|
||||
File indexing completed on 2025-01-18 10:03:18
0001 // Copyright (c) 2014 OPEN CASCADE SAS 0002 // 0003 // This file is part of Open CASCADE Technology software library. 0004 // 0005 // This library is free software; you can redistribute it and/or modify it under 0006 // the terms of the GNU Lesser General Public License version 2.1 as published 0007 // by the Free Software Foundation, with special exception defined in the file 0008 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT 0009 // distribution for complete text of the license and disclaimer of any warranty. 0010 // 0011 // Alternatively, this file may be used under the terms of Open CASCADE 0012 // commercial license or contractual agreement. 0013 0014 #ifndef _BSplCLib_Cache_Headerfile 0015 #define _BSplCLib_Cache_Headerfile 0016 0017 #include <BSplCLib_CacheParams.hxx> 0018 #include <TColStd_HArray2OfReal.hxx> 0019 0020 //! \brief A cache class for Bezier and B-spline curves. 0021 //! 0022 //! Defines all data, that can be cached on a span of a curve. 0023 //! The data should be recalculated in going from span to span. 0024 class BSplCLib_Cache : public Standard_Transient 0025 { 0026 public: 0027 0028 //! Constructor, prepares data structures for caching values on a 2d curve. 0029 //! \param theDegree degree of the curve 0030 //! \param thePeriodic identify whether the curve is periodic 0031 //! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions) 0032 //! \param thePoles2d array of poles of 2D curve 0033 //! \param theWeights array of weights of corresponding poles 0034 Standard_EXPORT BSplCLib_Cache(const Standard_Integer& theDegree, 0035 const Standard_Boolean& thePeriodic, 0036 const TColStd_Array1OfReal& theFlatKnots, 0037 const TColgp_Array1OfPnt2d& thePoles2d, 0038 const TColStd_Array1OfReal* theWeights = NULL); 0039 0040 //! Constructor, prepares data structures for caching values on a 3d curve. 0041 //! \param theDegree degree of the curve 0042 //! \param thePeriodic identify whether the curve is periodic 0043 //! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions) 0044 //! \param thePoles array of poles of 3D curve 0045 //! \param theWeights array of weights of corresponding poles 0046 Standard_EXPORT BSplCLib_Cache(const Standard_Integer& theDegree, 0047 const Standard_Boolean& thePeriodic, 0048 const TColStd_Array1OfReal& theFlatKnots, 0049 const TColgp_Array1OfPnt& thePoles, 0050 const TColStd_Array1OfReal* theWeights = NULL); 0051 0052 //! Verifies validity of the cache using flat parameter of the point 0053 //! \param theParameter parameter of the point placed in the span 0054 Standard_EXPORT Standard_Boolean IsCacheValid(Standard_Real theParameter) const; 0055 0056 //! Recomputes the cache data for 2D curves. Does not verify validity of the cache 0057 //! \param theParameter the value on the knot's axis to identify the span 0058 //! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions) 0059 //! \param thePoles2d array of poles of 2D curve 0060 //! \param theWeights array of weights of corresponding poles 0061 Standard_EXPORT void BuildCache(const Standard_Real& theParameter, 0062 const TColStd_Array1OfReal& theFlatKnots, 0063 const TColgp_Array1OfPnt2d& thePoles2d, 0064 const TColStd_Array1OfReal* theWeights); 0065 0066 //! Recomputes the cache data for 3D curves. Does not verify validity of the cache 0067 //! \param theParameter the value on the knot's axis to identify the span 0068 //! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions) 0069 //! \param thePoles array of poles of 3D curve 0070 //! \param theWeights array of weights of corresponding poles 0071 Standard_EXPORT void BuildCache(const Standard_Real& theParameter, 0072 const TColStd_Array1OfReal& theFlatKnots, 0073 const TColgp_Array1OfPnt& thePoles, 0074 const TColStd_Array1OfReal* theWeights = NULL); 0075 0076 //! Calculates the point on the curve in the specified parameter 0077 //! \param[in] theParameter parameter of calculation of the value 0078 //! \param[out] thePoint the result of calculation (the point on the curve) 0079 Standard_EXPORT void D0(const Standard_Real& theParameter, gp_Pnt2d& thePoint) const; 0080 Standard_EXPORT void D0(const Standard_Real& theParameter, gp_Pnt& thePoint) const; 0081 0082 //! Calculates the point on the curve and its first derivative in the specified parameter 0083 //! \param[in] theParameter parameter of calculation of the value 0084 //! \param[out] thePoint the result of calculation (the point on the curve) 0085 //! \param[out] theTangent tangent vector (first derivatives) for the curve in the calculated point 0086 Standard_EXPORT void D1(const Standard_Real& theParameter, gp_Pnt2d& thePoint, gp_Vec2d& theTangent) const; 0087 Standard_EXPORT void D1(const Standard_Real& theParameter, gp_Pnt& thePoint, gp_Vec& theTangent) const; 0088 0089 //! Calculates the point on the curve and two derivatives in the specified parameter 0090 //! \param[in] theParameter parameter of calculation of the value 0091 //! \param[out] thePoint the result of calculation (the point on the curve) 0092 //! \param[out] theTangent tangent vector (1st derivatives) for the curve in the calculated point 0093 //! \param[out] theCurvature curvature vector (2nd derivatives) for the curve in the calculated point 0094 Standard_EXPORT void D2(const Standard_Real& theParameter, 0095 gp_Pnt2d& thePoint, 0096 gp_Vec2d& theTangent, 0097 gp_Vec2d& theCurvature) const; 0098 Standard_EXPORT void D2(const Standard_Real& theParameter, 0099 gp_Pnt& thePoint, 0100 gp_Vec& theTangent, 0101 gp_Vec& theCurvature) const; 0102 0103 //! Calculates the point on the curve and three derivatives in the specified parameter 0104 //! \param[in] theParameter parameter of calculation of the value 0105 //! \param[out] thePoint the result of calculation (the point on the curve) 0106 //! \param[out] theTangent tangent vector (1st derivatives) for the curve in the calculated point 0107 //! \param[out] theCurvature curvature vector (2nd derivatives) for the curve in the calculated point 0108 //! \param[out] theTorsion second curvature vector (3rd derivatives) for the curve in the calculated point 0109 Standard_EXPORT void D3(const Standard_Real& theParameter, 0110 gp_Pnt2d& thePoint, 0111 gp_Vec2d& theTangent, 0112 gp_Vec2d& theCurvature, 0113 gp_Vec2d& theTorsion) const; 0114 Standard_EXPORT void D3(const Standard_Real& theParameter, 0115 gp_Pnt& thePoint, 0116 gp_Vec& theTangent, 0117 gp_Vec& theCurvature, 0118 gp_Vec& theTorsion) const; 0119 0120 0121 DEFINE_STANDARD_RTTIEXT(BSplCLib_Cache,Standard_Transient) 0122 0123 protected: 0124 0125 //! Fills array of derivatives in the selected point of the curve 0126 //! \param[in] theParameter parameter of the calculation 0127 //! \param[in] theDerivative maximal derivative to be calculated (computes all derivatives lesser than specified) 0128 //! \param[out] theDerivArray result array of derivatives (with size (theDerivative+1)*(PntDim+1), 0129 //! where PntDim = 2 or 3 is a dimension of the curve) 0130 void CalculateDerivative(const Standard_Real& theParameter, 0131 const Standard_Integer& theDerivative, 0132 Standard_Real& theDerivArray) const; 0133 0134 // copying is prohibited 0135 BSplCLib_Cache (const BSplCLib_Cache&); 0136 void operator = (const BSplCLib_Cache&); 0137 0138 private: 0139 Standard_Boolean myIsRational; //!< identifies the rationality of Bezier/B-spline curve 0140 BSplCLib_CacheParams myParams; //!< cache parameters 0141 Handle(TColStd_HArray2OfReal) myPolesWeights; //!< array of poles and weights of calculated cache 0142 // the array has following structure: 0143 // x1 y1 [z1] [w1] 0144 // x2 y2 [z2] [w2] etc 0145 // for 2D-curves there is no z conponent, for non-rational curves there is no weight 0146 }; 0147 0148 DEFINE_STANDARD_HANDLE(BSplCLib_Cache, Standard_Transient) 0149 0150 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |