|
||||
File indexing completed on 2025-01-18 10:03:46
0001 // Created on: 1991-03-12 0002 // Created by: Michel CHAUVAT 0003 // Copyright (c) 1991-1999 Matra Datavision 0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS 0005 // 0006 // This file is part of Open CASCADE Technology software library. 0007 // 0008 // This library is free software; you can redistribute it and/or modify it under 0009 // the terms of the GNU Lesser General Public License version 2.1 as published 0010 // by the Free Software Foundation, with special exception defined in the file 0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT 0012 // distribution for complete text of the license and disclaimer of any warranty. 0013 // 0014 // Alternatively, this file may be used under the terms of Open CASCADE 0015 // commercial license or contractual agreement. 0016 0017 #ifndef _GProp_HeaderFile 0018 #define _GProp_HeaderFile 0019 0020 #include <Standard.hxx> 0021 #include <Standard_DefineAlloc.hxx> 0022 #include <Standard_Handle.hxx> 0023 0024 #include <Standard_Real.hxx> 0025 class gp_Pnt; 0026 class gp_Mat; 0027 0028 0029 0030 //! This package defines algorithms to compute the global properties 0031 //! of a set of points, a curve, a surface, a solid (non infinite 0032 //! region of space delimited with geometric entities), a compound 0033 //! geometric system (heterogeneous composition of the previous 0034 //! entities). 0035 //! 0036 //! Global properties are : 0037 //! . length, area, volume, 0038 //! . centre of mass, 0039 //! . axis of inertia, 0040 //! . moments of inertia, 0041 //! . radius of gyration. 0042 //! 0043 //! It provides also a class to compile the average point or 0044 //! line of a set of points. 0045 class GProp 0046 { 0047 public: 0048 0049 DEFINE_STANDARD_ALLOC 0050 0051 0052 //! methods of package 0053 //! Computes the matrix Operator, referred to as the 0054 //! "Huyghens Operator" of a geometric system at the 0055 //! point Q of the space, using the following data : 0056 //! - Mass, i.e. the mass of the system, 0057 //! - G, the center of mass of the system. 0058 //! The "Huyghens Operator" is used to compute 0059 //! Inertia/Q, the matrix of inertia of the system at 0060 //! the point Q using Huyghens' theorem : 0061 //! Inertia/Q = Inertia/G + HOperator (Q, G, Mass) 0062 //! where Inertia/G is the matrix of inertia of the 0063 //! system relative to its center of mass as returned by 0064 //! the function MatrixOfInertia on any GProp_GProps object. 0065 Standard_EXPORT static void HOperator (const gp_Pnt& G, const gp_Pnt& Q, const Standard_Real Mass, gp_Mat& Operator); 0066 0067 }; 0068 0069 #endif // _GProp_HeaderFile
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |