|
||||
File indexing completed on 2024-11-15 09:46:43
0001 // Created on: 1993-03-10 0002 // Created by: JCV 0003 // Copyright (c) 1993-1999 Matra Datavision 0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS 0005 // 0006 // This file is part of Open CASCADE Technology software library. 0007 // 0008 // This library is free software; you can redistribute it and/or modify it under 0009 // the terms of the GNU Lesser General Public License version 2.1 as published 0010 // by the Free Software Foundation, with special exception defined in the file 0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT 0012 // distribution for complete text of the license and disclaimer of any warranty. 0013 // 0014 // Alternatively, this file may be used under the terms of Open CASCADE 0015 // commercial license or contractual agreement. 0016 0017 #ifndef _Geom_Curve_HeaderFile 0018 #define _Geom_Curve_HeaderFile 0019 0020 #include <Standard.hxx> 0021 #include <Standard_Type.hxx> 0022 0023 #include <Geom_Geometry.hxx> 0024 #include <Standard_Real.hxx> 0025 #include <GeomAbs_Shape.hxx> 0026 #include <Standard_Integer.hxx> 0027 class gp_Trsf; 0028 class gp_Pnt; 0029 class gp_Vec; 0030 0031 0032 class Geom_Curve; 0033 DEFINE_STANDARD_HANDLE(Geom_Curve, Geom_Geometry) 0034 0035 //! The abstract class Curve describes the common 0036 //! behavior of curves in 3D space. The Geom package 0037 //! provides numerous concrete classes of derived 0038 //! curves, including lines, circles, conics, Bezier or 0039 //! BSpline curves, etc. 0040 //! The main characteristic of these curves is that they 0041 //! are parameterized. The Geom_Curve class shows: 0042 //! - how to work with the parametric equation of a curve 0043 //! in order to calculate the point of parameter u, 0044 //! together with the vector tangent and the derivative 0045 //! vectors of order 2, 3,..., N at this point; 0046 //! - how to obtain general information about the curve 0047 //! (for example, level of continuity, closed 0048 //! characteristics, periodicity, bounds of the parameter field); 0049 //! - how the parameter changes when a geometric 0050 //! transformation is applied to the curve or when the 0051 //! orientation of the curve is inverted. 0052 //! All curves must have a geometric continuity: a curve is 0053 //! at least "C0". Generally, this property is checked at 0054 //! the time of construction or when the curve is edited. 0055 //! Where this is not the case, the documentation states so explicitly. 0056 //! Warning 0057 //! The Geom package does not prevent the 0058 //! construction of curves with null length or curves which 0059 //! self-intersect. 0060 class Geom_Curve : public Geom_Geometry 0061 { 0062 0063 public: 0064 0065 0066 0067 //! Changes the direction of parametrization of <me>. 0068 //! The "FirstParameter" and the "LastParameter" are not changed 0069 //! but the orientation of the curve is modified. If the curve 0070 //! is bounded the StartPoint of the initial curve becomes the 0071 //! EndPoint of the reversed curve and the EndPoint of the initial 0072 //! curve becomes the StartPoint of the reversed curve. 0073 Standard_EXPORT virtual void Reverse() = 0; 0074 0075 //! Returns the parameter on the reversed curve for 0076 //! the point of parameter U on <me>. 0077 //! 0078 //! me->Reversed()->Value(me->ReversedParameter(U)) 0079 //! 0080 //! is the same point as 0081 //! 0082 //! me->Value(U) 0083 Standard_EXPORT virtual Standard_Real ReversedParameter (const Standard_Real U) const = 0; 0084 0085 //! Returns the parameter on the transformed curve for 0086 //! the transform of the point of parameter U on <me>. 0087 //! 0088 //! me->Transformed(T)->Value(me->TransformedParameter(U,T)) 0089 //! 0090 //! is the same point as 0091 //! 0092 //! me->Value(U).Transformed(T) 0093 //! 0094 //! This methods returns <U> 0095 //! 0096 //! It can be redefined. For example on the Line. 0097 Standard_EXPORT virtual Standard_Real TransformedParameter (const Standard_Real U, const gp_Trsf& T) const; 0098 0099 //! Returns a coefficient to compute the parameter on 0100 //! the transformed curve for the transform of the 0101 //! point on <me>. 0102 //! 0103 //! Transformed(T)->Value(U * ParametricTransformation(T)) 0104 //! 0105 //! is the same point as 0106 //! 0107 //! Value(U).Transformed(T) 0108 //! 0109 //! This methods returns 1. 0110 //! 0111 //! It can be redefined. For example on the Line. 0112 Standard_EXPORT virtual Standard_Real ParametricTransformation (const gp_Trsf& T) const; 0113 0114 //! Returns a copy of <me> reversed. 0115 Standard_NODISCARD Standard_EXPORT Handle(Geom_Curve) Reversed() const; 0116 0117 //! Returns the value of the first parameter. 0118 //! Warnings : 0119 //! It can be RealFirst from package Standard 0120 //! if the curve is infinite 0121 Standard_EXPORT virtual Standard_Real FirstParameter() const = 0; 0122 0123 //! Returns the value of the last parameter. 0124 //! Warnings : 0125 //! It can be RealLast from package Standard 0126 //! if the curve is infinite 0127 Standard_EXPORT virtual Standard_Real LastParameter() const = 0; 0128 0129 //! Returns true if the curve is closed. 0130 //! Some curves such as circle are always closed, others such as line 0131 //! are never closed (by definition). 0132 //! Some Curves such as OffsetCurve can be closed or not. These curves 0133 //! are considered as closed if the distance between the first point 0134 //! and the last point of the curve is lower or equal to the Resolution 0135 //! from package gp which is a fixed criterion independent of the 0136 //! application. 0137 Standard_EXPORT virtual Standard_Boolean IsClosed() const = 0; 0138 0139 //! Is the parametrization of the curve periodic ? 0140 //! It is possible only if the curve is closed and if the 0141 //! following relation is satisfied : 0142 //! for each parametric value U the distance between the point 0143 //! P(u) and the point P (u + T) is lower or equal to Resolution 0144 //! from package gp, T is the period and must be a constant. 0145 //! There are three possibilities : 0146 //! . the curve is never periodic by definition (SegmentLine) 0147 //! . the curve is always periodic by definition (Circle) 0148 //! . the curve can be defined as periodic (BSpline). In this case 0149 //! a function SetPeriodic allows you to give the shape of the 0150 //! curve. The general rule for this case is : if a curve can be 0151 //! periodic or not the default periodicity set is non periodic 0152 //! and you have to turn (explicitly) the curve into a periodic 0153 //! curve if you want the curve to be periodic. 0154 Standard_EXPORT virtual Standard_Boolean IsPeriodic() const = 0; 0155 0156 //! Returns the period of this curve. 0157 //! Exceptions Standard_NoSuchObject if this curve is not periodic. 0158 Standard_EXPORT virtual Standard_Real Period() const; 0159 0160 //! It is the global continuity of the curve 0161 //! C0 : only geometric continuity, 0162 //! C1 : continuity of the first derivative all along the Curve, 0163 //! C2 : continuity of the second derivative all along the Curve, 0164 //! C3 : continuity of the third derivative all along the Curve, 0165 //! G1 : tangency continuity all along the Curve, 0166 //! G2 : curvature continuity all along the Curve, 0167 //! CN : the order of continuity is infinite. 0168 Standard_EXPORT virtual GeomAbs_Shape Continuity() const = 0; 0169 0170 //! Returns true if the degree of continuity of this curve is at least N. 0171 //! Exceptions - Standard_RangeError if N is less than 0. 0172 Standard_EXPORT virtual Standard_Boolean IsCN (const Standard_Integer N) const = 0; 0173 0174 //! Returns in P the point of parameter U. 0175 //! If the curve is periodic then the returned point is P(U) with 0176 //! U = Ustart + (U - Uend) where Ustart and Uend are the 0177 //! parametric bounds of the curve. 0178 //! 0179 //! Raised only for the "OffsetCurve" if it is not possible to 0180 //! compute the current point. For example when the first 0181 //! derivative on the basis curve and the offset direction 0182 //! are parallel. 0183 Standard_EXPORT virtual void D0 (const Standard_Real U, gp_Pnt& P) const = 0; 0184 0185 0186 //! Returns the point P of parameter U and the first derivative V1. 0187 //! Raised if the continuity of the curve is not C1. 0188 Standard_EXPORT virtual void D1 (const Standard_Real U, gp_Pnt& P, gp_Vec& V1) const = 0; 0189 0190 0191 //! Returns the point P of parameter U, the first and second 0192 //! derivatives V1 and V2. 0193 //! Raised if the continuity of the curve is not C2. 0194 Standard_EXPORT virtual void D2 (const Standard_Real U, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2) const = 0; 0195 0196 0197 //! Returns the point P of parameter U, the first, the second 0198 //! and the third derivative. 0199 //! Raised if the continuity of the curve is not C3. 0200 Standard_EXPORT virtual void D3 (const Standard_Real U, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2, gp_Vec& V3) const = 0; 0201 0202 0203 //! The returned vector gives the value of the derivative for the 0204 //! order of derivation N. 0205 //! Raised if the continuity of the curve is not CN. 0206 //! 0207 //! Raised if the derivative cannot be computed 0208 //! easily. e.g. rational bspline and n > 3. 0209 //! Raised if N < 1. 0210 Standard_EXPORT virtual gp_Vec DN (const Standard_Real U, const Standard_Integer N) const = 0; 0211 0212 //! Computes the point of parameter U on <me>. 0213 //! If the curve is periodic then the returned point is P(U) with 0214 //! U = Ustart + (U - Uend) where Ustart and Uend are the 0215 //! parametric bounds of the curve. 0216 //! it is implemented with D0. 0217 //! 0218 //! Raised only for the "OffsetCurve" if it is not possible to 0219 //! compute the current point. For example when the first 0220 //! derivative on the basis curve and the offset direction are parallel. 0221 Standard_EXPORT gp_Pnt Value (const Standard_Real U) const; 0222 0223 //! Dumps the content of me into the stream 0224 Standard_EXPORT virtual void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const Standard_OVERRIDE; 0225 0226 0227 0228 0229 DEFINE_STANDARD_RTTIEXT(Geom_Curve,Geom_Geometry) 0230 0231 protected: 0232 0233 0234 0235 0236 private: 0237 0238 0239 0240 0241 }; 0242 0243 0244 0245 0246 0247 0248 0249 #endif // _Geom_Curve_HeaderFile
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |