|
||||
File indexing completed on 2025-01-18 10:03:37
0001 // Created on: 1993-03-10 0002 // Created by: JCV 0003 // Copyright (c) 1993-1999 Matra Datavision 0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS 0005 // 0006 // This file is part of Open CASCADE Technology software library. 0007 // 0008 // This library is free software; you can redistribute it and/or modify it under 0009 // the terms of the GNU Lesser General Public License version 2.1 as published 0010 // by the Free Software Foundation, with special exception defined in the file 0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT 0012 // distribution for complete text of the license and disclaimer of any warranty. 0013 // 0014 // Alternatively, this file may be used under the terms of Open CASCADE 0015 // commercial license or contractual agreement. 0016 0017 #ifndef _Geom_ToroidalSurface_HeaderFile 0018 #define _Geom_ToroidalSurface_HeaderFile 0019 0020 #include <Standard.hxx> 0021 #include <Standard_Type.hxx> 0022 0023 #include <Geom_ElementarySurface.hxx> 0024 #include <TColStd_Array1OfReal.hxx> 0025 #include <Standard_Integer.hxx> 0026 class gp_Ax3; 0027 class gp_Torus; 0028 class Geom_Curve; 0029 class gp_Pnt; 0030 class gp_Vec; 0031 class gp_Trsf; 0032 class Geom_Geometry; 0033 0034 0035 class Geom_ToroidalSurface; 0036 DEFINE_STANDARD_HANDLE(Geom_ToroidalSurface, Geom_ElementarySurface) 0037 0038 //! Describes a torus. 0039 //! A torus is defined by its major and minor radii, and 0040 //! positioned in space with a coordinate system (a 0041 //! gp_Ax3 object) as follows: 0042 //! - The origin is the center of the torus. 0043 //! - The surface is obtained by rotating a circle around 0044 //! the "main Direction". This circle has a radius equal 0045 //! to the minor radius, and is located in the plane 0046 //! defined by the origin, "X Direction" and "main 0047 //! Direction". It is centered on the "X Axis", on its 0048 //! positive side, and positioned at a distance from the 0049 //! origin equal to the major radius. This circle is the 0050 //! "reference circle" of the torus. 0051 //! - The plane defined by the origin, the "X Direction" 0052 //! and the "Y Direction" is called the "reference plane" of the torus. 0053 //! This coordinate system is the "local coordinate 0054 //! system" of the torus. The following apply: 0055 //! - Rotation around its "main Axis", in the trigonometric 0056 //! sense given by "X Direction" and "Y Direction", 0057 //! defines the u parametric direction. 0058 //! - The "X Axis" gives the origin for the u parameter. 0059 //! - Rotation around an axis parallel to the "Y Axis" and 0060 //! passing through the center of the "reference circle" 0061 //! gives the v parameter on the "reference circle". 0062 //! - The "X Axis" gives the origin of the v parameter on 0063 //! the "reference circle". 0064 //! - The v parametric direction is oriented by the 0065 //! inverse of the "main Direction", i.e. near 0, as v 0066 //! increases, the Z coordinate decreases. (This 0067 //! implies that the "Y Direction" orients the reference 0068 //! circle only when the local coordinate system is direct.) 0069 //! - The u isoparametric curve is a circle obtained by 0070 //! rotating the "reference circle" of the torus through 0071 //! an angle u about the "main Axis". 0072 //! The parametric equation of the torus is : 0073 //! P(u, v) = O + (R + r*cos(v)) * (cos(u)*XDir + 0074 //! sin(u)*YDir ) + r*sin(v)*ZDir, where: 0075 //! - O, XDir, YDir and ZDir are respectively the 0076 //! origin, the "X Direction", the "Y Direction" and the "Z 0077 //! Direction" of the local coordinate system, 0078 //! - r and R are, respectively, the minor and major radius. 0079 //! The parametric range of the two parameters is: 0080 //! - [ 0, 2.*Pi ] for u 0081 //! - [ 0, 2.*Pi ] for v 0082 class Geom_ToroidalSurface : public Geom_ElementarySurface 0083 { 0084 0085 public: 0086 0087 0088 0089 //! A3 is the local coordinate system of the surface. 0090 //! The orientation of increasing V parametric value is defined 0091 //! by the rotation around the main axis (ZAxis) in the 0092 //! trigonometric sense. The parametrization of the surface in the 0093 //! U direction is defined such as the normal Vector (N = D1U ^ D1V) 0094 //! is oriented towards the "outside region" of the surface. 0095 //! Warnings : 0096 //! It is not forbidden to create a toroidal surface with 0097 //! MajorRadius = MinorRadius = 0.0 0098 //! 0099 //! Raised if MinorRadius < 0.0 or if MajorRadius < 0.0 0100 Standard_EXPORT Geom_ToroidalSurface(const gp_Ax3& A3, const Standard_Real MajorRadius, const Standard_Real MinorRadius); 0101 0102 0103 //! Creates a ToroidalSurface from a non transient Torus from 0104 //! package gp. 0105 Standard_EXPORT Geom_ToroidalSurface(const gp_Torus& T); 0106 0107 //! Modifies this torus by changing its major radius. 0108 //! Exceptions 0109 //! Standard_ConstructionError if: 0110 //! - MajorRadius is negative, or 0111 //! - MajorRadius - r is less than or equal to 0112 //! gp::Resolution(), where r is the minor radius of this torus. 0113 Standard_EXPORT void SetMajorRadius (const Standard_Real MajorRadius); 0114 0115 //! Modifies this torus by changing its minor radius. 0116 //! Exceptions 0117 //! Standard_ConstructionError if: 0118 //! - MinorRadius is negative, or 0119 //! - R - MinorRadius is less than or equal to 0120 //! gp::Resolution(), where R is the major radius of this torus. 0121 Standard_EXPORT void SetMinorRadius (const Standard_Real MinorRadius); 0122 0123 //! Converts the gp_Torus torus T into this torus. 0124 Standard_EXPORT void SetTorus (const gp_Torus& T); 0125 0126 0127 //! Returns the non transient torus with the same geometric 0128 //! properties as <me>. 0129 Standard_EXPORT gp_Torus Torus() const; 0130 0131 //! Return the parameter on the Ureversed surface for 0132 //! the point of parameter U on <me>. 0133 //! Return 2.PI - U. 0134 Standard_EXPORT Standard_Real UReversedParameter (const Standard_Real U) const Standard_OVERRIDE; 0135 0136 //! Return the parameter on the Ureversed surface for 0137 //! the point of parameter U on <me>. 0138 //! Return 2.PI - U. 0139 Standard_EXPORT Standard_Real VReversedParameter (const Standard_Real U) const Standard_OVERRIDE; 0140 0141 //! Computes the aera of the surface. 0142 Standard_EXPORT Standard_Real Area() const; 0143 0144 //! Returns the parametric bounds U1, U2, V1 and V2 of this torus. 0145 //! For a torus: U1 = V1 = 0 and U2 = V2 = 2*PI . 0146 Standard_EXPORT void Bounds (Standard_Real& U1, Standard_Real& U2, Standard_Real& V1, Standard_Real& V2) const Standard_OVERRIDE; 0147 0148 0149 //! Returns the coefficients of the implicit equation of the surface 0150 //! in the absolute cartesian coordinate system : 0151 //! Coef(1) * X**4 + Coef(2) * Y**4 + Coef(3) * Z**4 + 0152 //! Coef(4) * X**3 * Y + Coef(5) * X**3 * Z + Coef(6) * Y**3 * X + 0153 //! Coef(7) * Y**3 * Z + Coef(8) * Z**3 * X + Coef(9) * Z**3 * Y + 0154 //! Coef(10) * X**2 * Y**2 + Coef(11) * X**2 * Z**2 + 0155 //! Coef(12) * Y**2 * Z**2 + Coef(13) * X**3 + Coef(14) * Y**3 + 0156 //! Coef(15) * Z**3 + Coef(16) * X**2 * Y + Coef(17) * X**2 * Z + 0157 //! Coef(18) * Y**2 * X + Coef(19) * Y**2 * Z + Coef(20) * Z**2 * X + 0158 //! Coef(21) * Z**2 * Y + Coef(22) * X**2 + Coef(23) * Y**2 + 0159 //! Coef(24) * Z**2 + Coef(25) * X * Y + Coef(26) * X * Z + 0160 //! Coef(27) * Y * Z + Coef(28) * X + Coef(29) * Y + Coef(30) * Z + 0161 //! Coef(31) = 0.0 0162 //! Raised if the length of Coef is lower than 31. 0163 Standard_EXPORT void Coefficients (TColStd_Array1OfReal& Coef) const; 0164 0165 //! Returns the major radius, or the minor radius, of this torus. 0166 Standard_EXPORT Standard_Real MajorRadius() const; 0167 0168 //! Returns the major radius, or the minor radius, of this torus. 0169 Standard_EXPORT Standard_Real MinorRadius() const; 0170 0171 //! Computes the volume. 0172 Standard_EXPORT Standard_Real Volume() const; 0173 0174 //! Returns True. 0175 Standard_EXPORT Standard_Boolean IsUClosed() const Standard_OVERRIDE; 0176 0177 //! Returns True. 0178 Standard_EXPORT Standard_Boolean IsVClosed() const Standard_OVERRIDE; 0179 0180 //! Returns True. 0181 Standard_EXPORT Standard_Boolean IsUPeriodic() const Standard_OVERRIDE; 0182 0183 //! Returns True. 0184 Standard_EXPORT Standard_Boolean IsVPeriodic() const Standard_OVERRIDE; 0185 0186 //! Computes the U isoparametric curve. 0187 //! 0188 //! For a toroidal surface the UIso curve is a circle. 0189 //! The center of the Uiso circle is at the distance MajorRadius 0190 //! from the location point of the toroidal surface. 0191 //! Warnings : 0192 //! The radius of the circle can be zero if for the surface 0193 //! MinorRadius = 0.0 0194 Standard_EXPORT Handle(Geom_Curve) UIso (const Standard_Real U) const Standard_OVERRIDE; 0195 0196 //! Computes the V isoparametric curve. 0197 //! 0198 //! For a ToroidalSurface the VIso curve is a circle. 0199 //! The axis of the circle is the main axis (ZAxis) of the 0200 //! toroidal surface. 0201 //! Warnings : 0202 //! The radius of the circle can be zero if for the surface 0203 //! MajorRadius = MinorRadius 0204 Standard_EXPORT Handle(Geom_Curve) VIso (const Standard_Real V) const Standard_OVERRIDE; 0205 0206 0207 //! Computes the point P (U, V) on the surface. 0208 //! P (U, V) = Loc + MinorRadius * Sin (V) * Zdir + 0209 //! (MajorRadius + MinorRadius * Cos(V)) * 0210 //! (cos (U) * XDir + sin (U) * YDir) 0211 //! where Loc is the origin of the placement plane (XAxis, YAxis) 0212 //! XDir is the direction of the XAxis and YDir the direction of 0213 //! the YAxis and ZDir the direction of the ZAxis. 0214 Standard_EXPORT void D0 (const Standard_Real U, const Standard_Real V, gp_Pnt& P) const Standard_OVERRIDE; 0215 0216 0217 //! Computes the current point and the first derivatives in 0218 //! the directions U and V. 0219 Standard_EXPORT void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V) const Standard_OVERRIDE; 0220 0221 0222 //! Computes the current point, the first and the second derivatives 0223 //! in the directions U and V. 0224 Standard_EXPORT void D2 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV) const Standard_OVERRIDE; 0225 0226 0227 //! Computes the current point, the first,the second and the 0228 //! third derivatives in the directions U and V. 0229 Standard_EXPORT void D3 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV, gp_Vec& D3U, gp_Vec& D3V, gp_Vec& D3UUV, gp_Vec& D3UVV) const Standard_OVERRIDE; 0230 0231 0232 //! Computes the derivative of order Nu in the direction u and 0233 //! Nv in the direction v. 0234 //! Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0. 0235 Standard_EXPORT gp_Vec DN (const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv) const Standard_OVERRIDE; 0236 0237 //! Applies the transformation T to this torus. 0238 Standard_EXPORT void Transform (const gp_Trsf& T) Standard_OVERRIDE; 0239 0240 //! Creates a new object which is a copy of this torus. 0241 Standard_EXPORT Handle(Geom_Geometry) Copy() const Standard_OVERRIDE; 0242 0243 //! Dumps the content of me into the stream 0244 Standard_EXPORT virtual void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const Standard_OVERRIDE; 0245 0246 0247 0248 0249 DEFINE_STANDARD_RTTIEXT(Geom_ToroidalSurface,Geom_ElementarySurface) 0250 0251 protected: 0252 0253 0254 0255 0256 private: 0257 0258 0259 Standard_Real majorRadius; 0260 Standard_Real minorRadius; 0261 0262 0263 }; 0264 0265 0266 0267 0268 0269 0270 0271 #endif // _Geom_ToroidalSurface_HeaderFile
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |