Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 10:03:53

0001 // Created on: 1992-10-14
0002 // Created by: Christophe MARION
0003 // Copyright (c) 1992-1999 Matra Datavision
0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS
0005 //
0006 // This file is part of Open CASCADE Technology software library.
0007 //
0008 // This library is free software; you can redistribute it and/or modify it under
0009 // the terms of the GNU Lesser General Public License version 2.1 as published
0010 // by the Free Software Foundation, with special exception defined in the file
0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
0012 // distribution for complete text of the license and disclaimer of any warranty.
0013 //
0014 // Alternatively, this file may be used under the terms of Open CASCADE
0015 // commercial license or contractual agreement.
0016 
0017 #ifndef _HLRBRep_TheProjPCurOfCInter_HeaderFile
0018 #define _HLRBRep_TheProjPCurOfCInter_HeaderFile
0019 
0020 #include <Standard.hxx>
0021 #include <Standard_DefineAlloc.hxx>
0022 #include <Standard_Handle.hxx>
0023 
0024 #include <Standard_Real.hxx>
0025 class HLRBRep_CurveTool;
0026 class HLRBRep_TheCurveLocatorOfTheProjPCurOfCInter;
0027 class HLRBRep_TheLocateExtPCOfTheProjPCurOfCInter;
0028 class HLRBRep_PCLocFOfTheLocateExtPCOfTheProjPCurOfCInter;
0029 class gp_Pnt2d;
0030 
0031 class HLRBRep_TheProjPCurOfCInter 
0032 {
0033 public:
0034 
0035   DEFINE_STANDARD_ALLOC
0036 
0037   //! Returns the parameter V of the point on the
0038   //! parametric curve corresponding to the Point Pnt.
0039   //! The Correspondence between Pnt and the point P(V)
0040   //! on the parametric curve must be coherent with the
0041   //! way of determination of the signed distance
0042   //! between a point and the implicit curve.
0043   //! Tol is the tolerance on the distance between a point
0044   //! and the parametrised curve.
0045   //! In that case, no bounds are given. The research of
0046   //! the right parameter has to be made on the natural
0047   //! parametric domain of the curve.
0048   Standard_EXPORT static Standard_Real FindParameter (const Standard_Address& C, const gp_Pnt2d& Pnt, const Standard_Real Tol);
0049   
0050   //! Returns the parameter V of the point on the
0051   //! parametric curve corresponding to the Point Pnt.
0052   //! The Correspondence between Pnt and the point P(V)
0053   //! on the parametric curve must be coherent with the
0054   //! way of determination of the signed distance
0055   //! between a point and the implicit curve.
0056   //! Tol is the tolerance on the distance between a point
0057   //! and the parametrised curve.
0058   //! LowParameter and HighParameter give the
0059   //! boundaries of the interval in which the parameter
0060   //! certainly lies. These parameters are given to
0061   //! implement a more efficient algorithm. So, it is not
0062   //! necessary to check that the returned value verifies
0063   //! LowParameter <= Value <= HighParameter.
0064   Standard_EXPORT static Standard_Real FindParameter (const Standard_Address& C, const gp_Pnt2d& Pnt, const Standard_Real LowParameter, const Standard_Real HighParameter, const Standard_Real Tol);
0065 
0066 };
0067 
0068 #endif // _HLRBRep_TheProjPCurOfCInter_HeaderFile