|
||||
File indexing completed on 2025-01-18 10:03:22
0001 // Created on: 1995-05-30 0002 // Created by: Xavier BENVENISTE 0003 // Copyright (c) 1995-1999 Matra Datavision 0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS 0005 // 0006 // This file is part of Open CASCADE Technology software library. 0007 // 0008 // This library is free software; you can redistribute it and/or modify it under 0009 // the terms of the GNU Lesser General Public License version 2.1 as published 0010 // by the Free Software Foundation, with special exception defined in the file 0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT 0012 // distribution for complete text of the license and disclaimer of any warranty. 0013 // 0014 // Alternatively, this file may be used under the terms of Open CASCADE 0015 // commercial license or contractual agreement. 0016 0017 #ifndef _Convert_CompPolynomialToPoles_HeaderFile 0018 #define _Convert_CompPolynomialToPoles_HeaderFile 0019 0020 #include <Standard.hxx> 0021 #include <Standard_DefineAlloc.hxx> 0022 #include <Standard_Handle.hxx> 0023 0024 #include <TColStd_HArray1OfReal.hxx> 0025 #include <TColStd_HArray1OfInteger.hxx> 0026 #include <TColStd_HArray2OfReal.hxx> 0027 #include <Standard_Integer.hxx> 0028 #include <TColStd_Array1OfInteger.hxx> 0029 #include <TColStd_Array1OfReal.hxx> 0030 #include <TColStd_Array2OfReal.hxx> 0031 0032 0033 //! Convert a serie of Polynomial N-Dimensional Curves 0034 //! that are have continuity CM to an N-Dimensional Bspline Curve 0035 //! that has continuity CM. 0036 //! (to convert an function (curve) polynomial by span in a BSpline) 0037 //! This class uses the following arguments : 0038 //! NumCurves : the number of Polynomial Curves 0039 //! Continuity: the requested continuity for the n-dimensional Spline 0040 //! Dimension : the dimension of the Spline 0041 //! MaxDegree : maximum allowed degree for each composite 0042 //! polynomial segment. 0043 //! NumCoeffPerCurve : the number of coefficient per segments = degree - 1 0044 //! Coefficients : the coefficients organized in the following way 0045 //! [1..<myNumPolynomials>][1..myMaxDegree +1][1..myDimension] 0046 //! that is : index [n,d,i] is at slot 0047 //! (n-1) * (myMaxDegree + 1) * myDimension + (d-1) * myDimension + i 0048 //! PolynomialIntervals : nth polynomial represents a polynomial between 0049 //! myPolynomialIntervals->Value(n,0) and 0050 //! myPolynomialIntervals->Value(n,1) 0051 //! TrueIntervals : the nth polynomial has to be mapped linearly to be 0052 //! defined on the following interval : 0053 //! myTrueIntervals->Value(n) and myTrueIntervals->Value(n+1) 0054 //! so that it represent adequatly the function with the 0055 //! required continuity 0056 class Convert_CompPolynomialToPoles 0057 { 0058 public: 0059 0060 DEFINE_STANDARD_ALLOC 0061 0062 0063 //! Warning! 0064 //! Continuity can be at MOST the maximum degree of 0065 //! the polynomial functions 0066 //! TrueIntervals : 0067 //! this is the true parameterisation for the composite curve 0068 //! that is : the curve has myContinuity if the nth curve 0069 //! is parameterized between myTrueIntervals(n) and myTrueIntervals(n+1) 0070 //! 0071 //! Coefficients have to be the implicit "c form": 0072 //! Coefficients[Numcurves][MaxDegree+1][Dimension] 0073 //! 0074 //! Warning! 0075 //! The NumberOfCoefficient of an polynome is his degree + 1 0076 //! Example: To convert the linear function f(x) = 2*x + 1 on the 0077 //! domaine [2,5] to BSpline with the bound [-1,1]. Arguments are : 0078 //! NumCurves = 1; 0079 //! Continuity = 1; 0080 //! Dimension = 1; 0081 //! MaxDegree = 1; 0082 //! NumCoeffPerCurve [1] = {2}; 0083 //! Coefficients[2] = {1, 2}; 0084 //! PolynomialIntervals[1,2] = {{2,5}} 0085 //! TrueIntervals[2] = {-1, 1} 0086 Standard_EXPORT Convert_CompPolynomialToPoles(const Standard_Integer NumCurves, const Standard_Integer Continuity, const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Handle(TColStd_HArray1OfInteger)& NumCoeffPerCurve, const Handle(TColStd_HArray1OfReal)& Coefficients, const Handle(TColStd_HArray2OfReal)& PolynomialIntervals, const Handle(TColStd_HArray1OfReal)& TrueIntervals); 0087 0088 //! To Convert sevral span with different order of Continuity. 0089 //! Warning: The Length of Continuity have to be NumCurves-1 0090 Standard_EXPORT Convert_CompPolynomialToPoles(const Standard_Integer NumCurves, const Standard_Integer Dimension, const Standard_Integer MaxDegree, const TColStd_Array1OfInteger& Continuity, const TColStd_Array1OfInteger& NumCoeffPerCurve, const TColStd_Array1OfReal& Coefficients, const TColStd_Array2OfReal& PolynomialIntervals, const TColStd_Array1OfReal& TrueIntervals); 0091 0092 //! To Convert only one span. 0093 Standard_EXPORT Convert_CompPolynomialToPoles(const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Standard_Integer Degree, const TColStd_Array1OfReal& Coefficients, const TColStd_Array1OfReal& PolynomialIntervals, const TColStd_Array1OfReal& TrueIntervals); 0094 0095 //! number of poles of the n-dimensional BSpline 0096 Standard_EXPORT Standard_Integer NbPoles() const; 0097 0098 //! returns the poles of the n-dimensional BSpline 0099 //! in the following format : 0100 //! [1..NumPoles][1..Dimension] 0101 Standard_EXPORT void Poles (Handle(TColStd_HArray2OfReal)& Poles) const; 0102 0103 Standard_EXPORT Standard_Integer Degree() const; 0104 0105 //! Degree of the n-dimensional Bspline 0106 Standard_EXPORT Standard_Integer NbKnots() const; 0107 0108 //! Knots of the n-dimensional Bspline 0109 Standard_EXPORT void Knots (Handle(TColStd_HArray1OfReal)& K) const; 0110 0111 //! Multiplicities of the knots in the BSpline 0112 Standard_EXPORT void Multiplicities (Handle(TColStd_HArray1OfInteger)& M) const; 0113 0114 Standard_EXPORT Standard_Boolean IsDone() const; 0115 0116 0117 0118 0119 protected: 0120 0121 0122 0123 0124 0125 private: 0126 0127 0128 Standard_EXPORT void Perform (const Standard_Integer NumCurves, const Standard_Integer MaxDegree, const Standard_Integer Dimension, const TColStd_Array1OfInteger& NumCoeffPerCurve, const TColStd_Array1OfReal& Coefficients, const TColStd_Array2OfReal& PolynomialIntervals, const TColStd_Array1OfReal& TrueIntervals); 0129 0130 0131 Handle(TColStd_HArray1OfReal) myFlatKnots; 0132 Handle(TColStd_HArray1OfReal) myKnots; 0133 Handle(TColStd_HArray1OfInteger) myMults; 0134 Handle(TColStd_HArray2OfReal) myPoles; 0135 Standard_Integer myDegree; 0136 Standard_Boolean myDone; 0137 0138 0139 }; 0140 0141 0142 0143 0144 0145 0146 0147 #endif // _Convert_CompPolynomialToPoles_HeaderFile
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |