Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 10:03:07

0001 // Created on: 1998-05-12
0002 // Created by: Philippe NOUAILLE
0003 // Copyright (c) 1998-1999 Matra Datavision
0004 // Copyright (c) 1999-2014 OPEN CASCADE SAS
0005 //
0006 // This file is part of Open CASCADE Technology software library.
0007 //
0008 // This library is free software; you can redistribute it and/or modify it under
0009 // the terms of the GNU Lesser General Public License version 2.1 as published
0010 // by the Free Software Foundation, with special exception defined in the file
0011 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
0012 // distribution for complete text of the license and disclaimer of any warranty.
0013 //
0014 // Alternatively, this file may be used under the terms of Open CASCADE
0015 // commercial license or contractual agreement.
0016 
0017 #ifndef _BRepBlend_AppFuncRoot_HeaderFile
0018 #define _BRepBlend_AppFuncRoot_HeaderFile
0019 
0020 #include <Standard.hxx>
0021 #include <Standard_Type.hxx>
0022 
0023 #include <math_Vector.hxx>
0024 #include <Blend_Point.hxx>
0025 #include <gp_Pnt.hxx>
0026 #include <Approx_SweepFunction.hxx>
0027 #include <TColgp_Array1OfPnt.hxx>
0028 #include <TColgp_Array1OfPnt2d.hxx>
0029 #include <TColStd_Array1OfReal.hxx>
0030 #include <TColgp_Array1OfVec.hxx>
0031 #include <TColgp_Array1OfVec2d.hxx>
0032 #include <Standard_Integer.hxx>
0033 #include <TColStd_Array1OfInteger.hxx>
0034 #include <GeomAbs_Shape.hxx>
0035 class BRepBlend_Line;
0036 class Blend_AppFunction;
0037 
0038 
0039 class BRepBlend_AppFuncRoot;
0040 DEFINE_STANDARD_HANDLE(BRepBlend_AppFuncRoot, Approx_SweepFunction)
0041 
0042 //! Function to approximate by AppSurface
0043 class BRepBlend_AppFuncRoot : public Approx_SweepFunction
0044 {
0045 
0046 public:
0047 
0048   
0049   //! compute the section for v = param
0050   Standard_EXPORT virtual Standard_Boolean D0 (const Standard_Real Param, const Standard_Real First, const Standard_Real Last, TColgp_Array1OfPnt& Poles, TColgp_Array1OfPnt2d& Poles2d, TColStd_Array1OfReal& Weigths) Standard_OVERRIDE;
0051   
0052   //! compute the first  derivative in v direction  of the
0053   //! section for v =  param
0054   Standard_EXPORT virtual Standard_Boolean D1 (const Standard_Real Param, const Standard_Real First, const Standard_Real Last, TColgp_Array1OfPnt& Poles, TColgp_Array1OfVec& DPoles, TColgp_Array1OfPnt2d& Poles2d, TColgp_Array1OfVec2d& DPoles2d, TColStd_Array1OfReal& Weigths, TColStd_Array1OfReal& DWeigths) Standard_OVERRIDE;
0055   
0056   //! compute the second derivative  in v direction of the
0057   //! section  for v = param
0058   Standard_EXPORT virtual Standard_Boolean D2 (const Standard_Real Param, const Standard_Real First, const Standard_Real Last, TColgp_Array1OfPnt& Poles, TColgp_Array1OfVec& DPoles, TColgp_Array1OfVec& D2Poles, TColgp_Array1OfPnt2d& Poles2d, TColgp_Array1OfVec2d& DPoles2d, TColgp_Array1OfVec2d& D2Poles2d, TColStd_Array1OfReal& Weigths, TColStd_Array1OfReal& DWeigths, TColStd_Array1OfReal& D2Weigths) Standard_OVERRIDE;
0059   
0060   //! get the number of 2d curves to  approximate.
0061   Standard_EXPORT virtual Standard_Integer Nb2dCurves() const Standard_OVERRIDE;
0062   
0063   //! get the format of an  section
0064   Standard_EXPORT virtual void SectionShape (Standard_Integer& NbPoles, Standard_Integer& NbKnots, Standard_Integer& Degree) const Standard_OVERRIDE;
0065   
0066   //! get the Knots of the section
0067   Standard_EXPORT virtual void Knots (TColStd_Array1OfReal& TKnots) const Standard_OVERRIDE;
0068   
0069   //! get the Multplicities of the section
0070   Standard_EXPORT virtual void Mults (TColStd_Array1OfInteger& TMults) const Standard_OVERRIDE;
0071   
0072   //! Returns if the section is rationnal or not
0073   Standard_EXPORT virtual Standard_Boolean IsRational() const Standard_OVERRIDE;
0074   
0075   //! Returns  the number  of  intervals for  continuity
0076   //! <S>. May be one if Continuity(me) >= <S>
0077   Standard_EXPORT virtual Standard_Integer NbIntervals (const GeomAbs_Shape S) const Standard_OVERRIDE;
0078   
0079   //! Stores in <T> the  parameters bounding the intervals
0080   //! of continuity <S>.
0081   //!
0082   //! The array must provide  enough room to  accommodate
0083   //! for the parameters. i.e. T.Length() > NbIntervals()
0084   Standard_EXPORT virtual void Intervals (TColStd_Array1OfReal& T, const GeomAbs_Shape S) const Standard_OVERRIDE;
0085   
0086   //! Sets the bounds of the parametric interval on
0087   //! the fonction
0088   //! This determines the derivatives in these values if the
0089   //! function is not Cn.
0090   Standard_EXPORT virtual void SetInterval (const Standard_Real First, const Standard_Real Last) Standard_OVERRIDE;
0091   
0092   //! Returns the resolutions in the  sub-space 2d <Index> --
0093   //! This information is usfull to find an good tolerance in
0094   //! 2d approximation
0095   Standard_EXPORT virtual void Resolution (const Standard_Integer Index, const Standard_Real Tol, Standard_Real& TolU, Standard_Real& TolV) const Standard_OVERRIDE;
0096   
0097   //! Returns the tolerance to reach in approximation
0098   //! to respecte
0099   //! BoundTol error at the Boundary
0100   //! AngleTol tangent error at the Boundary (in radian)
0101   //! SurfTol error inside the surface.
0102   Standard_EXPORT virtual void GetTolerance (const Standard_Real BoundTol, const Standard_Real SurfTol, const Standard_Real AngleTol, TColStd_Array1OfReal& Tol3d) const Standard_OVERRIDE;
0103   
0104   //! Is usfull, if (me) have to  be run numerical
0105   //! algorithme to perform D0, D1 or D2
0106   Standard_EXPORT virtual void SetTolerance (const Standard_Real Tol3d, const Standard_Real Tol2d) Standard_OVERRIDE;
0107   
0108   //! Get    the   barycentre of   Surface.   An   very  poor
0109   //! estimation is sufficient. This information is useful
0110   //! to perform well conditioned rational approximation.
0111   Standard_EXPORT virtual gp_Pnt BarycentreOfSurf() const Standard_OVERRIDE;
0112   
0113   //! Returns the   length of the maximum section. This
0114   //! information is useful to perform well conditioned rational
0115   //! approximation.
0116   Standard_EXPORT virtual Standard_Real MaximalSection() const Standard_OVERRIDE;
0117   
0118   //! Compute the minimal value of weight for each poles
0119   //! of all  sections.  This information is  useful to
0120   //! perform well conditioned rational approximation.
0121   Standard_EXPORT virtual void GetMinimalWeight (TColStd_Array1OfReal& Weigths) const Standard_OVERRIDE;
0122   
0123   Standard_EXPORT virtual void Point (const Blend_AppFunction& Func, const Standard_Real Param, const math_Vector& Sol, Blend_Point& Pnt) const = 0;
0124   
0125   Standard_EXPORT virtual void Vec (math_Vector& Sol, const Blend_Point& Pnt) const = 0;
0126 
0127 
0128 
0129 
0130   DEFINE_STANDARD_RTTIEXT(BRepBlend_AppFuncRoot,Approx_SweepFunction)
0131 
0132 protected:
0133 
0134   
0135   Standard_EXPORT BRepBlend_AppFuncRoot(Handle(BRepBlend_Line)& Line, Blend_AppFunction& Func, const Standard_Real Tol3d, const Standard_Real Tol2d);
0136 
0137 
0138 
0139 private:
0140 
0141   
0142   Standard_EXPORT Standard_Boolean SearchPoint (Blend_AppFunction& Func, const Standard_Real Param, Blend_Point& Pnt);
0143   
0144   Standard_EXPORT Standard_Boolean SearchLocation (const Standard_Real Param, const Standard_Integer FirstIndex, const Standard_Integer LastIndex, Standard_Integer& ParamIndex) const;
0145 
0146   Handle(BRepBlend_Line) myLine;
0147   Standard_Address myFunc;
0148   math_Vector myTolerance;
0149   Blend_Point myPnt;
0150   gp_Pnt myBary;
0151   math_Vector X1;
0152   math_Vector X2;
0153   math_Vector XInit;
0154   math_Vector Sol;
0155 
0156 
0157 };
0158 
0159 
0160 
0161 
0162 
0163 
0164 
0165 #endif // _BRepBlend_AppFuncRoot_HeaderFile