822 if (!WorkWithBoundaries::BoundariesComputing(anEquationCoeffs2, aPeriod, anURange[1]))
3823 return IntPatch_ImpImpIntersection::IntStatus_OK;
3824
3825 //anURange[*] can be in different periodic regions in
3826 //compare with First-Last surface. E.g. the surface
3827 //is full cylinder [0, 2*PI] but anURange is [5, 7].
3828 //Trivial common range computation returns [5, 2*PI] and
3829 //its summary length is 2*PI-5 == 1.28... only. That is wrong.
3830 //This problem can be solved by the following
3831 //algorithm:
3832 // 1. split anURange[*] by the surface boundary;
3833 // 2. shift every new range in order to inscribe it
3834 // in [Ufirst, Ulast] of cylinder;
3835 // 3. consider only common ranges between [Ufirst, Ulast]
3836 // and new ranges.
3837 //
3838 // In above example, we obtain following:
3839 // 1. two ranges: [5, 2*PI] and [2*PI, 7];
3840 // 2. after shifting: [5, 2*PI] and [0, 7-2*PI];
3841 // 3. Common ranges: ([5, 2*PI] and [0, 2*PI]) == [5, 2*PI],
3842 // ([0, 7-2*PI] and [0, 2*PI]) == [0, 7-2*PI];
3843 // 4. Their summary length is (2*PI-5)+(7-2*PI-0)==7-5==2 ==> GOOD.
3844
3845 Standard_Real aSumRange[2] = { 0.0, 0.0 };
3846 Handle(NCollection_IncAllocator) anAlloc = new NCollection_IncAllocator;
3847 for (Standard_Integer aCID = 0; aCID < 2; aCID++)
3848 {
3849 anAlloc->Reset(false);
3850 NCollection_List<Bnd_Range> aListOfRng(anAlloc);
3851
3852 aListOfRng.Append(anURange[aCID][0]);
3853 aListOfRng.Append(anURange[aCID][1]);
3854
3855 const Standard_Real aSplitArr[3] = {aUSBou[aCID][0], aUSBou[aCID][1], 0.0};
3856
3857 NCollection_List<Bnd_Range>::Iterator anITrRng;
3858 for (Standard_Integer aSInd = 0; aSInd < 3; aSInd++)
3859 {
3860 NCollection_List<Bnd_Range> aLstTemp(aListOfRng);
3861 aListOfRng.Clear();
3862 for (anITrRng.Init(aLstTemp); anITrRng.More(); anITrRng.Next())
3863 {
3864 Bnd_Range& aRng = anITrRng.ChangeValue();
3865 aRng.Split(aSplitArr[aSInd], aListOfRng, aPeriod);
3866 }
3867 }
3868
3869 anITrRng.Init(aListOfRng);
3870 for (; anITrRng.More(); anITrRng.Next())
3871 {
3872 Bnd_Range& aCurrRange = anITrRng.ChangeValue();
3873
3874 Bnd_Range aBoundR;
3875 aBoundR.Add(aUSBou[aCID][0]);
3876 aBoundR.Add(aUSBou[aCID][1]);
3877
3878 if (!InscribeInterval(aUSBou[aCID][0], aUSBou[aCID][1],
3879 aCurrRange, theTol2D, aPeriod))
3880 {
3881 //If aCurrRange does not have common block with
3882 //[Ufirst, Ulast] of cylinder then we will try
3883 //to inscribe [Ufirst, Ulast] in the boundaries of aCurrRange.
3884 Standard_Real aF = 1.0, aL = 0.0;
3885 if (!aCurrRange.GetBounds(aF, aL))
3886 continue;
3887
3888 if ((aL < aUSBou[aCID][0]))
3889 {
3890 aCurrRange.Shift(aPeriod);
3891 }
3892 else if (aF > aUSBou[aCID][1])
3893 {
3894 aCurrRange.Shift(-aPeriod);
3895 }
3896 }
3897
3898 aBoundR.Common(aCurrRange);
3899
3900 const Standard_Real aDelta = aBoundR.Delta();
3901
3902 if (aDelta > 0.0)
3903 {
3904 aSumRange[aCID] += aDelta;
3905 }
3906 }
3907 }
3908
3909 //The bigger range the bigger number of points in Walking-line (WLine)
3910 //we will be able to add and consequently we will obtain more
3911 //precise intersection line.
3912 //Every point of WLine is determined as function from U1-parameter,
3913 //where U1 is U-parameter on 1st quadric.
3914 //Therefore, we should use quadric with bigger range as 1st parameter
3915 //in IntCyCy() function.
3916 //On the other hand, there is no point in reversing in case of
3917 //analytical intersection (when result is line, ellipse, point...).
3918 //This result is independent of the arguments order.
3919 const Standard_Boolean isToReverse = (aSumRange[1] > aSumRange[0]);
3920
3921 if (isToReverse)
3922 {
3923 const WorkWithBoundaries aBoundWork(theQuad2, theQuad1, anEquationCoeffs2,
3924 theUVSurf2, theUVSurf1, aNbWLines,
3925 aPeriod, theTol3D, theTol2D, Standard_True);
3926
3927 return CyCyNoGeometric(aCyl2, aCyl1, aBoundWork, anURange[1], aNbOfBoundaries,
3928 isTheEmpty, theSlin, theSPnt);
3929 }
3930 else
3931 {
3932 const WorkWithBoundaries aBoundWork(theQuad1, theQuad2, anEquationCoeffs1,
3933 theUVSurf1, theUVSurf2, aNbWLines,
3934 aPeriod, theTol3D, theTol2D, Standard_False);
3935
3936 return CyCyNoGeometric(aCyl1, aCyl2, aBoundWork, anURange[0], aNbOfBoundaries,
3937 isTheEmpty, theSlin, theSPnt);
3938 }
3939 }
3940
3941 //=======================================================================
3942 //function : IntCySp
3943 //purpose :
3944 //=======================================================================
3945 Standard_Boolean IntCySp(const IntSurf_Quadric& Quad1,
3946 const IntSurf_Quadric& Quad2,
3947 const Standard_Real Tol,
3948 const Standard_Boolean Reversed,
3949 Standard_Boolean& Empty,
3950 Standard_Boolean& Multpoint,
3951 IntPatch_SequenceOfLine& slin,
3952 IntPatch_SequenceOfPoint& spnt)
3953
3954 {
3955 Standard_Integer i;
3956
3957 IntSurf_TypeTrans trans1,trans2;
3958 IntAna_ResultType typint;
3959 IntPatch_Point ptsol;
3960 gp_Circ cirsol;
3961
3962 gp_Cylinder Cy;
3963 gp_Sphere Sp;
3964
3965 if (!Reversed) {
3966 Cy = Quad1.Cylinder();
3967 Sp = Quad2.Sphere();
3968 }
3969 else {
3970 Cy = Quad2.Cylinder();
3971 Sp = Quad1.Sphere();
3972 }
3973 IntAna_QuadQuadGeo inter(Cy,Sp,Tol);
3974
3975 if (!inter.IsDone()) {return Standard_False;}
3976
3977 typint = inter.TypeInter();
3978 Standard_Integer NbSol = inter.NbSolutions();
3979 Empty = Standard_False;
3980
3981 switch (typint) {
3982
3983 case IntAna_Empty :
3984 {
3985 Empty = Standard_True;
3986 }
3987 break;
3988
3989 case IntAna_Point :
3990 {
3991 gp_Pnt psol(inter.Point(1));
3992 Standard_Real U1,V1,U2,V2;
3993 Quad1.Parameters(psol,U1,V1);
3994 Quad2.Parameters(psol,U2,V2);
3995 ptsol.SetValue(psol,Tol,Standard_True);
3996 ptsol.SetParameters(U1,V1,U2,V2);
3997 spnt.Append(ptsol);
3998 }
3999 break;
4000
4001 case IntAna_Circle:
4002 {
4003 cirsol = inter.Circle(1);
4004 gp_Vec Tgt;
4005 gp_Pnt ptref;
4006 ElCLib::D1(0.,cirsol,ptref,Tgt);
4007
4008 if (NbSol == 1) {
4009 gp_Vec TestCurvature(ptref,Sp.Location());
4010 gp_Vec Normsp,Normcyl;
4011 if (!Reversed) {
4012 Normcyl = Quad1.Normale(ptref);
4013 Normsp = Quad2.Normale(ptref);
4014 }
4015 else {
4016 Normcyl = Quad2.Normale(ptref);
4017 Normsp = Quad1.Normale(ptref);
4018 }
4019
4020 IntSurf_Situation situcyl;
4021 IntSurf_Situation situsp;
4022
4023 if (Normcyl.Dot(TestCurvature) > 0.) {
4024 situsp = IntSurf_Outside;
4025 if (Normsp.Dot(Normcyl) > 0.) {
4026 situcyl = IntSurf_Inside;
4027 }
4028 else {
4029 situcyl = IntSurf_Outside;
4030 }
4031 }
4032 else {
4033 situsp = IntSurf_Inside;
4034 if (Normsp.Dot(Normcyl) > 0.) {
4035 situcyl = IntSurf_Outside;
4036 }
4037 else {
4038 situcyl = IntSurf_Inside;
4039 }
4040 }
4041 Handle(IntPatch_GLine) glig;
4042 if (!Reversed) {
4043 glig = new IntPatch_GLine(cirsol, Standard_True, situcyl, situsp);
4044 }
4045 else {
4046 glig = new IntPatch_GLine(cirsol, Standard_True, situsp, situcyl);
4047 }
4048 slin.Append(glig);
4049 }
4050 else {
4051 if (Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref)) > 0.0) {
4052 trans1 = IntSurf_Out;
4053 trans2 = IntSurf_In;
4054 }
4055 else {
4056 trans1 = IntSurf_In;
4057 trans2 = IntSurf_Out;
4058 }
4059 Handle(IntPatch_GLine) glig = new IntPatch_GLine(cirsol,Standard_False,trans1,trans2);
4060 slin.Append(glig);
4061
4062 cirsol = inter.Circle(2);
4063 ElCLib::D1(0.,cirsol,ptref,Tgt);
4064 Standard_Real qwe = Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref));
4065 if(qwe> 0.0000001) {
4066 trans1 = IntSurf_Out;
4067 trans2 = IntSurf_In;
4068 }
4069 else if(qwe<-0.0000001) {
4070 trans1 = IntSurf_In;
4071 trans2 = IntSurf_Out;
4072 }
4073 else {
4074 trans1=trans2=IntSurf_Undecided;
4075 }
4076 glig = new IntPatch_GLine(cirsol,Standard_False,trans1,trans2);
4077 slin.Append(glig);
4078 }
4079 }
4080 break;
4081
4082 case IntAna_NoGeometricSolution:
4083 {
4084 gp_Pnt psol;
4085 Standard_Real U1,V1,U2,V2;
4086 IntAna_IntQuadQuad anaint(Cy,Sp,Tol);
4087 if (!anaint.IsDone()) {
4088 return Standard_False;
4089 }
4090
4091 if (anaint.NbPnt()==0 && anaint.NbCurve()==0) {
4092 Empty = Standard_True;
4093 }
4094 else {
4095
4096 NbSol = anaint.NbPnt();
4097 for (i = 1; i <= NbSol; i++) {
4098 psol = anaint.Point(i);
4099 Quad1.Parameters(psol,U1,V1);
4100 Quad2.Parameters(psol,U2,V2);
4101 ptsol.SetValue(psol,Tol,Standard_True);
4102 ptsol.SetParameters(U1,V1,U2,V2);
4103 spnt.Append(ptsol);
4104 }
4105
4106 gp_Pnt ptvalid,ptf,ptl;
4107 gp_Vec tgvalid;
4108 Standard_Real first,last,para;
4109 IntAna_Curve curvsol;
4110 Standard_Boolean tgfound;
4111 Standard_Integer kount;
4112
4113 NbSol = anaint.NbCurve();
4114 for (i = 1; i <= NbSol; i++) {
4115 curvsol = anaint.Curve(i);
4116 curvsol.Domain(first,last);
4117 ptf = curvsol.Value(first);
4118 ptl = curvsol.Value(last);
4119
4120 para = last;
4121 kount = 1;
4122 tgfound = Standard_False;
4123
4124 while (!tgfound) {
4125 para = (1.123*first + para)/2.123;
4126 tgfound = curvsol.D1u(para,ptvalid,tgvalid);
4127 if (!tgfound) {
4128 kount ++;
4129 tgfound = kount > 5;
4130 }
4131 }
4132 Handle(IntPatch_ALine) alig;
4133 if (kount <= 5) {
4134 Standard_Real qwe = tgvalid.DotCross(Quad2.Normale(ptvalid),
4135 Quad1.Normale(ptvalid));
4136 if(qwe> 0.00000001) {
4137 trans1 = IntSurf_Out;
4138 trans2 = IntSurf_In;
4139 }
4140 else if(qwe<-0.00000001) {
4141 trans1 = IntSurf_In;
4142 trans2 = IntSurf_Out;
4143 }
4144 else {
4145 trans1=trans2=IntSurf_Undecided;
4146 }
4147 alig = new IntPatch_ALine(curvsol,Standard_False,trans1,trans2);
4148 }
4149 else {
4150 alig = new IntPatch_ALine(curvsol,Standard_False);
4151 }
4152 Standard_Boolean TempFalse1a = Standard_False;
4153 Standard_Boolean TempFalse2a = Standard_False;
4154
4155 //-- ptf et ptl : points debut et fin de alig
4156
4157 ProcessBounds(alig,slin,Quad1,Quad2,TempFalse1a,ptf,first,
4158 TempFalse2a,ptl,last,Multpoint,Tol);
4159 slin.Append(alig);
4160 } //-- boucle sur les lignes
4161 } //-- solution avec au moins une lihne
4162 }
4163 break;
4164
4165 default:
4166 {
4167 return Standard_False;
4168 }
4169 }
4170 return Standard_True;
4171 }
4172 //=======================================================================
4173 //function : IntCyCo
4174 //purpose :
4175 //=======================================================================
4176 Standard_Boolean IntCyCo(const IntSurf_Quadric& Quad1,
4177 const IntSurf_Quadric& Quad2,
4178 const Standard_Real Tol,
4179 const Standard_Boolean Reversed,
4180 Standard_Boolean& Empty,
4181 Standard_Boolean& Multpoint,
4182 IntPatch_SequenceOfLine& slin,
4183 IntPatch_SequenceOfPoint& spnt)
4184
4185 {
4186 IntPatch_Point ptsol;
4187
4188 Standard_Integer i;
4189
4190 IntSurf_TypeTrans trans1,trans2;
4191 IntAna_ResultType typint;
4192 gp_Circ cirsol;
4193
4194 gp_Cylinder Cy;
4195 gp_Cone Co;
4196
4197 if (!Reversed) {
4198 Cy = Quad1.Cylinder();
4199 Co = Quad2.Cone();
4200 }
4201 else {
4202 Cy = Quad2.Cylinder();
4203 Co = Quad1.Cone();
4204 }
4205 IntAna_QuadQuadGeo inter(Cy,Co,Tol);
4206
4207 if (!inter.IsDone()) {return Standard_False;}
4208
4209 typint = inter.TypeInter();
4210 Standard_Integer NbSol = inter.NbSolutions();
4211 Empty = Standard_False;
4212
4213 switch (typint) {
4214
4215 case IntAna_Empty : {
4216 Empty = Standard_True;
4217 }
4218 break;
4219
4220 case IntAna_Point :{
4221 gp_Pnt psol(inter.Point(1));
4222 Standard_Real U1,V1,U2,V2;
4223 Quad1.Parameters(psol,U1,V1);
4224 Quad1.Parameters(psol,U2,V2);
4225 ptsol.SetValue(psol,Tol,Standard_True);
4226 ptsol.SetParameters(U1,V1,U2,V2);
4227 spnt.Append(ptsol);
4228 }
4229 break;
4230
4231 case IntAna_Circle: {
4232 gp_Vec Tgt;
4233 gp_Pnt ptref;
4234 Standard_Integer j;
4235 Standard_Real qwe;
4236 //
4237 for(j=1; j<=2; ++j) {
4238 cirsol = inter.Circle(j);
4239 ElCLib::D1(0.,cirsol,ptref,Tgt);
4240 qwe = Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref));
4241 if(qwe> 0.00000001) {
4242 trans1 = IntSurf_Out;
4243 trans2 = IntSurf_In;
4244 }
4245 else if(qwe<-0.00000001) {
4246 trans1 = IntSurf_In;
4247 trans2 = IntSurf_Out;
4248 }
4249 else {
4250 trans1=trans2=IntSurf_Undecided;
4251 }
4252 Handle(IntPatch_GLine) glig = new IntPatch_GLine(cirsol,Standard_False,trans1,trans2);
4253 slin.Append(glig);
4254 }
4255 }
4256 break;
4257
4258 case IntAna_NoGeometricSolution: {
4259 gp_Pnt psol;
4260 Standard_Real U1,V1,U2,V2;
4261 IntAna_IntQuadQuad anaint(Cy,Co,Tol);
4262 if (!anaint.IsDone()) {
4263 return Standard_False;
4264 }
4265
4266 if (anaint.NbPnt() == 0 && anaint.NbCurve() == 0) {
4267 Empty = Standard_True;
4268 }
4269 else {
4270 NbSol = anaint.NbPnt();
4271 for (i = 1; i <= NbSol; i++) {
4272 psol = anaint.Point(i);
4273 Quad1.Parameters(psol,U1,V1);
4274 Quad2.Parameters(psol,U2,V2);
4275 ptsol.SetValue(psol,Tol,Standard_True);
4276 ptsol.SetParameters(U1,V1,U2,V2);
4277 spnt.Append(ptsol);
4278 }
4279
4280 gp_Pnt ptvalid, ptf, ptl;
4281 gp_Vec tgvalid;
4282 //
4283 Standard_Real first,last,para;
4284 Standard_Boolean tgfound,firstp,lastp,kept;
4285 Standard_Integer kount;
4286 //
4287 //
4288 //IntAna_Curve curvsol;
4289 IntAna_Curve aC;
4290 IntAna_ListOfCurve aLC;
4291 IntAna_ListIteratorOfListOfCurve aIt;
4292
4293 //
4294 NbSol = anaint.NbCurve();
4295 for (i = 1; i <= NbSol; ++i) {
4296 kept = Standard_False;
4297 //curvsol = anaint.Curve(i);
4298 aC=anaint.Curve(i);
4299 aLC.Clear();
4300 ExploreCurve(Co, aC, 10.*Tol, aLC);
4301 //
4302 aIt.Initialize(aLC);
4303 for (; aIt.More(); aIt.Next()) {
4304 IntAna_Curve& curvsol=aIt.ChangeValue();
4305 //
4306 curvsol.Domain(first, last);
4307 firstp = !curvsol.IsFirstOpen();
4308 lastp = !curvsol.IsLastOpen();
4309 if (firstp) {
4310 ptf = curvsol.Value(first);
4311 }
4312 if (lastp) {
4313 ptl = curvsol.Value(last);
4314 }
4315 para = last;
4316 kount = 1;
4317 tgfound = Standard_False;
4318
4319 while (!tgfound) {
4320 para = (1.123*first + para)/2.123;
4321 tgfound = curvsol.D1u(para,ptvalid,tgvalid);
4322 if (!tgfound) {
4323 kount ++;
4324 tgfound = kount > 5;
4325 }
4326 }
4327 Handle(IntPatch_ALine) alig;
4328 if (kount <= 5) {
4329 Standard_Real qwe = tgvalid.DotCross(Quad2.Normale(ptvalid),
4330 Quad1.Normale(ptvalid));
4331 if(qwe> 0.00000001) {
4332 trans1 = IntSurf_Out;
4333 trans2 = IntSurf_In;
4334 }
4335 else if(qwe<-0.00000001) {
4336 trans1 = IntSurf_In;
4337 trans2 = IntSurf_Out;
4338 }
4339 else {
4340 trans1=trans2=IntSurf_Undecided;
4341 }
4342 alig = new IntPatch_ALine(curvsol,Standard_False,trans1,trans2);
4343 kept = Standard_True;
4344 }
4345 else {
4346 ptvalid = curvsol.Value(para);
4347 alig = new IntPatch_ALine(curvsol,Standard_False);
4348 kept = Standard_True;
4349 //-- std::cout << "Transition indeterminee" << std::endl;
4350 }
4351 if (kept) {
4352 Standard_Boolean Nfirstp = !firstp;
4353 Standard_Boolean Nlastp = !lastp;
4354 ProcessBounds(alig,slin,Quad1,Quad2,Nfirstp,ptf,first,
4355 Nlastp,ptl,last,Multpoint,Tol);
4356 slin.Append(alig);
4357 }
4358 } // for (; aIt.More(); aIt.Next())
4359 } // for (i = 1; i <= NbSol; ++i)
4360 }
4361 }
4362 break;
4363
4364 default:
4365 return Standard_False;
4366
4367 } // switch (typint)
4368
4369 return Standard_True;
4370 }
4371 //=======================================================================
4372 //function : ExploreCurve
4373 //purpose : Splits aC on several curves in the cone apex points.
4374 //=======================================================================
4375 Standard_Boolean ExploreCurve(const gp_Cone& theCo,
4376 IntAna_Curve& theCrv,
4377 const Standard_Real theTol,
4378 IntAna_ListOfCurve& theLC)
4379 {
4380 const Standard_Real aSqTol = theTol*theTol;
4381 const gp_Pnt aPapx(theCo.Apex());
4382
4383 Standard_Real aT1, aT2;
4384 theCrv.Domain(aT1, aT2);
4385
4386 theLC.Clear();
4387 //
4388 TColStd_ListOfReal aLParams;
4389 theCrv.FindParameter(aPapx, aLParams);
4390 if (aLParams.IsEmpty())
4391 {
4392 theLC.Append(theCrv);
4393 return Standard_False;
4394 }
4395
4396 for (TColStd_ListIteratorOfListOfReal anItr(aLParams); anItr.More(); anItr.Next())
4397 {
4398 Standard_Real aPrm = anItr.Value();
4399
4400 if ((aPrm - aT1) < Precision::PConfusion())
4401 continue;
4402
4403 Standard_Boolean isLast = Standard_False;
4404 if ((aT2 - aPrm) < Precision::PConfusion())
4405 {
4406 aPrm = aT2;
4407 isLast = Standard_True;
4408 }
4409
4410 const gp_Pnt aP = theCrv.Value(aPrm);
4411 const Standard_Real aSqD = aP.SquareDistance(aPapx);
4412 if (aSqD < aSqTol)
4413 {
4414 IntAna_Curve aC1 = theCrv;
4415 aC1.SetDomain(aT1, aPrm);
4416 aT1 = aPrm;
4417 theLC.Append(aC1);
4418 }
4419
4420 if (isLast)
4421 break;
4422 }
4423
4424 if (theLC.IsEmpty())
4425 {
4426 theLC.Append(theCrv);
4427 return Standard_False;
4428 }
4429
4430 if ((aT2 - aT1) > Precision::PConfusion())
4431 {
4432 IntAna_Curve aC1 = theCrv;
4433 aC1.SetDomain(aT1, aT2);
4434 theLC.Append(aC1);
4435 }
4436
4437 return Standard_True;
4438 }