Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 10:03:23

0001 // Created on: 1991-07-19
0002 // Created by: Isabelle GRIGNON
0003 // Copyright (c) 1991-1999 Matra Datavision
0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS
0005 //
0006 // This file is part of Open CASCADE Technology software library.
0007 //
0008 // This library is free software; you can redistribute it and/or modify it under
0009 // the terms of the GNU Lesser General Public License version 2.1 as published
0010 // by the Free Software Foundation, with special exception defined in the file
0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
0012 // distribution for complete text of the license and disclaimer of any warranty.
0013 //
0014 // Alternatively, this file may be used under the terms of Open CASCADE
0015 // commercial license or contractual agreement.
0016 
0017 #ifndef _CPnts_MyRootFunction_HeaderFile
0018 #define _CPnts_MyRootFunction_HeaderFile
0019 
0020 #include <Standard.hxx>
0021 #include <Standard_DefineAlloc.hxx>
0022 #include <Standard_Handle.hxx>
0023 
0024 #include <CPnts_MyGaussFunction.hxx>
0025 #include <Standard_Real.hxx>
0026 #include <math_FunctionWithDerivative.hxx>
0027 #include <CPnts_RealFunction.hxx>
0028 
0029 
0030 //! Implements a function for the Newton algorithm to find the
0031 //! solution of Integral(F) = L
0032 //! (compute Length  and Derivative of the curve for Newton)
0033 class CPnts_MyRootFunction  : public math_FunctionWithDerivative
0034 {
0035 public:
0036 
0037   DEFINE_STANDARD_ALLOC
0038 
0039   
0040     CPnts_MyRootFunction();
0041   
0042   //! F  is a pointer on a  function  D is a client data
0043   //! Order is the order of integration to use
0044   Standard_EXPORT void Init (const CPnts_RealFunction& F, const Standard_Address D, const Standard_Integer Order);
0045   
0046   //! We want to solve Integral(X0,X,F(X,D)) = L
0047   Standard_EXPORT void Init (const Standard_Real X0, const Standard_Real L);
0048   
0049   //! We want to solve Integral(X0,X,F(X,D)) = L
0050   //! with given tolerance
0051   Standard_EXPORT void Init (const Standard_Real X0, const Standard_Real L, const Standard_Real Tol);
0052   
0053   //! This is Integral(X0,X,F(X,D)) - L
0054   Standard_EXPORT Standard_Boolean Value (const Standard_Real X, Standard_Real& F);
0055   
0056   //! This is F(X,D)
0057   Standard_EXPORT Standard_Boolean Derivative (const Standard_Real X, Standard_Real& Df);
0058   
0059   Standard_EXPORT Standard_Boolean Values (const Standard_Real X, Standard_Real& F, Standard_Real& Df);
0060 
0061 
0062 
0063 
0064 protected:
0065 
0066 
0067 
0068 
0069 
0070 private:
0071 
0072 
0073 
0074   CPnts_MyGaussFunction myFunction;
0075   Standard_Real myX0;
0076   Standard_Real myL;
0077   Standard_Integer myOrder;
0078   Standard_Real myTol;
0079 
0080 
0081 };
0082 
0083 
0084 #include <CPnts_MyRootFunction.lxx>
0085 
0086 
0087 
0088 
0089 
0090 #endif // _CPnts_MyRootFunction_HeaderFile