Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 10:03:37

0001 // Created on: 1993-03-10
0002 // Created by: JCV
0003 // Copyright (c) 1993-1999 Matra Datavision
0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS
0005 //
0006 // This file is part of Open CASCADE Technology software library.
0007 //
0008 // This library is free software; you can redistribute it and/or modify it under
0009 // the terms of the GNU Lesser General Public License version 2.1 as published
0010 // by the Free Software Foundation, with special exception defined in the file
0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
0012 // distribution for complete text of the license and disclaimer of any warranty.
0013 //
0014 // Alternatively, this file may be used under the terms of Open CASCADE
0015 // commercial license or contractual agreement.
0016 
0017 #ifndef _Geom_Transformation_HeaderFile
0018 #define _Geom_Transformation_HeaderFile
0019 
0020 #include <gp_Trsf.hxx>
0021 #include <Standard.hxx>
0022 #include <Standard_Integer.hxx>
0023 #include <Standard_Real.hxx>
0024 #include <Standard_Type.hxx>
0025 #include <Standard_Transient.hxx>
0026 
0027 DEFINE_STANDARD_HANDLE(Geom_Transformation, Standard_Transient)
0028 
0029 //! Describes how to construct the following elementary transformations
0030 //! - translations,
0031 //! - rotations,
0032 //! - symmetries,
0033 //! - scales.
0034 //! The Transformation class can also be used to
0035 //! construct complex transformations by combining these
0036 //! elementary transformations.
0037 //! However, these transformations can never change
0038 //! the type of an object. For example, the projection
0039 //! transformation can change a circle into an ellipse, and
0040 //! therefore change the real type of the object. Such a
0041 //! transformation is forbidden in this environment and
0042 //! cannot be a Geom_Transformation.
0043 //! The transformation can be represented as follow :
0044 //!
0045 //! V1   V2   V3    T
0046 //! | a11  a12  a13   a14 |   | x |      | x'|
0047 //! | a21  a22  a23   a24 |   | y |      | y'|
0048 //! | a31  a32  a33   a34 |   | z |   =  | z'|
0049 //! |  0    0    0     1  |   | 1 |      | 1 |
0050 //!
0051 //! where {V1, V2, V3} defines the vectorial part of the
0052 //! transformation and T defines the translation part of
0053 //! the transformation.
0054 //! Note: Geom_Transformation transformations
0055 //! provide the same kind of "geometric" services as
0056 //! gp_Trsf ones but have more complex data structures.
0057 //! The geometric objects provided by the Geom
0058 //! package use gp_Trsf transformations in the syntaxes
0059 //! Transform and Transformed.
0060 //! Geom_Transformation transformations are used in
0061 //! a context where they can be shared by several
0062 //! objects contained inside a common data structure.
0063 class Geom_Transformation : public Standard_Transient
0064 {
0065   DEFINE_STANDARD_RTTIEXT(Geom_Transformation, Standard_Transient)
0066 public:
0067   
0068   //! Creates an identity transformation.
0069   Standard_EXPORT Geom_Transformation();
0070   
0071   //! Creates a transient copy of T.
0072   Standard_EXPORT Geom_Transformation(const gp_Trsf& T);
0073 
0074   //! Makes the transformation into a symmetrical transformation
0075   //! with respect to a point P.
0076   //! P is the center of the symmetry.
0077   void SetMirror (const gp_Pnt& thePnt) { gpTrsf.SetMirror (thePnt); }
0078 
0079   //! Makes the transformation into a symmetrical transformation
0080   //! with respect to an axis A1.
0081   //! A1 is the center of the axial symmetry.
0082   void SetMirror (const gp_Ax1& theA1) { gpTrsf.SetMirror (theA1); }
0083 
0084   //! Makes the transformation into a symmetrical transformation
0085   //! with respect to a plane.  The plane of the symmetry is
0086   //! defined with the axis placement A2. It is the plane
0087   //! (Location, XDirection, YDirection).
0088   void SetMirror (const gp_Ax2& theA2) { gpTrsf.SetMirror (theA2); }
0089 
0090   //! Makes the transformation into a rotation.
0091   //! A1 is the axis rotation and Ang is the angular value
0092   //! of the rotation in radians.
0093   void SetRotation (const gp_Ax1& theA1, const Standard_Real theAng) { gpTrsf.SetRotation (theA1, theAng); }
0094 
0095   //! Makes the transformation into a scale. P is the center of
0096   //! the scale and S is the scaling value.
0097   void SetScale (const gp_Pnt& thePnt, const Standard_Real theScale) { gpTrsf.SetScale (thePnt, theScale); }
0098 
0099   //! Makes a transformation allowing passage from the coordinate
0100   //! system "FromSystem1" to the coordinate system "ToSystem2".
0101   //! Example :
0102   //! In a C++ implementation :
0103   //! Real x1, y1, z1;  // are the coordinates of a point in the
0104   //! // local system FromSystem1
0105   //! Real x2, y2, z2;  // are the coordinates of a point in the
0106   //! // local system ToSystem2
0107   //! gp_Pnt P1 (x1, y1, z1)
0108   //! Geom_Transformation T;
0109   //! T.SetTransformation (FromSystem1, ToSystem2);
0110   //! gp_Pnt P2 = P1.Transformed (T);
0111   //! P2.Coord (x2, y2, z2);
0112   void SetTransformation (const gp_Ax3& theFromSystem1, const gp_Ax3& theToSystem2) { gpTrsf.SetTransformation (theFromSystem1, theToSystem2); }
0113 
0114   //! Makes the transformation allowing passage from the basic
0115   //! coordinate system
0116   //! {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) }
0117   //! to the local coordinate system defined with the Ax2 ToSystem.
0118   //! Same utilisation as the previous method. FromSystem1 is
0119   //! defaulted to the absolute coordinate system.
0120   void SetTransformation (const gp_Ax3& theToSystem) { gpTrsf.SetTransformation (theToSystem); }
0121 
0122   //! Makes the transformation into a translation.
0123   //! V is the vector of the translation.
0124   void SetTranslation (const gp_Vec& theVec) { gpTrsf.SetTranslation (theVec); }
0125 
0126   //! Makes the transformation into a translation from the point
0127   //! P1 to the point P2.
0128   void SetTranslation (const gp_Pnt& P1, const gp_Pnt& P2) { gpTrsf.SetTranslation (P1, P2); }
0129 
0130   //! Converts the gp_Trsf transformation T into this transformation.
0131   void SetTrsf (const gp_Trsf& theTrsf) { gpTrsf = theTrsf; }
0132   
0133   //! Checks whether this transformation is an indirect
0134   //! transformation: returns true if the determinant of the
0135   //! matrix of the vectorial part of the transformation is less than 0.
0136   Standard_Boolean IsNegative() const { return gpTrsf.IsNegative(); }
0137   
0138   //! Returns the nature of this transformation as a value
0139   //! of the gp_TrsfForm enumeration.
0140   gp_TrsfForm Form() const { return gpTrsf.Form(); }
0141 
0142   //! Returns the scale value of the transformation.
0143   Standard_Real ScaleFactor() const { return gpTrsf.ScaleFactor(); }
0144 
0145   //! Returns a non transient copy of <me>.
0146   const gp_Trsf& Trsf() const { return gpTrsf; }
0147 
0148   //! Returns the coefficients of the global matrix of transformation.
0149   //! It is a 3 rows X 4 columns matrix.
0150   //!
0151   //! Raised if  Row < 1 or Row > 3  or  Col < 1 or Col > 4
0152   Standard_Real Value (const Standard_Integer theRow, const Standard_Integer theCol) const { return gpTrsf.Value (theRow, theCol); }
0153 
0154   //! Raised if the transformation is singular. This means that
0155   //! the ScaleFactor is lower or equal to Resolution from
0156   //! package gp.
0157   void Invert() { gpTrsf.Invert(); }
0158 
0159   //! Raised if the transformation is singular. This means that
0160   //! the ScaleFactor is lower or equal to Resolution from
0161   //! package gp.
0162   Standard_NODISCARD Standard_EXPORT Handle(Geom_Transformation) Inverted() const;
0163 
0164   //! Computes the transformation composed with Other and <me>.
0165   //! <me> * Other.
0166   //! Returns a new transformation
0167   Standard_NODISCARD Standard_EXPORT Handle(Geom_Transformation) Multiplied (const Handle(Geom_Transformation)& Other) const;
0168 
0169   //! Computes the transformation composed with Other and <me> .
0170   //! <me> = <me> * Other.
0171   void Multiply (const Handle(Geom_Transformation)& theOther) { gpTrsf.Multiply (theOther->Trsf()); }
0172 
0173   //! Computes the following composition of transformations
0174   //! if N > 0  <me> * <me> * .......* <me>.
0175   //! if N = 0  Identity
0176   //! if N < 0  <me>.Invert() * .........* <me>.Invert()
0177   //!
0178   //! Raised if N < 0 and if the transformation is not inversible
0179   void Power (const Standard_Integer N) { gpTrsf.Power (N); }
0180 
0181   //! Raised if N < 0 and if the transformation is not inversible
0182   Standard_EXPORT Handle(Geom_Transformation) Powered (const Standard_Integer N) const;
0183 
0184   //! Computes the matrix of the transformation composed with
0185   //! <me> and Other.     <me> = Other * <me>
0186   Standard_EXPORT void PreMultiply (const Handle(Geom_Transformation)& Other);
0187 
0188   //! Applies the transformation <me> to the triplet {X, Y, Z}.
0189   void Transforms (Standard_Real& theX, Standard_Real& theY, Standard_Real& theZ) const { gpTrsf.Transforms (theX, theY, theZ); }
0190   
0191   //! Creates a new object which is a copy of this transformation.
0192   Standard_EXPORT Handle(Geom_Transformation) Copy() const;
0193 
0194   //! Dumps the content of me into the stream
0195   Standard_EXPORT virtual void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const;
0196 
0197 private:
0198 
0199   gp_Trsf gpTrsf;
0200 
0201 };
0202 
0203 #endif // _Geom_Transformation_HeaderFile