|
||||
File indexing completed on 2025-01-18 10:03:37
0001 // Created on: 1993-03-10 0002 // Created by: JCV 0003 // Copyright (c) 1993-1999 Matra Datavision 0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS 0005 // 0006 // This file is part of Open CASCADE Technology software library. 0007 // 0008 // This library is free software; you can redistribute it and/or modify it under 0009 // the terms of the GNU Lesser General Public License version 2.1 as published 0010 // by the Free Software Foundation, with special exception defined in the file 0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT 0012 // distribution for complete text of the license and disclaimer of any warranty. 0013 // 0014 // Alternatively, this file may be used under the terms of Open CASCADE 0015 // commercial license or contractual agreement. 0016 0017 #ifndef _Geom_SphericalSurface_HeaderFile 0018 #define _Geom_SphericalSurface_HeaderFile 0019 0020 #include <Standard.hxx> 0021 #include <Standard_Type.hxx> 0022 0023 #include <Geom_ElementarySurface.hxx> 0024 #include <Standard_Integer.hxx> 0025 class gp_Ax3; 0026 class gp_Sphere; 0027 class Geom_Curve; 0028 class gp_Pnt; 0029 class gp_Vec; 0030 class gp_Trsf; 0031 class Geom_Geometry; 0032 0033 0034 class Geom_SphericalSurface; 0035 DEFINE_STANDARD_HANDLE(Geom_SphericalSurface, Geom_ElementarySurface) 0036 0037 //! Describes a sphere. 0038 //! A sphere is defined by its radius, and is positioned in 0039 //! space by a coordinate system (a gp_Ax3 object), the 0040 //! origin of which is the center of the sphere. 0041 //! This coordinate system is the "local coordinate 0042 //! system" of the sphere. The following apply: 0043 //! - Rotation around its "main Axis", in the trigonometric 0044 //! sense given by the "X Direction" and the "Y 0045 //! Direction", defines the u parametric direction. 0046 //! - Its "X Axis" gives the origin for the u parameter. 0047 //! - The "reference meridian" of the sphere is a 0048 //! half-circle, of radius equal to the radius of the 0049 //! sphere. It is located in the plane defined by the 0050 //! origin, "X Direction" and "main Direction", centered 0051 //! on the origin, and positioned on the positive side of the "X Axis". 0052 //! - Rotation around the "Y Axis" gives the v parameter 0053 //! on the reference meridian. 0054 //! - The "X Axis" gives the origin of the v parameter on 0055 //! the reference meridian. 0056 //! - The v parametric direction is oriented by the "main 0057 //! Direction", i.e. when v increases, the Z coordinate 0058 //! increases. (This implies that the "Y Direction" 0059 //! orients the reference meridian only when the local 0060 //! coordinate system is indirect.) 0061 //! - The u isoparametric curve is a half-circle obtained 0062 //! by rotating the reference meridian of the sphere 0063 //! through an angle u around the "main Axis", in the 0064 //! trigonometric sense defined by the "X Direction" 0065 //! and the "Y Direction". 0066 //! The parametric equation of the sphere is: 0067 //! P(u,v) = O + R*cos(v)*(cos(u)*XDir + sin(u)*YDir)+R*sin(v)*ZDir 0068 //! where: 0069 //! - O, XDir, YDir and ZDir are respectively the 0070 //! origin, the "X Direction", the "Y Direction" and the "Z 0071 //! Direction" of its local coordinate system, and 0072 //! - R is the radius of the sphere. 0073 //! The parametric range of the two parameters is: 0074 //! - [ 0, 2.*Pi ] for u, and 0075 //! - [ - Pi/2., + Pi/2. ] for v. 0076 class Geom_SphericalSurface : public Geom_ElementarySurface 0077 { 0078 0079 public: 0080 0081 0082 0083 //! A3 is the local coordinate system of the surface. 0084 //! At the creation the parametrization of the surface is defined 0085 //! such as the normal Vector (N = D1U ^ D1V) is directed away from 0086 //! the center of the sphere. 0087 //! The direction of increasing parametric value V is defined by the 0088 //! rotation around the "YDirection" of A2 in the trigonometric sense 0089 //! and the orientation of increasing parametric value U is defined 0090 //! by the rotation around the main direction of A2 in the 0091 //! trigonometric sense. 0092 //! Warnings : 0093 //! It is not forbidden to create a spherical surface with 0094 //! Radius = 0.0 0095 //! Raised if Radius < 0.0. 0096 Standard_EXPORT Geom_SphericalSurface(const gp_Ax3& A3, const Standard_Real Radius); 0097 0098 0099 //! Creates a SphericalSurface from a non persistent Sphere from 0100 //! package gp. 0101 Standard_EXPORT Geom_SphericalSurface(const gp_Sphere& S); 0102 0103 //! Assigns the value R to the radius of this sphere. 0104 //! Exceptions Standard_ConstructionError if R is less than 0.0. 0105 Standard_EXPORT void SetRadius (const Standard_Real R); 0106 0107 //! Converts the gp_Sphere S into this sphere. 0108 Standard_EXPORT void SetSphere (const gp_Sphere& S); 0109 0110 //! Returns a non persistent sphere with the same geometric 0111 //! properties as <me>. 0112 Standard_EXPORT gp_Sphere Sphere() const; 0113 0114 //! Computes the u parameter on the modified 0115 //! surface, when reversing its u parametric 0116 //! direction, for any point of u parameter U on this sphere. 0117 //! In the case of a sphere, these functions returns 2.PI - U. 0118 Standard_EXPORT Standard_Real UReversedParameter (const Standard_Real U) const Standard_OVERRIDE; 0119 0120 //! Computes the v parameter on the modified 0121 //! surface, when reversing its v parametric 0122 //! direction, for any point of v parameter V on this sphere. 0123 //! In the case of a sphere, these functions returns -U. 0124 Standard_EXPORT Standard_Real VReversedParameter (const Standard_Real V) const Standard_OVERRIDE; 0125 0126 //! Computes the aera of the spherical surface. 0127 Standard_EXPORT Standard_Real Area() const; 0128 0129 //! Returns the parametric bounds U1, U2, V1 and V2 of this sphere. 0130 //! For a sphere: U1 = 0, U2 = 2*PI, V1 = -PI/2, V2 = PI/2. 0131 Standard_EXPORT void Bounds (Standard_Real& U1, Standard_Real& U2, Standard_Real& V1, Standard_Real& V2) const Standard_OVERRIDE; 0132 0133 //! Returns the coefficients of the implicit equation of the 0134 //! quadric in the absolute cartesian coordinates system : 0135 //! These coefficients are normalized. 0136 //! A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 0137 //! 2.(C1.X + C2.Y + C3.Z) + D = 0.0 0138 Standard_EXPORT void Coefficients (Standard_Real& A1, Standard_Real& A2, Standard_Real& A3, Standard_Real& B1, Standard_Real& B2, Standard_Real& B3, Standard_Real& C1, Standard_Real& C2, Standard_Real& C3, Standard_Real& D) const; 0139 0140 //! Computes the coefficients of the implicit equation of 0141 //! this quadric in the absolute Cartesian coordinate system: 0142 //! A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 0143 //! 2.(C1.X + C2.Y + C3.Z) + D = 0.0 0144 //! An implicit normalization is applied (i.e. A1 = A2 = 1. 0145 //! in the local coordinate system of this sphere). 0146 Standard_EXPORT Standard_Real Radius() const; 0147 0148 //! Computes the volume of the spherical surface. 0149 Standard_EXPORT Standard_Real Volume() const; 0150 0151 //! Returns True. 0152 Standard_EXPORT Standard_Boolean IsUClosed() const Standard_OVERRIDE; 0153 0154 //! Returns False. 0155 Standard_EXPORT Standard_Boolean IsVClosed() const Standard_OVERRIDE; 0156 0157 //! Returns True. 0158 Standard_EXPORT Standard_Boolean IsUPeriodic() const Standard_OVERRIDE; 0159 0160 //! Returns False. 0161 Standard_EXPORT Standard_Boolean IsVPeriodic() const Standard_OVERRIDE; 0162 0163 //! Computes the U isoparametric curve. 0164 //! The U isoparametric curves of the surface are defined by the 0165 //! section of the spherical surface with plane obtained by rotation 0166 //! of the plane (Location, XAxis, ZAxis) around ZAxis. This plane 0167 //! defines the origin of parametrization u. 0168 //! For a SphericalSurface the UIso curve is a Circle. 0169 //! Warnings : The radius of this circle can be zero. 0170 Standard_EXPORT Handle(Geom_Curve) UIso (const Standard_Real U) const Standard_OVERRIDE; 0171 0172 //! Computes the V isoparametric curve. 0173 //! The V isoparametric curves of the surface are defined by 0174 //! the section of the spherical surface with plane parallel to the 0175 //! plane (Location, XAxis, YAxis). This plane defines the origin of 0176 //! parametrization V. 0177 //! Be careful if V is close to PI/2 or 3*PI/2 the radius of the 0178 //! circle becomes tiny. It is not forbidden in this toolkit to 0179 //! create circle with radius = 0.0 0180 //! For a SphericalSurface the VIso curve is a Circle. 0181 //! Warnings : The radius of this circle can be zero. 0182 Standard_EXPORT Handle(Geom_Curve) VIso (const Standard_Real V) const Standard_OVERRIDE; 0183 0184 0185 //! Computes the point P (U, V) on the surface. 0186 //! P (U, V) = Loc + Radius * Sin (V) * Zdir + 0187 //! Radius * Cos (V) * (cos (U) * XDir + sin (U) * YDir) 0188 //! where Loc is the origin of the placement plane (XAxis, YAxis) 0189 //! XDir is the direction of the XAxis and YDir the direction of 0190 //! the YAxis and ZDir the direction of the ZAxis. 0191 Standard_EXPORT void D0 (const Standard_Real U, const Standard_Real V, gp_Pnt& P) const Standard_OVERRIDE; 0192 0193 0194 //! Computes the current point and the first derivatives in the 0195 //! directions U and V. 0196 Standard_EXPORT void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V) const Standard_OVERRIDE; 0197 0198 0199 //! Computes the current point, the first and the second derivatives 0200 //! in the directions U and V. 0201 Standard_EXPORT void D2 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV) const Standard_OVERRIDE; 0202 0203 0204 //! Computes the current point, the first,the second and the third 0205 //! derivatives in the directions U and V. 0206 Standard_EXPORT void D3 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV, gp_Vec& D3U, gp_Vec& D3V, gp_Vec& D3UUV, gp_Vec& D3UVV) const Standard_OVERRIDE; 0207 0208 0209 //! Computes the derivative of order Nu in the direction u 0210 //! and Nv in the direction v. 0211 //! Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0. 0212 Standard_EXPORT gp_Vec DN (const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv) const Standard_OVERRIDE; 0213 0214 //! Applies the transformation T to this sphere. 0215 Standard_EXPORT void Transform (const gp_Trsf& T) Standard_OVERRIDE; 0216 0217 //! Creates a new object which is a copy of this sphere. 0218 Standard_EXPORT Handle(Geom_Geometry) Copy() const Standard_OVERRIDE; 0219 0220 //! Dumps the content of me into the stream 0221 Standard_EXPORT virtual void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const Standard_OVERRIDE; 0222 0223 0224 0225 0226 DEFINE_STANDARD_RTTIEXT(Geom_SphericalSurface,Geom_ElementarySurface) 0227 0228 protected: 0229 0230 0231 0232 0233 private: 0234 0235 0236 Standard_Real radius; 0237 0238 0239 }; 0240 0241 0242 0243 0244 0245 0246 0247 #endif // _Geom_SphericalSurface_HeaderFile
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |