|
||||
File indexing completed on 2025-01-18 10:03:35
0001 // Created on: 1993-03-10 0002 // Created by: Philippe DAUTRY 0003 // Copyright (c) 1993-1999 Matra Datavision 0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS 0005 // 0006 // This file is part of Open CASCADE Technology software library. 0007 // 0008 // This library is free software; you can redistribute it and/or modify it under 0009 // the terms of the GNU Lesser General Public License version 2.1 as published 0010 // by the Free Software Foundation, with special exception defined in the file 0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT 0012 // distribution for complete text of the license and disclaimer of any warranty. 0013 // 0014 // Alternatively, this file may be used under the terms of Open CASCADE 0015 // commercial license or contractual agreement. 0016 0017 #ifndef _Geom_BoundedSurface_HeaderFile 0018 #define _Geom_BoundedSurface_HeaderFile 0019 0020 #include <Standard.hxx> 0021 #include <Standard_Type.hxx> 0022 0023 #include <Geom_Surface.hxx> 0024 0025 0026 class Geom_BoundedSurface; 0027 DEFINE_STANDARD_HANDLE(Geom_BoundedSurface, Geom_Surface) 0028 0029 //! The root class for bounded surfaces in 3D space. A 0030 //! bounded surface is defined by a rectangle in its 2D parametric space, i.e. 0031 //! - its u parameter, which ranges between two finite 0032 //! values u0 and u1, referred to as "First u 0033 //! parameter" and "Last u parameter" respectively, and 0034 //! - its v parameter, which ranges between two finite 0035 //! values v0 and v1, referred to as "First v 0036 //! parameter" and the "Last v parameter" respectively. 0037 //! The surface is limited by four curves which are the 0038 //! boundaries of the surface: 0039 //! - its u0 and u1 isoparametric curves in the u parametric direction, and 0040 //! - its v0 and v1 isoparametric curves in the v parametric direction. 0041 //! A bounded surface is finite. 0042 //! The common behavior of all bounded surfaces is 0043 //! described by the Geom_Surface class. 0044 //! The Geom package provides three concrete 0045 //! implementations of bounded surfaces: 0046 //! - Geom_BezierSurface, 0047 //! - Geom_BSplineSurface, and 0048 //! - Geom_RectangularTrimmedSurface. 0049 //! The first two of these implement well known 0050 //! mathematical definitions of complex surfaces, the third 0051 //! trims a surface using four isoparametric curves, i.e. it 0052 //! limits the variation of its parameters to a rectangle in 0053 //! 2D parametric space. 0054 class Geom_BoundedSurface : public Geom_Surface 0055 { 0056 0057 public: 0058 0059 0060 0061 0062 0063 DEFINE_STANDARD_RTTIEXT(Geom_BoundedSurface,Geom_Surface) 0064 0065 protected: 0066 0067 0068 0069 0070 private: 0071 0072 0073 0074 0075 }; 0076 0077 0078 0079 0080 0081 0082 0083 #endif // _Geom_BoundedSurface_HeaderFile
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |