Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 10:03:34

0001 // Created on: 1992-10-20
0002 // Created by: Remi GILET
0003 // Copyright (c) 1992-1999 Matra Datavision
0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS
0005 //
0006 // This file is part of Open CASCADE Technology software library.
0007 //
0008 // This library is free software; you can redistribute it and/or modify it under
0009 // the terms of the GNU Lesser General Public License version 2.1 as published
0010 // by the Free Software Foundation, with special exception defined in the file
0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
0012 // distribution for complete text of the license and disclaimer of any warranty.
0013 //
0014 // Alternatively, this file may be used under the terms of Open CASCADE
0015 // commercial license or contractual agreement.
0016 
0017 #ifndef _Geom2dGcc_Circ2d3Tan_HeaderFile
0018 #define _Geom2dGcc_Circ2d3Tan_HeaderFile
0019 
0020 #include <Standard.hxx>
0021 #include <Standard_DefineAlloc.hxx>
0022 #include <Standard_Handle.hxx>
0023 
0024 #include <TColgp_Array1OfCirc2d.hxx>
0025 #include <GccEnt_Array1OfPosition.hxx>
0026 #include <TColStd_Array1OfInteger.hxx>
0027 #include <TColgp_Array1OfPnt2d.hxx>
0028 #include <TColStd_Array1OfReal.hxx>
0029 #include <Standard_Integer.hxx>
0030 #include <GccEnt_Position.hxx>
0031 class Geom2dGcc_QualifiedCurve;
0032 class Geom2d_Point;
0033 class GccAna_Circ2d3Tan;
0034 class gp_Circ2d;
0035 class gp_Pnt2d;
0036 
0037 
0038 //! This class implements the algorithms used to
0039 //! create 2d circles tangent to 3 points/lines/circles/
0040 //! curves with one curve or more.
0041 //! The arguments of all construction methods are :
0042 //! - The three qualifiied elements for the
0043 //! tangency constrains (QualifiedCirc, QualifiedLine,
0044 //! Qualifiedcurv, Points).
0045 //! - A parameter for each QualifiedCurv.
0046 //! Describes functions for building a 2D circle:
0047 //! -   tangential to 3 curves, or
0048 //! -   tangential to 2 curves and passing through a point, or
0049 //! -   tangential to a curve and passing through 2 points, or
0050 //! -   passing through 3 points.
0051 //! A Circ2d3Tan object provides a framework for:
0052 //! -   defining the construction of 2D circles(s),
0053 //! -   implementing the construction algorithm, and
0054 //! -   consulting the result(s).
0055 class Geom2dGcc_Circ2d3Tan 
0056 {
0057 public:
0058 
0059   DEFINE_STANDARD_ALLOC
0060 
0061   
0062   //! Constructs one or more 2D circles
0063   //! tangential to three curves Qualified1, Qualified2 and
0064   //! Qualified3, where Param1, Param2 and Param3 are
0065   //! used, respectively, as the initial values of the
0066   //! parameters on Qualified1, Qualified2 and Qualified3
0067   //! of the tangency point between these arguments and
0068   //! the solution sought, if the algorithm chooses an
0069   //! iterative method to find the solution (i.e. if either
0070   //! Qualified1, Qualified2 or Qualified3 is more complex
0071   //! than a line or a circle).
0072   Standard_EXPORT Geom2dGcc_Circ2d3Tan(const Geom2dGcc_QualifiedCurve& Qualified1, const Geom2dGcc_QualifiedCurve& Qualified2, const Geom2dGcc_QualifiedCurve& Qualified3, const Standard_Real Tolerance, const Standard_Real Param1, const Standard_Real Param2, const Standard_Real Param3);
0073   
0074   //! Constructs one or more 2D circles
0075   //! tangential to two curves Qualified1 and Qualified2
0076   //! and passing through the point Point, where Param1
0077   //! and Param2 are used, respectively, as the initial
0078   //! values of the parameters on Qualified1 and
0079   //! Qualified2 of the tangency point between this
0080   //! argument and the solution sought, if the algorithm
0081   //! chooses an iterative method to find the solution (i.e. if
0082   //! either Qualified1 or Qualified2 is more complex than
0083   //! a line or a circle).
0084   Standard_EXPORT Geom2dGcc_Circ2d3Tan(const Geom2dGcc_QualifiedCurve& Qualified1, const Geom2dGcc_QualifiedCurve& Qualified2, const Handle(Geom2d_Point)& Point, const Standard_Real Tolerance, const Standard_Real Param1, const Standard_Real Param2);
0085   
0086   //! Constructs one or more 2D circles tangential to the curve Qualified1 and passing
0087   //! through two points Point1 and Point2, where Param1
0088   //! is used as the initial value of the parameter on
0089   //! Qualified1 of the tangency point between this
0090   //! argument and the solution sought, if the algorithm
0091   //! chooses an iterative method to find the solution (i.e. if
0092   //! Qualified1 is more complex than a line or a circle)
0093   Standard_EXPORT Geom2dGcc_Circ2d3Tan(const Geom2dGcc_QualifiedCurve& Qualified1, const Handle(Geom2d_Point)& Point1, const Handle(Geom2d_Point)& Point2, const Standard_Real Tolerance, const Standard_Real Param1);
0094   
0095   //! Constructs one or more 2D circles passing through three points Point1, Point2 and Point3.
0096   //! Tolerance is a tolerance criterion used by the algorithm
0097   //! to find a solution when, mathematically, the problem
0098   //! posed does not have a solution, but where there is
0099   //! numeric uncertainty attached to the arguments.
0100   //! For example, take:
0101   //! -   two circles C1 and C2, such that C2 is inside C1,
0102   //! and almost tangential to C1; there is in fact no point
0103   //! of intersection between C1 and C2; and
0104   //! -   a circle C3 outside C1.
0105   //! You now want to find a circle which is tangential to C1,
0106   //! C2 and C3: a pure mathematical resolution will not find
0107   //! a solution. This is where the tolerance criterion is used:
0108   //! the algorithm considers that C1 and C2 are tangential if
0109   //! the shortest distance between these two circles is less
0110   //! than or equal to Tolerance. Thus, the algorithm finds a solution.
0111   //! Warning
0112   //! An iterative algorithm is used if Qualified1, Qualified2 or
0113   //! Qualified3 is more complex than a line or a circle. In
0114   //! such cases, the algorithm constructs only one solution.
0115   //! Exceptions
0116   //! GccEnt_BadQualifier if a qualifier is inconsistent with
0117   //! the argument it qualifies (for example, enclosing for a line).
0118   Standard_EXPORT Geom2dGcc_Circ2d3Tan(const Handle(Geom2d_Point)& Point1, const Handle(Geom2d_Point)& Point2, const Handle(Geom2d_Point)& Point3, const Standard_Real Tolerance);
0119   
0120   Standard_EXPORT void Results (const GccAna_Circ2d3Tan& Circ, const Standard_Integer Rank1, const Standard_Integer Rank2, const Standard_Integer Rank3);
0121   
0122   //! Returns true if the construction algorithm does not fail (even if it finds no solution).
0123   //! Note: IsDone protects against a failure arising from a
0124   //! more internal intersection algorithm, which has reached its numeric limits.
0125   Standard_EXPORT Standard_Boolean IsDone() const;
0126   
0127   //! This method returns the number of solutions.
0128   //! NotDone is raised if the algorithm failed.
0129   Standard_EXPORT Standard_Integer NbSolutions() const;
0130   
0131   //! Returns the solution number Index and raises OutOfRange
0132   //! exception if Index is greater than the number of solutions.
0133   //! Be careful: the Index is only a way to get all the
0134   //! solutions, but is not associated to these outside the context
0135   //! of the algorithm-object.
0136   Standard_EXPORT gp_Circ2d ThisSolution (const Standard_Integer Index) const;
0137   
0138   //! It returns the information about the qualifiers of the tangency
0139   //! arguments concerning the solution number Index.
0140   //! It returns the real qualifiers (the qualifiers given to the
0141   //! constructor method in case of enclosed, enclosing and outside
0142   //! and the qualifiers computedin case of unqualified).
0143   Standard_EXPORT void WhichQualifier (const Standard_Integer Index, GccEnt_Position& Qualif1, GccEnt_Position& Qualif2, GccEnt_Position& Qualif3) const;
0144   
0145   //! Returns information about the tangency point between the
0146   //! result and the first argument.
0147   //! ParSol is the intrinsic parameter of the point PntSol on the solution curv.
0148   //! ParArg is the intrinsic parameter of the point PntSol on the argument curv.
0149   Standard_EXPORT void Tangency1 (const Standard_Integer Index, Standard_Real& ParSol, Standard_Real& ParArg, gp_Pnt2d& PntSol) const;
0150   
0151   //! Returns information about the tangency point between the
0152   //! result and the second argument.
0153   //! ParSol is the intrinsic parameter of the point PntSol on the solution curv.
0154   //! ParArg is the intrinsic parameter of the point PntSol on the argument curv.
0155   Standard_EXPORT void Tangency2 (const Standard_Integer Index, Standard_Real& ParSol, Standard_Real& ParArg, gp_Pnt2d& PntSol) const;
0156   
0157   //! Returns information about the tangency point between the
0158   //! result and the third argument.
0159   //! ParSol is the intrinsic parameter of the point PntSol on the solution curv.
0160   //! ParArg is the intrinsic parameter of the point PntSol on the argument curv.
0161   Standard_EXPORT void Tangency3 (const Standard_Integer Index, Standard_Real& ParSol, Standard_Real& ParArg, gp_Pnt2d& PntSol) const;
0162   
0163   //! Returns True if the solution is equal to the first argument.
0164   Standard_EXPORT Standard_Boolean IsTheSame1 (const Standard_Integer Index) const;
0165   
0166   //! Returns True if the solution is equal to the second argument.
0167   Standard_EXPORT Standard_Boolean IsTheSame2 (const Standard_Integer Index) const;
0168   
0169   //! Returns True if the solution is equal to the third argument.
0170   //! If Rarg is the radius of the first, second or third
0171   //! argument, Rsol is the radius of the solution and dist
0172   //! is the distance between the two centers, we consider
0173   //! the two circles to be identical if |Rarg - Rsol| and
0174   //! dist are less than or equal to the tolerance criterion
0175   //! given at the time of construction of this algorithm.
0176   //! Exceptions
0177   //! Standard_OutOfRange if Index is less than zero or
0178   //! greater than the number of solutions computed by this algorithm.
0179   //! StdFail_NotDone if the construction fails.
0180   Standard_EXPORT Standard_Boolean IsTheSame3 (const Standard_Integer Index) const;
0181 
0182 
0183 
0184 
0185 protected:
0186 
0187 
0188 
0189 
0190 
0191 private:
0192 
0193 
0194 
0195   TColgp_Array1OfCirc2d cirsol;
0196   Standard_Real NbrSol;
0197   Standard_Boolean WellDone;
0198   GccEnt_Array1OfPosition qualifier1;
0199   GccEnt_Array1OfPosition qualifier2;
0200   GccEnt_Array1OfPosition qualifier3;
0201   TColStd_Array1OfInteger TheSame1;
0202   TColStd_Array1OfInteger TheSame2;
0203   TColStd_Array1OfInteger TheSame3;
0204   TColgp_Array1OfPnt2d pnttg1sol;
0205   TColgp_Array1OfPnt2d pnttg2sol;
0206   TColgp_Array1OfPnt2d pnttg3sol;
0207   TColStd_Array1OfReal par1sol;
0208   TColStd_Array1OfReal par2sol;
0209   TColStd_Array1OfReal par3sol;
0210   TColStd_Array1OfReal pararg1;
0211   TColStd_Array1OfReal pararg2;
0212   TColStd_Array1OfReal pararg3;
0213 
0214 
0215 };
0216 
0217 
0218 
0219 
0220 
0221 
0222 
0223 #endif // _Geom2dGcc_Circ2d3Tan_HeaderFile