Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 10:03:35

0001 // Created on: 1993-03-10
0002 // Created by: Philippe DAUTRY
0003 // Copyright (c) 1993-1999 Matra Datavision
0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS
0005 //
0006 // This file is part of Open CASCADE Technology software library.
0007 //
0008 // This library is free software; you can redistribute it and/or modify it under
0009 // the terms of the GNU Lesser General Public License version 2.1 as published
0010 // by the Free Software Foundation, with special exception defined in the file
0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
0012 // distribution for complete text of the license and disclaimer of any warranty.
0013 //
0014 // Alternatively, this file may be used under the terms of Open CASCADE
0015 // commercial license or contractual agreement.
0016 
0017 #ifndef _Geom_BoundedSurface_HeaderFile
0018 #define _Geom_BoundedSurface_HeaderFile
0019 
0020 #include <Standard.hxx>
0021 #include <Standard_Type.hxx>
0022 
0023 #include <Geom_Surface.hxx>
0024 
0025 
0026 class Geom_BoundedSurface;
0027 DEFINE_STANDARD_HANDLE(Geom_BoundedSurface, Geom_Surface)
0028 
0029 //! The root class for bounded surfaces in 3D space. A
0030 //! bounded surface is defined by a rectangle in its 2D parametric space, i.e.
0031 //! - its u parameter, which ranges between two finite
0032 //! values u0 and u1, referred to as "First u
0033 //! parameter" and "Last u parameter" respectively, and
0034 //! - its v parameter, which ranges between two finite
0035 //! values v0 and v1, referred to as "First v
0036 //! parameter" and the "Last v parameter" respectively.
0037 //! The surface is limited by four curves which are the
0038 //! boundaries of the surface:
0039 //! - its u0 and u1 isoparametric curves in the u parametric direction, and
0040 //! - its v0 and v1 isoparametric curves in the v parametric direction.
0041 //! A bounded surface is finite.
0042 //! The common behavior of all bounded surfaces is
0043 //! described by the Geom_Surface class.
0044 //! The Geom package provides three concrete
0045 //! implementations of bounded surfaces:
0046 //! - Geom_BezierSurface,
0047 //! - Geom_BSplineSurface, and
0048 //! - Geom_RectangularTrimmedSurface.
0049 //! The first two of these implement well known
0050 //! mathematical definitions of complex surfaces, the third
0051 //! trims a surface using four isoparametric curves, i.e. it
0052 //! limits the variation of its parameters to a rectangle in
0053 //! 2D parametric space.
0054 class Geom_BoundedSurface : public Geom_Surface
0055 {
0056 
0057 public:
0058 
0059 
0060 
0061 
0062 
0063   DEFINE_STANDARD_RTTIEXT(Geom_BoundedSurface,Geom_Surface)
0064 
0065 protected:
0066 
0067 
0068 
0069 
0070 private:
0071 
0072 
0073 
0074 
0075 };
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 #endif // _Geom_BoundedSurface_HeaderFile