Back to home page

EIC code displayed by LXR

 
 

    


Warning, /include/opencascade/IntCurveSurface_HCurveTool.gxx is written in an unsupported language. File is not indexed.

0001 // Created on: 1995-07-17
0002 // Created by: Modelistation
0003 // Copyright (c) 1995-1999 Matra Datavision
0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS
0005 //
0006 // This file is part of Open CASCADE Technology software library.
0007 //
0008 // This library is free software; you can redistribute it and/or modify it under
0009 // the terms of the GNU Lesser General Public License version 2.1 as published
0010 // by the Free Software Foundation, with special exception defined in the file
0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
0012 // distribution for complete text of the license and disclaimer of any warranty.
0013 //
0014 // Alternatively, this file may be used under the terms of Open CASCADE
0015 // commercial license or contractual agreement.
0016 
0017 #include CurveGen_hxx
0018 #include <GeomAbs_CurveType.hxx>
0019 #include <GeomAbs_Shape.hxx>
0020 #include <Geom_BezierCurve.hxx>
0021 #include <Geom_BSplineCurve.hxx>
0022 
0023 #include <TColStd_Array1OfReal.hxx>
0024 #include <TColStd_Array1OfBoolean.hxx>
0025 #include <gce_MakeLin.hxx>
0026 #include <gp_Pnt.hxx>
0027 #include <gp_Lin.hxx>
0028 
0029 #define myMinPnts 5
0030 //============================================================
0031 Standard_Integer IntCurveSurface_HCurveTool::NbSamples (const CurveGen& C,
0032                                                        const Standard_Real U0,
0033                                                        const Standard_Real U1) {
0034   GeomAbs_CurveType typC = C->GetType();
0035   const Standard_Real nbsOther = 10.0;
0036   Standard_Real nbs = nbsOther;
0037   
0038   if(typC == GeomAbs_Line) 
0039     nbs = 2;
0040   else if(typC == GeomAbs_BezierCurve) 
0041     nbs = 3 + C->NbPoles();
0042   else if(typC == GeomAbs_BSplineCurve) { 
0043     nbs = C->NbKnots();
0044     nbs*= C->Degree();
0045     nbs*= C->LastParameter()- C->FirstParameter();
0046     nbs/= U1-U0;
0047     if(nbs < 2.0) nbs=2;
0048   }
0049   if(nbs>50)
0050     nbs = 50;
0051   return((Standard_Integer)nbs);
0052 }
0053 //============================================================
0054 void IntCurveSurface_HCurveTool::SamplePars (const CurveGen& C,
0055                                              const Standard_Real U0,
0056                                              const Standard_Real U1,
0057                                              const Standard_Real Defl,
0058                                              const Standard_Integer NbMin,
0059                                              Handle(TColStd_HArray1OfReal)& Pars) {
0060   GeomAbs_CurveType typC = C->GetType();
0061   const Standard_Real nbsOther = 10.0;
0062   Standard_Real nbs = nbsOther;
0063   
0064   if(typC == GeomAbs_Line) 
0065     nbs = 2;
0066   else if(typC == GeomAbs_BezierCurve) {
0067     nbs = 3 + C->NbPoles();
0068   }
0069   
0070   if(typC != GeomAbs_BSplineCurve) {
0071     if(nbs>50)
0072       nbs = 50;
0073     Standard_Integer nnbs = (Standard_Integer)nbs;
0074 
0075     Pars = new TColStd_HArray1OfReal(1, nnbs);
0076     Standard_Real du = (U1-U0)/(nnbs - 1);
0077 
0078     Pars->SetValue(1, U0);
0079     Pars->SetValue(nnbs, U1);
0080     Standard_Integer i;
0081     Standard_Real u;
0082     for(i = 2, u = U0+du; i < nnbs; ++i, u += du) {
0083       Pars->SetValue(i, u);
0084     }
0085     return;
0086   }
0087 
0088   const Handle(Geom_BSplineCurve)& aBC = C->BSpline();
0089 
0090   Standard_Integer i, j, k, nbi;
0091   Standard_Real t1, t2, dt;
0092   Standard_Integer ui1 = aBC->FirstUKnotIndex();
0093   Standard_Integer ui2 = aBC->LastUKnotIndex();
0094  
0095   for(i = ui1; i < ui2; ++i) {
0096     if(U0 >= aBC->Knot(i) && U0 < aBC->Knot(i+1)) {
0097       ui1 = i;
0098       break;
0099     }
0100   }
0101 
0102   for(i = ui2; i > ui1; --i) {
0103     if(U1 <= aBC->Knot(i) && U1 > aBC->Knot(i-1)) {
0104       ui2 = i;
0105       break;
0106     }
0107   }
0108 
0109   Standard_Integer nbsu = ui2-ui1+1; nbsu += (nbsu - 1) * (aBC->Degree()-1);
0110   Standard_Boolean bUniform = Standard_False;
0111   if(nbsu < NbMin) {
0112     nbsu = NbMin;
0113     bUniform = Standard_True;
0114   }
0115 
0116   TColStd_Array1OfReal aPars(1, nbsu);
0117   TColStd_Array1OfBoolean aFlg(1, nbsu);
0118   //Filling of sample parameters
0119   if(bUniform) {
0120     t1 = U0;
0121     t2 = U1;
0122     dt = (t2 - t1)/(nbsu - 1);
0123     aPars(1) = t1;
0124     aFlg(1) = Standard_False;
0125     aPars(nbsu) = t2;
0126     aFlg(nbsu) = Standard_False;
0127     for(i = 2, t1 += dt; i < nbsu; ++i, t1 += dt) {
0128       aPars(i) = t1;
0129       aFlg(i) = Standard_False;
0130     }
0131   }
0132   else {  
0133     nbi = aBC->Degree();
0134     k = 0;
0135     t1 = U0;
0136     for(i = ui1+1; i <= ui2; ++i) {
0137       if(i == ui2) t2 = U1;
0138       else t2 = aBC->Knot(i);
0139       dt = (t2 - t1)/nbi;
0140       j = 1;
0141       do { 
0142         ++k;
0143         aPars(k) = t1;
0144         aFlg(k) = Standard_False;
0145         t1 += dt;       
0146       }
0147       while (++j <= nbi);
0148       t1 = t2;
0149     }
0150     ++k;
0151     aPars(k) = t1;
0152   }
0153  //Analysis of deflection
0154 
0155 
0156   Standard_Real aDefl2 = Max(Defl*Defl, 1.e-9);
0157   Standard_Real tol = Max(0.01*aDefl2, 1.e-9);
0158   Standard_Integer l;
0159 
0160   Standard_Integer NbSamples = 2;
0161   aFlg(1) = Standard_True;
0162   aFlg(nbsu) = Standard_True;
0163   j = 1;
0164   Standard_Boolean bCont = Standard_True;
0165   while (j < nbsu-1 && bCont) {
0166     
0167     if(aFlg(j+1)) {
0168       ++j;
0169       continue;
0170     }
0171     
0172     t2 = aPars(j);
0173     gp_Pnt p1 = aBC->Value(t2);
0174     for(k = j+2; k <= nbsu; ++k) {
0175       t2 = aPars(k);
0176       gp_Pnt p2 = aBC->Value(t2);
0177 
0178       if(p1.SquareDistance(p2) <= tol) continue;
0179 
0180       gce_MakeLin MkLin(p1, p2);
0181       const gp_Lin& lin = MkLin.Value();
0182       Standard_Boolean ok = Standard_True;
0183       for(l = j+1; l < k; ++l) {
0184         
0185         if(aFlg(l)) {
0186           ok = Standard_False;
0187           break;
0188         }
0189         
0190         gp_Pnt pp =  aBC->Value(aPars(l));
0191         Standard_Real d = lin.SquareDistance(pp);
0192         
0193         if(d <= aDefl2) continue;
0194         
0195         ok = Standard_False;
0196         break;
0197       }
0198       
0199       if(!ok) {
0200         j = k - 1;
0201         aFlg(j) = Standard_True;
0202         ++NbSamples;
0203         break;
0204       }
0205       
0206       if(aFlg(k)) {
0207         j = k;
0208         break;
0209       }
0210       
0211       
0212     }
0213     
0214     if(k >= nbsu) bCont = Standard_False;
0215     
0216   }
0217 
0218   if(NbSamples < myMinPnts) {
0219     //uniform distribution 
0220     NbSamples = myMinPnts;
0221     Pars = new TColStd_HArray1OfReal(1, NbSamples);
0222     t1 = U0;
0223     t2 = U1;
0224     dt = (t2 - t1)/(NbSamples - 1);
0225     Pars->SetValue(1, t1);
0226     Pars->SetValue(NbSamples, t2);
0227     for(i = 2, t1 += dt; i < NbSamples; ++i, t1 += dt) {
0228       Pars->SetValue(i, t1);
0229     }
0230     return;
0231   }
0232 
0233   Pars = new TColStd_HArray1OfReal(1, NbSamples);
0234   j = 0;
0235   for(i = 1; i <= nbsu; ++i) {
0236     if(aFlg(i)) {
0237       ++j;
0238       Pars->SetValue(j,aPars(i));
0239     }
0240   }
0241 
0242   
0243 
0244 }