|
||||
File indexing completed on 2025-01-18 10:03:36
0001 // Created on: 1993-03-10 0002 // Created by: JCV 0003 // Copyright (c) 1993-1999 Matra Datavision 0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS 0005 // 0006 // This file is part of Open CASCADE Technology software library. 0007 // 0008 // This library is free software; you can redistribute it and/or modify it under 0009 // the terms of the GNU Lesser General Public License version 2.1 as published 0010 // by the Free Software Foundation, with special exception defined in the file 0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT 0012 // distribution for complete text of the license and disclaimer of any warranty. 0013 // 0014 // Alternatively, this file may be used under the terms of Open CASCADE 0015 // commercial license or contractual agreement. 0016 0017 #ifndef _Geom_CylindricalSurface_HeaderFile 0018 #define _Geom_CylindricalSurface_HeaderFile 0019 0020 #include <Standard.hxx> 0021 #include <Standard_Type.hxx> 0022 0023 #include <Geom_ElementarySurface.hxx> 0024 #include <Standard_Integer.hxx> 0025 class gp_Ax3; 0026 class gp_Cylinder; 0027 class gp_Trsf; 0028 class gp_GTrsf2d; 0029 class Geom_Curve; 0030 class gp_Pnt; 0031 class gp_Vec; 0032 class Geom_Geometry; 0033 0034 0035 class Geom_CylindricalSurface; 0036 DEFINE_STANDARD_HANDLE(Geom_CylindricalSurface, Geom_ElementarySurface) 0037 0038 //! This class defines the infinite cylindrical surface. 0039 //! 0040 //! Every cylindrical surface is set by the following equation: 0041 //! @code 0042 //! S(U,V) = Location + R*cos(U)*XAxis + R*sin(U)*YAxis + V*ZAxis, 0043 //! @endcode 0044 //! where R is cylinder radius. 0045 //! 0046 //! The local coordinate system of the CylindricalSurface is defined 0047 //! with an axis placement (see class ElementarySurface). 0048 //! 0049 //! The "ZAxis" is the symmetry axis of the CylindricalSurface, 0050 //! it gives the direction of increasing parametric value V. 0051 //! 0052 //! The parametrization range is : 0053 //! @code 0054 //! U [0, 2*PI], V ]- infinite, + infinite[ 0055 //! @endcode 0056 //! 0057 //! The "XAxis" and the "YAxis" define the placement plane of the 0058 //! surface (Z = 0, and parametric value V = 0) perpendicular to 0059 //! the symmetry axis. The "XAxis" defines the origin of the 0060 //! parameter U = 0. The trigonometric sense gives the positive 0061 //! orientation for the parameter U. 0062 //! 0063 //! When you create a CylindricalSurface the U and V directions of 0064 //! parametrization are such that at each point of the surface the 0065 //! normal is oriented towards the "outside region". 0066 //! 0067 //! The methods UReverse VReverse change the orientation of the 0068 //! surface. 0069 class Geom_CylindricalSurface : public Geom_ElementarySurface 0070 { 0071 0072 public: 0073 0074 //! A3 defines the local coordinate system of the cylindrical surface. 0075 //! The "ZDirection" of A3 defines the direction of the surface's axis of symmetry. 0076 //! At the creation the parametrization of the surface is defined 0077 //! such that the normal Vector (N = D1U ^ D1V) is oriented towards 0078 //! the "outside region" of the surface. 0079 //! Warnings: 0080 //! It is not forbidden to create a cylindrical surface with 0081 //! Radius = 0.0 0082 //! Raised if Radius < 0.0 0083 Standard_EXPORT Geom_CylindricalSurface(const gp_Ax3& A3, const Standard_Real Radius); 0084 0085 //! Creates a CylindricalSurface from a non transient gp_Cylinder. 0086 Standard_EXPORT Geom_CylindricalSurface(const gp_Cylinder& C); 0087 0088 //! Set <me> so that <me> has the same geometric properties as C. 0089 Standard_EXPORT void SetCylinder (const gp_Cylinder& C); 0090 0091 //! Changes the radius of the cylinder. 0092 //! Raised if R < 0.0 0093 Standard_EXPORT void SetRadius (const Standard_Real R); 0094 0095 //! returns a non transient cylinder with the same geometric properties as <me>. 0096 Standard_EXPORT gp_Cylinder Cylinder() const; 0097 0098 //! Return the parameter on the Ureversed surface for 0099 //! the point of parameter U on <me>. 0100 //! Return 2.PI - U. 0101 Standard_EXPORT Standard_Real UReversedParameter (const Standard_Real U) const Standard_OVERRIDE; 0102 0103 //! Return the parameter on the Vreversed surface for 0104 //! the point of parameter V on <me>. 0105 //! Return -V 0106 Standard_EXPORT Standard_Real VReversedParameter (const Standard_Real V) const Standard_OVERRIDE; 0107 0108 //! Computes the parameters on the transformed surface for 0109 //! the transform of the point of parameters U,V on <me>. 0110 //! @code 0111 //! me->Transformed(T)->Value(U',V') 0112 //! @endcode 0113 //! is the same point as 0114 //! @code 0115 //! me->Value(U,V).Transformed(T) 0116 //! @endcode 0117 //! Where U',V' are the new values of U,V after calling 0118 //! @code 0119 //! me->TransformParameters(U,V,T) 0120 //! @endcode 0121 //! This method multiplies V by T.ScaleFactor() 0122 Standard_EXPORT virtual void TransformParameters (Standard_Real& U, Standard_Real& V, const gp_Trsf& T) const Standard_OVERRIDE; 0123 0124 //! Returns a 2d transformation used to find the new 0125 //! parameters of a point on the transformed surface. 0126 //! @code 0127 //! me->Transformed(T)->Value(U',V') 0128 //! @endcode 0129 //! is the same point as 0130 //! @code 0131 //! me->Value(U,V).Transformed(T) 0132 //! @endcode 0133 //! Where U',V' are obtained by transforming U,V with the 2d transformation returned by 0134 //! @code 0135 //! me->ParametricTransformation(T) 0136 //! @endcode 0137 //! This method returns a scale centered on the U axis with T.ScaleFactor 0138 Standard_EXPORT virtual gp_GTrsf2d ParametricTransformation (const gp_Trsf& T) const Standard_OVERRIDE; 0139 0140 //! The CylindricalSurface is infinite in the V direction so 0141 //! V1 = Realfirst, V2 = RealLast from package Standard. 0142 //! U1 = 0 and U2 = 2*PI. 0143 Standard_EXPORT void Bounds (Standard_Real& U1, Standard_Real& U2, Standard_Real& V1, Standard_Real& V2) const Standard_OVERRIDE; 0144 0145 //! Returns the coefficients of the implicit equation of the quadric 0146 //! in the absolute cartesian coordinate system : 0147 //! These coefficients are normalized. 0148 //! @code 0149 //! A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0 0150 //! @endcode 0151 Standard_EXPORT void Coefficients (Standard_Real& A1, Standard_Real& A2, Standard_Real& A3, Standard_Real& B1, Standard_Real& B2, Standard_Real& B3, Standard_Real& C1, Standard_Real& C2, Standard_Real& C3, Standard_Real& D) const; 0152 0153 //! Returns the radius of this cylinder. 0154 Standard_EXPORT Standard_Real Radius() const; 0155 0156 //! Returns True. 0157 Standard_EXPORT Standard_Boolean IsUClosed() const Standard_OVERRIDE; 0158 0159 //! Returns False. 0160 Standard_EXPORT Standard_Boolean IsVClosed() const Standard_OVERRIDE; 0161 0162 //! Returns True. 0163 Standard_EXPORT Standard_Boolean IsUPeriodic() const Standard_OVERRIDE; 0164 0165 //! Returns False. 0166 Standard_EXPORT Standard_Boolean IsVPeriodic() const Standard_OVERRIDE; 0167 0168 //! The UIso curve is a Line. The location point of this line is 0169 //! on the placement plane (XAxis, YAxis) of the surface. 0170 //! This line is parallel to the axis of symmetry of the surface. 0171 Standard_EXPORT Handle(Geom_Curve) UIso (const Standard_Real U) const Standard_OVERRIDE; 0172 0173 //! The VIso curve is a circle. The start point of this circle 0174 //! (U = 0) is defined with the "XAxis" of the surface. 0175 //! The center of the circle is on the symmetry axis. 0176 Standard_EXPORT Handle(Geom_Curve) VIso (const Standard_Real V) const Standard_OVERRIDE; 0177 0178 //! Computes the point P (U, V) on the surface. 0179 //! P (U, V) = Loc + Radius * (cos (U) * XDir + sin (U) * YDir) + 0180 //! V * ZDir 0181 //! where Loc is the origin of the placement plane (XAxis, YAxis) 0182 //! XDir is the direction of the XAxis and YDir the direction of 0183 //! the YAxis. 0184 Standard_EXPORT void D0 (const Standard_Real U, const Standard_Real V, gp_Pnt& P) const Standard_OVERRIDE; 0185 0186 //! Computes the current point and the first derivatives in the 0187 //! directions U and V. 0188 Standard_EXPORT void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V) const Standard_OVERRIDE; 0189 0190 //! Computes the current point, the first and the second derivatives 0191 //! in the directions U and V. 0192 Standard_EXPORT void D2 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV) const Standard_OVERRIDE; 0193 0194 //! Computes the current point, the first, the second and the 0195 //! third derivatives in the directions U and V. 0196 Standard_EXPORT void D3 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV, gp_Vec& D3U, gp_Vec& D3V, gp_Vec& D3UUV, gp_Vec& D3UVV) const Standard_OVERRIDE; 0197 0198 0199 //! Computes the derivative of order Nu in the direction u and Nv 0200 //! in the direction v. 0201 //! Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0. 0202 Standard_EXPORT gp_Vec DN (const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv) const Standard_OVERRIDE; 0203 0204 //! Applies the transformation T to this cylinder. 0205 Standard_EXPORT void Transform (const gp_Trsf& T) Standard_OVERRIDE; 0206 0207 //! Creates a new object which is a copy of this cylinder. 0208 Standard_EXPORT Handle(Geom_Geometry) Copy() const Standard_OVERRIDE; 0209 0210 //! Dumps the content of me into the stream 0211 Standard_EXPORT virtual void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const Standard_OVERRIDE; 0212 0213 DEFINE_STANDARD_RTTIEXT(Geom_CylindricalSurface,Geom_ElementarySurface) 0214 0215 private: 0216 0217 Standard_Real radius; 0218 0219 }; 0220 0221 #endif // _Geom_CylindricalSurface_HeaderFile
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |