|
||||
File indexing completed on 2024-11-15 09:46:24
0001 // Created on: 1991-10-10 0002 // Created by: Jean Claude VAUTHIER 0003 // Copyright (c) 1991-1999 Matra Datavision 0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS 0005 // 0006 // This file is part of Open CASCADE Technology software library. 0007 // 0008 // This library is free software; you can redistribute it and/or modify it under 0009 // the terms of the GNU Lesser General Public License version 2.1 as published 0010 // by the Free Software Foundation, with special exception defined in the file 0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT 0012 // distribution for complete text of the license and disclaimer of any warranty. 0013 // 0014 // Alternatively, this file may be used under the terms of Open CASCADE 0015 // commercial license or contractual agreement. 0016 0017 #ifndef _Convert_SphereToBSplineSurface_HeaderFile 0018 #define _Convert_SphereToBSplineSurface_HeaderFile 0019 0020 #include <Standard.hxx> 0021 #include <Standard_DefineAlloc.hxx> 0022 #include <Standard_Handle.hxx> 0023 0024 #include <Convert_ElementarySurfaceToBSplineSurface.hxx> 0025 #include <Standard_Boolean.hxx> 0026 class gp_Sphere; 0027 0028 0029 0030 //! This algorithm converts a bounded Sphere into a rational 0031 //! B-spline surface. The sphere is a Sphere from package gp. 0032 //! The parametrization of the sphere is 0033 //! P (U, V) = Loc + Radius * Sin(V) * Zdir + 0034 //! Radius * Cos(V) * (Cos(U)*Xdir + Sin(U)*Ydir) 0035 //! where Loc is the center of the sphere Xdir, Ydir and Zdir are the 0036 //! normalized directions of the local cartesian coordinate system of 0037 //! the sphere. The parametrization range is U [0, 2PI] and 0038 //! V [-PI/2, PI/2]. 0039 //! KeyWords : 0040 //! Convert, Sphere, BSplineSurface. 0041 class Convert_SphereToBSplineSurface : public Convert_ElementarySurfaceToBSplineSurface 0042 { 0043 public: 0044 0045 DEFINE_STANDARD_ALLOC 0046 0047 0048 0049 //! The equivalent B-spline surface as the same orientation as the 0050 //! sphere in the U and V parametric directions. 0051 //! 0052 //! Raised if U1 = U2 or U1 = U2 + 2.0 * Pi 0053 //! Raised if V1 = V2. 0054 Standard_EXPORT Convert_SphereToBSplineSurface(const gp_Sphere& Sph, const Standard_Real U1, const Standard_Real U2, const Standard_Real V1, const Standard_Real V2); 0055 0056 0057 //! The equivalent B-spline surface as the same orientation 0058 //! as the sphere in the U and V parametric directions. 0059 //! 0060 //! Raised if UTrim = True and Param1 = Param2 or 0061 //! Param1 = Param2 + 2.0 * Pi 0062 //! Raised if UTrim = False and Param1 = Param2 0063 Standard_EXPORT Convert_SphereToBSplineSurface(const gp_Sphere& Sph, const Standard_Real Param1, const Standard_Real Param2, const Standard_Boolean UTrim = Standard_True); 0064 0065 0066 //! The equivalent B-spline surface as the same orientation 0067 //! as the sphere in the U and V parametric directions. 0068 Standard_EXPORT Convert_SphereToBSplineSurface(const gp_Sphere& Sph); 0069 0070 0071 0072 0073 protected: 0074 0075 0076 0077 0078 0079 private: 0080 0081 0082 0083 0084 0085 }; 0086 0087 0088 0089 0090 0091 0092 0093 #endif // _Convert_SphereToBSplineSurface_HeaderFile
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |