Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2024-11-15 09:46:51

0001 // Created on: 2003-03-18
0002 // Created by: Oleg FEDYAEV
0003 // Copyright (c) 2003-2014 OPEN CASCADE SAS
0004 //
0005 // This file is part of Open CASCADE Technology software library.
0006 //
0007 // This library is free software; you can redistribute it and/or modify it under
0008 // the terms of the GNU Lesser General Public License version 2.1 as published
0009 // by the Free Software Foundation, with special exception defined in the file
0010 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
0011 // distribution for complete text of the license and disclaimer of any warranty.
0012 //
0013 // Alternatively, this file may be used under the terms of Open CASCADE
0014 // commercial license or contractual agreement.
0015 
0016 #ifndef _GeomLib_Tool_HeaderFile
0017 #define _GeomLib_Tool_HeaderFile
0018 
0019 #include <Standard.hxx>
0020 #include <Standard_DefineAlloc.hxx>
0021 #include <Standard_Handle.hxx>
0022 
0023 #include <Standard_Boolean.hxx>
0024 #include <Standard_Real.hxx>
0025 
0026 class Geom_Curve;
0027 class Geom_Surface;
0028 class Geom2d_Curve;
0029 class Geom2dAdaptor_Curve;
0030 class gp_Lin2d;
0031 class gp_Pnt;
0032 class gp_Pnt2d;
0033 class gp_Vec2d;
0034 
0035 //! Provides various methods with Geom2d and Geom curves and surfaces.
0036 //! The methods of this class compute the parameter(s) of a given point on a
0037 //! curve or a surface. To get the valid result the point must be located rather close
0038 //! to the curve (surface) or at least to allow getting unambiguous result
0039 //! (do not put point at center of circle...),
0040 //! but choice of "trust" distance between curve/surface and point is
0041 //! responsibility of user (parameter MaxDist).
0042 //! Return FALSE if the point is beyond the MaxDist
0043 //! limit or if computation fails.
0044 class GeomLib_Tool
0045 {
0046 public:
0047 
0048   DEFINE_STANDARD_ALLOC
0049 
0050     //! Extracts the parameter of a 3D point lying on a 3D curve
0051     //! or at a distance less than the MaxDist value.
0052     Standard_EXPORT static Standard_Boolean Parameter(const Handle(Geom_Curve)& Curve, const gp_Pnt& Point, const Standard_Real MaxDist, Standard_Real& U);
0053 
0054   //! Extracts the parameter of a 3D point lying on a surface
0055   //! or at a distance less than the MaxDist value.
0056   Standard_EXPORT static Standard_Boolean Parameters(const Handle(Geom_Surface)& Surface, const gp_Pnt& Point, const Standard_Real MaxDist, Standard_Real& U, Standard_Real& V);
0057 
0058   //! Extracts the parameter of a 2D point lying on a 2D curve
0059   //! or at a distance less than the MaxDist value.
0060   Standard_EXPORT static Standard_Boolean Parameter(const Handle(Geom2d_Curve)& Curve, const gp_Pnt2d& Point, const Standard_Real MaxDist, Standard_Real& U);
0061 
0062   //! Computes parameter in theCurve (*thePrmOnCurve) where maximal deviation
0063   //! between theCurve and the linear segment joining its points with 
0064   //! the parameters theFPar and theLPar is obtained.
0065   //! Returns the (positive) value of deviation. Returns negative value if
0066   //! the deviation cannot be computed.
0067   //! The returned parameter (in case of successful) will always be in 
0068   //! the range [theFPar, theLPar].
0069   //! Iterative method is used for computation. So, theStartParameter is
0070   //! needed to be set. Recommend value of theStartParameter can be found with
0071   //! the overloaded method.
0072   //! Additionally, following values can be returned (optionally):
0073   //! @param thePtOnCurve - the point on curve where maximal deviation is achieved;
0074   //! @param thePrmOnCurve - the parameter of thePtOnCurve;
0075   //! @param theVecCurvLine - the vector along which is computed (this vector is always
0076   //!                         perpendicular theLine);
0077   //! @param theLine - the linear segment joining the point of theCurve having parameters
0078   //!                  theFPar and theLPar.
0079   Standard_EXPORT static
0080     Standard_Real ComputeDeviation(const Geom2dAdaptor_Curve& theCurve,
0081                                   const Standard_Real theFPar,
0082                                   const Standard_Real theLPar,
0083                                   const Standard_Real theStartParameter,
0084                                   const Standard_Integer theNbIters = 100,
0085                                   Standard_Real* const thePrmOnCurve = NULL,
0086                                   gp_Pnt2d* const thePtOnCurve = NULL,
0087                                   gp_Vec2d* const theVecCurvLine = NULL,
0088                                   gp_Lin2d* const theLine = NULL);
0089 
0090   //! Computes parameter in theCurve (*thePrmOnCurve) where maximal deviation
0091   //! between theCurve and the linear segment joining its points with 
0092   //! the parameters theFPar and theLPar is obtained.
0093   //! Returns the (positive) value of deviation. Returns negative value if
0094   //! the deviation cannot be computed.
0095   //! The returned parameter (in case of successful) will always be in 
0096   //! the range [theFPar, theLPar].
0097   //! theNbSubIntervals defines discretization of the given interval [theFPar, theLPar]
0098   //! to provide better search condition. This value should be chosen taking into
0099   //! account complexity of the curve in considered interval. E.g. if there are many
0100   //! oscillations of the curve in the interval then theNbSubIntervals mus be 
0101   //! great number. However, the greater value of theNbSubIntervals the slower the
0102   //! algorithm will compute.
0103   //! theNbIters sets number of iterations.
0104   //!   ATTENTION!!!
0105   //! This algorithm cannot compute deviation precisely (so, there is no point in
0106   //! setting big value of theNbIters). But it can give some start point for
0107   //! the overloaded method.
0108   Standard_EXPORT static
0109     Standard_Real ComputeDeviation(const Geom2dAdaptor_Curve& theCurve,
0110                                    const Standard_Real theFPar,
0111                                    const Standard_Real theLPar,
0112                                    const Standard_Integer theNbSubIntervals,
0113                                    const Standard_Integer theNbIters = 10,
0114                                    Standard_Real * const thePrmOnCurve = NULL);
0115 
0116 };
0117 
0118 #endif // _GeomLib_Tool_HeaderFile