Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 10:03:37

0001 // Created on: 1993-03-10
0002 // Created by: JCV
0003 // Copyright (c) 1993-1999 Matra Datavision
0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS
0005 //
0006 // This file is part of Open CASCADE Technology software library.
0007 //
0008 // This library is free software; you can redistribute it and/or modify it under
0009 // the terms of the GNU Lesser General Public License version 2.1 as published
0010 // by the Free Software Foundation, with special exception defined in the file
0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
0012 // distribution for complete text of the license and disclaimer of any warranty.
0013 //
0014 // Alternatively, this file may be used under the terms of Open CASCADE
0015 // commercial license or contractual agreement.
0016 
0017 #ifndef _Geom_SphericalSurface_HeaderFile
0018 #define _Geom_SphericalSurface_HeaderFile
0019 
0020 #include <Standard.hxx>
0021 #include <Standard_Type.hxx>
0022 
0023 #include <Geom_ElementarySurface.hxx>
0024 #include <Standard_Integer.hxx>
0025 class gp_Ax3;
0026 class gp_Sphere;
0027 class Geom_Curve;
0028 class gp_Pnt;
0029 class gp_Vec;
0030 class gp_Trsf;
0031 class Geom_Geometry;
0032 
0033 
0034 class Geom_SphericalSurface;
0035 DEFINE_STANDARD_HANDLE(Geom_SphericalSurface, Geom_ElementarySurface)
0036 
0037 //! Describes a sphere.
0038 //! A sphere is defined by its radius, and is positioned in
0039 //! space by a coordinate system (a gp_Ax3 object), the
0040 //! origin of which is the center of the sphere.
0041 //! This coordinate system is the "local coordinate
0042 //! system" of the sphere. The following apply:
0043 //! - Rotation around its "main Axis", in the trigonometric
0044 //! sense given by the "X Direction" and the "Y
0045 //! Direction", defines the u parametric direction.
0046 //! - Its "X Axis" gives the origin for the u parameter.
0047 //! - The "reference meridian" of the sphere is a
0048 //! half-circle, of radius equal to the radius of the
0049 //! sphere. It is located in the plane defined by the
0050 //! origin, "X Direction" and "main Direction", centered
0051 //! on the origin, and positioned on the positive side of the "X Axis".
0052 //! - Rotation around the "Y Axis" gives the v parameter
0053 //! on the reference meridian.
0054 //! - The "X Axis" gives the origin of the v parameter on
0055 //! the reference meridian.
0056 //! - The v parametric direction is oriented by the "main
0057 //! Direction", i.e. when v increases, the Z coordinate
0058 //! increases. (This implies that the "Y Direction"
0059 //! orients the reference meridian only when the local
0060 //! coordinate system is indirect.)
0061 //! - The u isoparametric curve is a half-circle obtained
0062 //! by rotating the reference meridian of the sphere
0063 //! through an angle u around the "main Axis", in the
0064 //! trigonometric sense defined by the "X Direction"
0065 //! and the "Y Direction".
0066 //! The parametric equation of the sphere is:
0067 //! P(u,v) = O + R*cos(v)*(cos(u)*XDir + sin(u)*YDir)+R*sin(v)*ZDir
0068 //! where:
0069 //! - O, XDir, YDir and ZDir are respectively the
0070 //! origin, the "X Direction", the "Y Direction" and the "Z
0071 //! Direction" of its local coordinate system, and
0072 //! - R is the radius of the sphere.
0073 //! The parametric range of the two parameters is:
0074 //! - [ 0, 2.*Pi ] for u, and
0075 //! - [ - Pi/2., + Pi/2. ] for v.
0076 class Geom_SphericalSurface : public Geom_ElementarySurface
0077 {
0078 
0079 public:
0080 
0081   
0082 
0083   //! A3 is the local coordinate system of the surface.
0084   //! At the creation the parametrization of the surface is defined
0085   //! such as the normal Vector (N = D1U ^ D1V) is directed away from
0086   //! the center of the sphere.
0087   //! The direction of increasing parametric value V is defined by the
0088   //! rotation around the "YDirection" of A2 in the trigonometric sense
0089   //! and the orientation of increasing parametric value U is defined
0090   //! by the rotation around the main direction of A2 in the
0091   //! trigonometric sense.
0092   //! Warnings :
0093   //! It is not forbidden to create a spherical surface with
0094   //! Radius = 0.0
0095   //! Raised if Radius < 0.0.
0096   Standard_EXPORT Geom_SphericalSurface(const gp_Ax3& A3, const Standard_Real Radius);
0097   
0098 
0099   //! Creates a SphericalSurface from a non persistent Sphere from
0100   //! package gp.
0101   Standard_EXPORT Geom_SphericalSurface(const gp_Sphere& S);
0102   
0103   //! Assigns the value R to the radius of this sphere.
0104   //! Exceptions Standard_ConstructionError if R is less than 0.0.
0105   Standard_EXPORT void SetRadius (const Standard_Real R);
0106   
0107   //! Converts the gp_Sphere S into this sphere.
0108   Standard_EXPORT void SetSphere (const gp_Sphere& S);
0109   
0110   //! Returns a non persistent sphere with the same geometric
0111   //! properties as <me>.
0112   Standard_EXPORT gp_Sphere Sphere() const;
0113   
0114   //! Computes the u parameter on the modified
0115   //! surface, when reversing its u  parametric
0116   //! direction, for any point of u parameter U on this sphere.
0117   //! In the case of a sphere, these functions returns 2.PI - U.
0118   Standard_EXPORT Standard_Real UReversedParameter (const Standard_Real U) const Standard_OVERRIDE;
0119   
0120   //! Computes the v parameter on the modified
0121   //! surface, when reversing its v parametric
0122   //! direction, for any point of v parameter V on this sphere.
0123   //! In the case of a sphere, these functions returns   -U.
0124   Standard_EXPORT Standard_Real VReversedParameter (const Standard_Real V) const Standard_OVERRIDE;
0125   
0126   //! Computes the aera of the spherical surface.
0127   Standard_EXPORT Standard_Real Area() const;
0128   
0129   //! Returns the parametric bounds U1, U2, V1 and V2 of this sphere.
0130   //! For a sphere: U1 = 0, U2 = 2*PI, V1 = -PI/2, V2 = PI/2.
0131   Standard_EXPORT void Bounds (Standard_Real& U1, Standard_Real& U2, Standard_Real& V1, Standard_Real& V2) const Standard_OVERRIDE;
0132   
0133   //! Returns the coefficients of the implicit equation of the
0134   //! quadric in the absolute cartesian coordinates system :
0135   //! These coefficients are normalized.
0136   //! A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) +
0137   //! 2.(C1.X + C2.Y + C3.Z) + D = 0.0
0138   Standard_EXPORT void Coefficients (Standard_Real& A1, Standard_Real& A2, Standard_Real& A3, Standard_Real& B1, Standard_Real& B2, Standard_Real& B3, Standard_Real& C1, Standard_Real& C2, Standard_Real& C3, Standard_Real& D) const;
0139   
0140   //! Computes the coefficients of the implicit equation of
0141   //! this quadric in the absolute Cartesian coordinate system:
0142   //! A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) +
0143   //! 2.(C1.X + C2.Y + C3.Z) + D = 0.0
0144   //! An implicit normalization is applied (i.e. A1 = A2 = 1.
0145   //! in the local coordinate system of this sphere).
0146   Standard_EXPORT Standard_Real Radius() const;
0147   
0148   //! Computes the volume of the spherical surface.
0149   Standard_EXPORT Standard_Real Volume() const;
0150   
0151   //! Returns True.
0152   Standard_EXPORT Standard_Boolean IsUClosed() const Standard_OVERRIDE;
0153   
0154   //! Returns False.
0155   Standard_EXPORT Standard_Boolean IsVClosed() const Standard_OVERRIDE;
0156   
0157   //! Returns True.
0158   Standard_EXPORT Standard_Boolean IsUPeriodic() const Standard_OVERRIDE;
0159   
0160   //! Returns False.
0161   Standard_EXPORT Standard_Boolean IsVPeriodic() const Standard_OVERRIDE;
0162   
0163   //! Computes the U isoparametric curve.
0164   //! The U isoparametric curves of the surface are defined by the
0165   //! section of the spherical surface with plane obtained by rotation
0166   //! of the plane (Location, XAxis, ZAxis) around ZAxis. This plane
0167   //! defines the origin of parametrization u.
0168   //! For a SphericalSurface the UIso curve is a Circle.
0169   //! Warnings : The radius of this circle can be zero.
0170   Standard_EXPORT Handle(Geom_Curve) UIso (const Standard_Real U) const Standard_OVERRIDE;
0171   
0172   //! Computes the V isoparametric curve.
0173   //! The V isoparametric curves of the surface  are defined by
0174   //! the section of the spherical surface with plane parallel to the
0175   //! plane (Location, XAxis, YAxis). This plane defines the origin of
0176   //! parametrization V.
0177   //! Be careful if  V is close to PI/2 or 3*PI/2 the radius of the
0178   //! circle becomes tiny. It is not forbidden in this toolkit to
0179   //! create circle with radius = 0.0
0180   //! For a SphericalSurface the VIso curve is a Circle.
0181   //! Warnings : The radius of this circle can be zero.
0182   Standard_EXPORT Handle(Geom_Curve) VIso (const Standard_Real V) const Standard_OVERRIDE;
0183   
0184 
0185   //! Computes the  point P (U, V) on the surface.
0186   //! P (U, V) = Loc + Radius * Sin (V) * Zdir +
0187   //! Radius * Cos (V) * (cos (U) * XDir + sin (U) * YDir)
0188   //! where Loc is the origin of the placement plane (XAxis, YAxis)
0189   //! XDir is the direction of the XAxis and YDir the direction of
0190   //! the YAxis and ZDir the direction of the ZAxis.
0191   Standard_EXPORT void D0 (const Standard_Real U, const Standard_Real V, gp_Pnt& P) const Standard_OVERRIDE;
0192   
0193 
0194   //! Computes the current point and the first derivatives in the
0195   //! directions U and V.
0196   Standard_EXPORT void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V) const Standard_OVERRIDE;
0197   
0198 
0199   //! Computes the current point, the first and the second derivatives
0200   //! in the directions U and V.
0201   Standard_EXPORT void D2 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV) const Standard_OVERRIDE;
0202   
0203 
0204   //! Computes the current point, the first,the second and the third
0205   //! derivatives in the directions U and V.
0206   Standard_EXPORT void D3 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV, gp_Vec& D3U, gp_Vec& D3V, gp_Vec& D3UUV, gp_Vec& D3UVV) const Standard_OVERRIDE;
0207   
0208 
0209   //! Computes the derivative of order Nu in the direction u
0210   //! and Nv in the direction v.
0211   //! Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
0212   Standard_EXPORT gp_Vec DN (const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv) const Standard_OVERRIDE;
0213   
0214   //! Applies the transformation T to this sphere.
0215   Standard_EXPORT void Transform (const gp_Trsf& T) Standard_OVERRIDE;
0216   
0217   //! Creates a new object which is a copy of this sphere.
0218   Standard_EXPORT Handle(Geom_Geometry) Copy() const Standard_OVERRIDE;
0219 
0220   //! Dumps the content of me into the stream
0221   Standard_EXPORT virtual void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const Standard_OVERRIDE;
0222 
0223 
0224 
0225 
0226   DEFINE_STANDARD_RTTIEXT(Geom_SphericalSurface,Geom_ElementarySurface)
0227 
0228 protected:
0229 
0230 
0231 
0232 
0233 private:
0234 
0235 
0236   Standard_Real radius;
0237 
0238 
0239 };
0240 
0241 
0242 
0243 
0244 
0245 
0246 
0247 #endif // _Geom_SphericalSurface_HeaderFile