|
||||
File indexing completed on 2025-01-18 10:03:50
0001 // Created on: 1997-02-18 0002 // Created by: Stagiaire Francois DUMONT 0003 // Copyright (c) 1997-1999 Matra Datavision 0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS 0005 // 0006 // This file is part of Open CASCADE Technology software library. 0007 // 0008 // This library is free software; you can redistribute it and/or modify it under 0009 // the terms of the GNU Lesser General Public License version 2.1 as published 0010 // by the Free Software Foundation, with special exception defined in the file 0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT 0012 // distribution for complete text of the license and disclaimer of any warranty. 0013 // 0014 // Alternatively, this file may be used under the terms of Open CASCADE 0015 // commercial license or contractual agreement. 0016 0017 #ifndef _Hermit_HeaderFile 0018 #define _Hermit_HeaderFile 0019 0020 #include <Standard.hxx> 0021 #include <Standard_DefineAlloc.hxx> 0022 #include <Standard_Handle.hxx> 0023 0024 class Geom2d_BSplineCurve; 0025 class Geom_BSplineCurve; 0026 0027 0028 //! This is used to reparameterize Rational BSpline 0029 //! Curves so that we can concatenate them later to 0030 //! build C1 Curves It builds and 1D-reparameterizing 0031 //! function starting from an Hermite interpolation and 0032 //! adding knots and modifying poles of the 1D BSpline 0033 //! obtained that way. The goal is to build a(u) so that 0034 //! if we consider a BSpline curve 0035 //! N(u) 0036 //! f(u) = ----- 0037 //! D(u) 0038 //! 0039 //! the function a(u)D(u) has value 1 at the umin and umax 0040 //! and has 0.0e0 derivative value a umin and umax. 0041 //! The details of the computation occurring in this package 0042 //! can be found by reading : 0043 //! " Etude sur la concatenation de NURBS en vue du 0044 //! balayage de surfaces" PFE n S85 Ensam Lille 0045 class Hermit 0046 { 0047 public: 0048 0049 DEFINE_STANDARD_ALLOC 0050 0051 //! returns the correct spline a(u) which will 0052 //! be multiplicated with BS later. 0053 Standard_EXPORT static Handle(Geom2d_BSplineCurve) Solution (const Handle(Geom_BSplineCurve)& BS, const Standard_Real TolPoles = 0.000001, const Standard_Real TolKnots = 0.000001); 0054 0055 //! returns the correct spline a(u) which will 0056 //! be multiplicated with BS later. 0057 Standard_EXPORT static Handle(Geom2d_BSplineCurve) Solution (const Handle(Geom2d_BSplineCurve)& BS, const Standard_Real TolPoles = 0.000001, const Standard_Real TolKnots = 0.000001); 0058 0059 //! returns the knots to insert to a(u) to 0060 //! stay with a constant sign and in the 0061 //! tolerances. 0062 Standard_EXPORT static void Solutionbis (const Handle(Geom_BSplineCurve)& BS, Standard_Real& Knotmin, Standard_Real& Knotmax, const Standard_Real TolPoles = 0.000001, const Standard_Real TolKnots = 0.000001); 0063 0064 }; 0065 0066 #endif // _Hermit_HeaderFile
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |