Back to home page

EIC code displayed by LXR

 
 

    


Warning, /include/opencascade/AppParCurves_Function.gxx is written in an unsupported language. File is not indexed.

0001 // Copyright (c) 1995-1999 Matra Datavision
0002 // Copyright (c) 1999-2014 OPEN CASCADE SAS
0003 //
0004 // This file is part of Open CASCADE Technology software library.
0005 //
0006 // This library is free software; you can redistribute it and/or modify it under
0007 // the terms of the GNU Lesser General Public License version 2.1 as published
0008 // by the Free Software Foundation, with special exception defined in the file
0009 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
0010 // distribution for complete text of the license and disclaimer of any warranty.
0011 //
0012 // Alternatively, this file may be used under the terms of Open CASCADE
0013 // commercial license or contractual agreement.
0014 
0015 // Lpa, le 20/09/91
0016 
0017 
0018 // Calcul de la valeur de F et grad_F, connaissant le parametrage.
0019 // Cette fonction, appelee par le gradient conjugue, calcul F et 
0020 // DF(ui, Poles(ui)) ce qui implique un calcul des nouveaux poles 
0021 //  a chaque appel.
0022 
0023 #define No_Standard_RangeError
0024 #define No_Standard_OutOfRange
0025 
0026 
0027 
0028 #include <AppParCurves_MultiCurve.hxx>
0029 #include <AppParCurves_MultiPoint.hxx>
0030 #include <TColStd_HArray1OfInteger.hxx>
0031 #include <gp_Pnt.hxx>
0032 #include <gp_Pnt2d.hxx>
0033 #include <gp_Vec.hxx>
0034 #include <gp_Vec2d.hxx>
0035 #include <TColgp_Array1OfPnt.hxx>
0036 #include <TColgp_Array1OfPnt2d.hxx>
0037 #include <AppParCurves_ConstraintCouple.hxx>
0038 
0039 AppParCurves_Function::
0040   AppParCurves_Function(const MultiLine& SSP,
0041          const Standard_Integer FirstPoint,
0042          const Standard_Integer LastPoint,
0043          const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
0044          const math_Vector& Parameters,
0045          const Standard_Integer Deg) :
0046          MyMultiLine(SSP),
0047          MyMultiCurve(Deg+1),          
0048          myParameters(Parameters.Lower(), Parameters.Upper()),
0049          ValGrad_F(FirstPoint, LastPoint),
0050          MyF(FirstPoint, LastPoint, 
0051              1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
0052          PTLX(FirstPoint, LastPoint, 
0053              1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
0054          PTLY(FirstPoint, LastPoint, 
0055              1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
0056          PTLZ(FirstPoint, LastPoint, 
0057              1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
0058          A(FirstPoint, LastPoint, 1, Deg+1),
0059          DA(FirstPoint, LastPoint, 1, Deg+1),
0060          MyLeastSquare(SSP, FirstPoint, LastPoint, 
0061                        FirstConstraint(TheConstraints, FirstPoint),
0062                        LastConstraint(TheConstraints, LastPoint), Deg+1)
0063 {
0064   Standard_Integer i;
0065   for (i=Parameters.Lower(); i<=Parameters.Upper();i++)
0066     myParameters(i)=Parameters(i);
0067   FirstP = FirstPoint;
0068   LastP = LastPoint;
0069   myConstraints = TheConstraints;
0070   NbP = LastP-FirstP+1;
0071   Adeb = FirstP;
0072   Afin = LastP;
0073   Degre = Deg;
0074   Contraintes = Standard_False;
0075   Standard_Integer myindex;
0076   Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
0077   AppParCurves_ConstraintCouple mycouple;
0078   AppParCurves_Constraint Cons;
0079 
0080   for (i = low; i <= upp; i++) {
0081     mycouple = TheConstraints->Value(i);
0082     Cons = mycouple.Constraint();
0083     myindex = mycouple.Index();
0084     if (myindex == FirstP) {
0085       if (Cons >= 1) Adeb = Adeb+1;
0086     }
0087     else if (myindex == LastP) {
0088       if (Cons >= 1) Afin = Afin-1;
0089     }
0090     else {
0091       if (Cons >= 1) Contraintes = Standard_True;
0092     }
0093   }
0094 
0095   Standard_Integer nb3d = ToolLine::NbP3d(SSP);
0096   Standard_Integer nb2d = ToolLine::NbP2d(SSP);
0097   Standard_Integer mynb3d= nb3d, mynb2d=nb2d;
0098   if (nb3d == 0) mynb3d = 1;
0099   if (nb2d == 0) mynb2d = 1;
0100 
0101   NbCu = nb3d+nb2d;
0102   tabdim = new TColStd_HArray1OfInteger(0, NbCu-1);
0103 
0104   if (Contraintes) {
0105     for (i = 1; i <= NbCu; i++) {
0106       if (i <= nb3d) tabdim->SetValue(i-1, 3);
0107       else tabdim->SetValue(i-1, 2);
0108     }
0109 
0110     TColgp_Array1OfPnt TabP(1, mynb3d);
0111     TColgp_Array1OfPnt2d TabP2d(1, mynb2d);
0112     
0113     for ( i = FirstP; i <= LastP; i++) {
0114       if (nb3d != 0 && nb2d != 0) ToolLine::Value(SSP, i, TabP, TabP2d);
0115       else if (nb3d != 0)         ToolLine::Value(SSP, i, TabP);
0116       else                        ToolLine::Value(SSP, i, TabP2d);
0117       for (Standard_Integer j = 1; j <= NbCu; j++) {
0118         if (tabdim->Value(j-1) == 3) {
0119           TabP(j).Coord(PTLX(i, j), PTLY(i, j),PTLZ(i, j));
0120         }
0121         else {
0122           TabP2d(j).Coord(PTLX(i, j), PTLY(i, j));
0123         }
0124       }
0125     }
0126   }
0127 }
0128 
0129 
0130 AppParCurves_Constraint AppParCurves_Function::FirstConstraint
0131   (const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
0132    const Standard_Integer FirstPoint) const
0133 {
0134   Standard_Integer i, myindex;
0135   Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
0136   AppParCurves_ConstraintCouple mycouple;
0137   AppParCurves_Constraint Cons = AppParCurves_NoConstraint;
0138 
0139   for (i = low; i <= upp; i++) {
0140     mycouple = TheConstraints->Value(i);
0141     Cons = mycouple.Constraint();
0142     myindex = mycouple.Index();
0143     if (myindex == FirstPoint) {
0144       break;
0145     }
0146   }
0147   return Cons;
0148 }
0149 
0150 
0151 AppParCurves_Constraint AppParCurves_Function::LastConstraint
0152   (const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
0153    const Standard_Integer LastPoint) const
0154 {
0155   Standard_Integer i, myindex;
0156   Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
0157   AppParCurves_ConstraintCouple mycouple;
0158   AppParCurves_Constraint Cons = AppParCurves_NoConstraint;
0159 
0160   for (i = low; i <= upp; i++) {
0161     mycouple = TheConstraints->Value(i);
0162     Cons = mycouple.Constraint();
0163     myindex = mycouple.Index();
0164     if (myindex == LastPoint) {
0165       break;
0166     }
0167   }
0168   return Cons;
0169 }
0170 
0171 
0172 
0173 
0174 Standard_Boolean AppParCurves_Function::Value (const math_Vector& X, 
0175                                                Standard_Real& F) {
0176 
0177   myParameters = X;
0178 
0179   // Resolution moindres carres:
0180   // ===========================
0181   MyLeastSquare.Perform(myParameters);
0182   if (!(MyLeastSquare.IsDone())) { 
0183     Done = Standard_False;
0184     return Standard_False;
0185   }
0186   if (!Contraintes) {
0187     MyLeastSquare.Error(FVal, ERR3d, ERR2d);
0188     F = FVal;
0189   }
0190 
0191   // Resolution avec contraintes:
0192   // ============================
0193   else { 
0194     Standard_Integer Npol = Degre+1;
0195 //    Standard_Boolean Ext = Standard_True;
0196     Standard_Integer Ci, i, j, dimen;
0197     Standard_Real AA, BB, CC, AIJ, FX, FY, FZ, Fi;
0198     math_Vector PTCXCI(1, Npol), PTCYCI(1, Npol), PTCZCI(1, Npol);
0199     ERR3d = ERR2d = 0.0;
0200     
0201     MyMultiCurve = MyLeastSquare.BezierValue();
0202 
0203     A = MyLeastSquare.FunctionMatrix();
0204     ResolCons Resol(MyMultiLine, MyMultiCurve, FirstP, LastP, myConstraints,
0205                     A, MyLeastSquare.DerivativeFunctionMatrix());
0206     if (!Resol.IsDone()) {
0207       Done = Standard_False;
0208       return Standard_False;
0209     }
0210 
0211     // Calcul de F = Sum||C(ui)-Ptli||2  sur toutes les courbes :
0212     // ========================================================================
0213     FVal = 0.0;
0214     
0215     for (Ci = 1; Ci <= NbCu; Ci++) {
0216       dimen = tabdim->Value(Ci-1);
0217       for (j = 1; j <= Npol; j++) {
0218         if (dimen == 3){ 
0219           MyMultiCurve.Value(j).Point(Ci).Coord(PTCXCI(j),PTCYCI(j),PTCZCI(j));
0220         }
0221         else{ 
0222           MyMultiCurve.Value(j).Point2d(Ci).Coord(PTCXCI(j), PTCYCI(j));
0223         }
0224       }
0225       
0226       // Calcul de F:
0227       // ============
0228       for (i = Adeb; i <= Afin; i++) {
0229         AA = 0.0; BB = 0.0; CC = 0.0;
0230         for (j = 1; j <= Npol; j++) {
0231           AIJ = A(i, j);
0232           AA += AIJ*PTCXCI(j);
0233           BB += AIJ*PTCYCI(j);
0234           if (dimen == 3) { 
0235             CC += AIJ*PTCZCI(j);
0236           }
0237         }
0238         FX = AA-PTLX(i, Ci);
0239         FY = BB-PTLY(i, Ci);
0240         MyF(i,Ci) = FX*FX + FY*FY;
0241         if (dimen == 3) {
0242           FZ = CC-PTLZ(i,Ci);
0243           MyF(i, Ci) += FZ*FZ;
0244           Fi = MyF(i, Ci);
0245           if (Sqrt(Fi) > ERR3d) ERR3d = Sqrt(Fi);
0246         }
0247         else {
0248           Fi = MyF(i, Ci);
0249           if (Sqrt(Fi) > ERR2d) ERR2d = Sqrt(Fi);
0250         }
0251         FVal += Fi;
0252       }
0253     }
0254     F = FVal;
0255   }  
0256   return Standard_True;
0257 }
0258 
0259 
0260 
0261 
0262 void AppParCurves_Function::Perform(const math_Vector& X) {
0263   Standard_Integer j;
0264 
0265   myParameters = X;
0266   // Resolution moindres carres:
0267   // ===========================
0268   MyLeastSquare.Perform(myParameters);
0269 
0270   if (!(MyLeastSquare.IsDone())) { 
0271     Done = Standard_False;
0272     return;
0273   }
0274 
0275   for(j = myParameters.Lower(); j <= myParameters.Upper(); j++) {
0276     ValGrad_F(j) = 0.0;
0277   }
0278 
0279   if (!Contraintes) {
0280     MyLeastSquare.ErrorGradient(ValGrad_F, FVal, ERR3d, ERR2d);
0281   }
0282   else {
0283     Standard_Integer Pi, Ci, i, k, dimen;
0284     Standard_Integer  Npol = Degre+1;
0285     Standard_Real Scal, AA, BB, CC, DAA, DBB, DCC;
0286     Standard_Real FX, FY, FZ, AIJ, DAIJ, px, py, pz, Fi;
0287     AppParCurves_Constraint Cons=AppParCurves_NoConstraint;
0288     math_Matrix Grad_F(FirstP, LastP, 1, NbCu, 0.0);
0289     math_Vector PTCXCI(1, Npol), PTCYCI(1, Npol), PTCZCI(1, Npol);
0290     math_Vector PTCOXCI(1, Npol), PTCOYCI(1, Npol), PTCOZCI(1, Npol);
0291 //    Standard_Boolean Ext = Standard_True;
0292     ERR3d = ERR2d = 0.0;
0293 
0294     math_Matrix PTCOX(1, Npol, 1, NbCu), PTCOY(1, Npol, 1, NbCu), 
0295                 PTCOZ(1, Npol,1, NbCu);
0296     math_Matrix PTCX(1, Npol, 1, NbCu), PTCY(1, Npol, 1, NbCu), 
0297                 PTCZ(1, Npol,1, NbCu);
0298     Standard_Integer Inc;
0299 
0300     MyMultiCurve = MyLeastSquare.BezierValue();
0301 
0302     for (Ci =1; Ci <= NbCu; Ci++) {
0303       dimen = tabdim->Value(Ci-1);
0304       for (j = 1; j <= Npol; j++) {
0305         if (dimen == 3){ 
0306           MyMultiCurve.Value(j).Point(Ci).Coord(PTCOX(j, Ci),
0307                                                 PTCOY(j, Ci),
0308                                                 PTCOZ(j, Ci));
0309         }
0310         else{ 
0311           MyMultiCurve.Value(j).Point2d(Ci).Coord(PTCOX(j, Ci), PTCOY(j, Ci));
0312           PTCOZ(j, Ci) = 0.0;
0313         }
0314       }
0315     }
0316 
0317     A = MyLeastSquare.FunctionMatrix();
0318     DA = MyLeastSquare.DerivativeFunctionMatrix();
0319     
0320     // Resolution avec contraintes:
0321     // ============================
0322     
0323     ResolCons Resol(MyMultiLine, MyMultiCurve, FirstP, LastP, 
0324                     myConstraints, A, DA);
0325     if (!Resol.IsDone()) {
0326       Done = Standard_False;
0327       return;
0328     }
0329     
0330     
0331     // Calcul de F = Sum||C(ui)-Ptli||2 et du gradient non contraint de F pour
0332     // chaque point PointIndex.
0333     // ========================================================================
0334     FVal = 0.0;
0335     for(j = FirstP; j <= LastP; j++) {
0336       ValGrad_F(j) = 0.0;
0337     }
0338 
0339     math_Matrix TrA(A.LowerCol(), A.UpperCol(), A.LowerRow(), A.UpperRow());
0340     math_Matrix TrDA(DA.LowerCol(), DA.UpperCol(), DA.LowerRow(), DA.UpperRow());
0341     math_Matrix RESTM(A.LowerCol(), A.UpperCol(), A.LowerCol(), A.UpperCol());
0342 
0343     const math_Matrix& K = Resol.ConstraintMatrix();
0344     const math_Matrix& DK = Resol.ConstraintDerivative(MyMultiLine, X, Degre, DA);
0345     math_Matrix TK(K.LowerCol(), K.UpperCol(), K.LowerRow(), K.UpperRow());
0346     TK = K.Transposed();
0347     const math_Vector& Vardua = Resol.Duale();
0348     math_Matrix KK(K.LowerCol(), K.UpperCol(), Vardua.Lower(), Vardua.Upper());
0349     KK = (K.Transposed())*(Resol.InverseMatrix());
0350     math_Matrix DTK(DK.LowerCol(), DK.UpperCol(), DK.LowerRow(), DK.UpperRow());
0351     DTK = DK.Transposed();
0352     TrA = A.Transposed();
0353     TrDA = DA.Transposed();
0354     RESTM = ((A.Transposed()*A).Inverse());
0355 
0356     math_Vector DPTCO(1, K.ColNumber());
0357     math_Matrix DPTCO1(FirstP, LastP, 1, K.ColNumber());
0358     math_Vector DKPTC(1, K.RowNumber());
0359 
0360 
0361 
0362 
0363     FVal = 0.0;
0364     for (Ci = 1; Ci <= NbCu; Ci++) {
0365       dimen = tabdim->Value(Ci-1);
0366       for (j = 1; j <= Npol; j++) {
0367         if (dimen == 3){ 
0368           MyMultiCurve.Value(j).Point(Ci).Coord(PTCX(j, Ci), 
0369                                                 PTCY(j, Ci), 
0370                                                 PTCZ(j, Ci));
0371         }
0372         else{ 
0373           MyMultiCurve.Value(j).Point2d(Ci).Coord(PTCX(j, Ci), PTCY(j,Ci));
0374           PTCZ(j, Ci) = 0.0;
0375         }
0376       }
0377     }
0378 
0379     
0380     // Calcul du gradient sans contraintes:
0381     // ====================================
0382 
0383     for (Ci = 1; Ci <= NbCu; Ci++) {
0384       dimen = tabdim->Value(Ci-1);
0385       for (i = Adeb; i <= Afin; i++) {
0386         AA = 0.0; BB = 0.0; CC = 0.0; DAA = 0.0; DBB = 0.0; DCC = 0.0;
0387         for (j = 1; j <= Npol; j++) {
0388           AIJ = A(i, j); DAIJ = DA(i, j);
0389           px = PTCX(j, Ci); py = PTCY(j, Ci);
0390           AA += AIJ*px;  BB += AIJ*py;
0391           DAA += DAIJ*px;  DBB += DAIJ*py;
0392           if (dimen == 3) { 
0393             pz = PTCZ(j, Ci);
0394             CC += AIJ*pz;  DCC += DAIJ*pz;
0395           }
0396         }
0397         FX = AA-PTLX(i, Ci);
0398         FY = BB-PTLY(i, Ci);
0399         MyF(i,Ci) = FX*FX + FY*FY;
0400         Grad_F(i, Ci) = 2.0*(DAA*FX + DBB*FY);
0401         if (dimen == 3) {
0402           FZ = CC-PTLZ(i,Ci);
0403           MyF(i, Ci) += FZ*FZ;
0404           Grad_F(i, Ci) += 2.0*DCC*FZ;
0405           Fi = MyF(i, Ci);
0406           if (Sqrt(Fi) > ERR3d) ERR3d = Sqrt(Fi);
0407         }
0408         else {
0409           Fi = MyF(i, Ci);
0410           if (Sqrt(Fi) > ERR2d) ERR2d = Sqrt(Fi);
0411         }
0412         FVal += Fi;
0413         ValGrad_F(i) += Grad_F(i, Ci);
0414       }
0415     }
0416 
0417 
0418     // Calcul de DK*PTC:
0419     // =================
0420     for (i = 1; i <= K.RowNumber(); i++) {
0421       Inc = 0;
0422       for (Ci = 1; Ci <= NbCu; Ci++) {
0423         dimen = tabdim->Value(Ci-1);
0424         DKPTC(i) = 0.0;
0425         for (j = 1; j <= Npol; j++) {
0426           DKPTC(i) += DK(i, j+Inc)*PTCX(j, Ci)+ DK(i, j+Inc+Npol)*PTCY(j, Ci);
0427           if (dimen == 3) {
0428             DKPTC(i) += DK(i, j+Inc+2*Npol)*PTCZ(j, Ci);
0429           }
0430         }
0431         if (dimen == 3) Inc = Inc +3*Npol;
0432         else Inc = Inc +2*Npol;
0433       }
0434     }
0435     
0436     math_Vector DERR(DTK.LowerRow(), DTK.UpperRow());
0437     DERR = (DTK)*Vardua-KK* ((DKPTC) + K*(DTK)*Vardua);
0438 
0439     // rajout du gradient avec contraintes:
0440     // ====================================
0441     // dPTCO1/duk = [d(TA)/duk*[A*PTCO-PTL] + TA*dA/duk*PTCO]
0442 
0443 
0444     Inc = 0;
0445 
0446     math_Vector Errx(A.LowerRow(), A.UpperRow());
0447     math_Vector Erry(A.LowerRow(), A.UpperRow());
0448     math_Vector Errz(A.LowerRow(), A.UpperRow());
0449     math_Vector Scalx(DA.LowerRow(), DA.UpperRow());
0450     math_Vector Scaly(DA.LowerRow(), DA.UpperRow());
0451     math_Vector Scalz(DA.LowerRow(), DA.UpperRow());
0452     math_Vector Erruzax(PTCXCI.Lower(), PTCXCI.Upper());
0453     math_Vector Erruzay(PTCYCI.Lower(), PTCYCI.Upper());
0454     math_Vector Erruzaz(PTCZCI.Lower(), PTCZCI.Upper());
0455     math_Vector TrDAPI(TrDA.LowerRow(), TrDA.UpperRow());
0456     math_Vector TrAPI(TrA.LowerRow(), TrA.UpperRow());
0457 
0458     for (Ci = 1; Ci <= NbCu; Ci++) {
0459       dimen = tabdim->Value(Ci-1);
0460       PTCOXCI = PTCOX.Col(Ci);
0461       PTCOYCI = PTCOY.Col(Ci);
0462       PTCOZCI = PTCOZ.Col(Ci);
0463       PTCXCI = PTCX.Col(Ci);
0464       PTCYCI = PTCY.Col(Ci);
0465       PTCZCI = PTCZ.Col(Ci);
0466 
0467 
0468       Errx = (A*PTCOXCI - PTLX.Col(Ci));
0469       Erry = (A*PTCOYCI - PTLY.Col(Ci));
0470       Errz = (A*PTCOZCI - PTLZ.Col(Ci));
0471       Scalx = (DA*PTCOXCI);   // Scal = DA * PTCO
0472       Scaly = (DA*PTCOYCI);
0473       Scalz = (DA*PTCOZCI);
0474       Erruzax = (PTCXCI - PTCOXCI);
0475       Erruzay = (PTCYCI - PTCOYCI);
0476       Erruzaz = (PTCZCI - PTCOZCI);
0477       
0478       for (Pi = FirstP; Pi <= LastP; Pi++) {
0479         TrDAPI = (TrDA.Col(Pi));
0480         TrAPI = (TrA.Col(Pi));
0481         Standard_Real Taa = TrAPI*A.Row(Pi);
0482         Scal = 0.0;
0483         for (j = 1; j <= Npol; j++) {
0484           DPTCO1(Pi, j + Inc) = (TrDAPI*Errx(Pi)+TrAPI*Scalx(Pi))(j);
0485           DPTCO1(Pi, j + Inc+ Npol) = (TrDAPI*Erry(Pi)+TrAPI*Scaly(Pi))(j);
0486           Scal += DPTCO1(Pi, j+Inc)* Taa*Erruzax(j) + DPTCO1(Pi, j+Inc+Npol)*Taa*Erruzay(j);
0487           if (dimen == 3) {
0488             DPTCO1(Pi, j + Inc+ 2*Npol) = (TrDAPI*Errz(Pi)+TrAPI*Scalz(Pi))(j);
0489             Scal += DPTCO1(Pi, j+Inc+2*Npol)*Taa*Erruzaz(j);
0490           }
0491         }
0492         ValGrad_F(Pi) = ValGrad_F(Pi) - 2*Scal;
0493       }
0494       if (dimen == 3) Inc = Inc + 3*Npol;
0495       else Inc = Inc +2*Npol;
0496     }
0497 
0498 
0499     // on calcule DPTCO = - RESTM * DPTCO1:
0500     
0501     // Calcul de DPTCO/duk:
0502     // dPTCO/duk = -Inv(T(A)*A)*[d(TA)/duk*[A*PTCO-PTL] + TA*dA/duk*PTCO]
0503 
0504     Standard_Integer low=myConstraints->Lower(), upp=myConstraints->Upper();
0505     Inc = 0;
0506     for (Pi = FirstP; Pi <= LastP; Pi++) {
0507       for (i = low; i <= upp; i++) {
0508         if (myConstraints->Value(i).Index() == Pi) {
0509           Cons = myConstraints->Value(i).Constraint();
0510           break;
0511         }
0512       }
0513       if (Cons >= 1) {
0514         Inc = 0;
0515         for (Ci = 1; Ci <= NbCu; Ci++) {
0516           dimen = tabdim->Value(Ci-1);
0517           for (j = 1; j <= Npol; j++) {
0518             DPTCO(j+Inc) = 0.0;
0519             DPTCO(j+Inc+Npol) = 0.0;
0520             if (dimen == 3) DPTCO(j+Inc+2*Npol) = 0.0;
0521             for (k = 1; k <= Npol; k++) {
0522               DPTCO(j+Inc) = DPTCO(j+Inc) -RESTM(j, k) * DPTCO1(Pi, j+Inc);
0523               DPTCO(j+Inc+Npol)=DPTCO(j+Inc+Npol)-RESTM(j, k)*DPTCO1(Pi,j+Inc+Npol);
0524               if (dimen == 3) {
0525                 DPTCO(j+Inc+2*Npol) = DPTCO(j+Inc+2*Npol) 
0526                   -RESTM(j, k) * DPTCO1(Pi, j+Inc+2*Npol);
0527               }
0528             }
0529           }
0530           if (dimen == 3) Inc += 3*Npol;
0531           else Inc += 2*Npol;
0532         }
0533         
0534         DERR = DERR-KK*K*DPTCO;
0535         
0536         Inc = 0;
0537         for (Ci = 1; Ci <= NbCu; Ci++) {
0538           dimen = tabdim->Value(Ci-1);
0539           PTCOXCI = PTCOX.Col(Ci);
0540           PTCOYCI = PTCOY.Col(Ci);
0541           PTCOZCI = PTCOZ.Col(Ci);
0542           PTCXCI = PTCX.Col(Ci);
0543           PTCYCI = PTCY.Col(Ci);
0544           PTCZCI = PTCZ.Col(Ci);
0545           Erruzax = (PTCXCI - PTCOXCI);
0546           Erruzay = (PTCYCI - PTCOYCI);
0547           Erruzaz = (PTCZCI - PTCOZCI);
0548           Scal = 0.0;
0549           
0550           for (j = 1; j <= Npol ; j++) {
0551             Scal = (A(Pi, j)*Erruzax(j)) * (A(Pi, j)*DERR(j+Inc)) + 
0552               (A(Pi, j)*Erruzay(j)) * (A(Pi, j)*DERR(j+Inc+Npol));
0553             if (dimen == 3) {
0554               Scal += (A(Pi, j)*Erruzax(j)) * (A(Pi, j)*DERR(j+Inc+2*Npol)); 
0555             }
0556           }
0557           
0558           ValGrad_F(Pi) = ValGrad_F(Pi) + 2*Scal;
0559           if (dimen == 3) Inc = Inc +3*Npol;
0560           else Inc = Inc + 2*Npol;
0561         }
0562       }
0563     }
0564     
0565   }
0566 }
0567 
0568 
0569 Standard_Integer AppParCurves_Function::NbVariables() const{ 
0570   return NbP;
0571 }
0572 
0573 
0574 Standard_Boolean AppParCurves_Function::Gradient (const math_Vector& X,
0575                                                   math_Vector& G) {
0576 
0577   Perform(X);
0578   G = ValGrad_F;
0579 
0580   return Standard_True;
0581 }
0582 
0583 
0584 Standard_Boolean AppParCurves_Function::Values (const math_Vector& X, 
0585                                                 Standard_Real& F, 
0586                                                 math_Vector& G) {
0587 
0588 
0589   Perform(X);
0590   F = FVal;
0591   G = ValGrad_F;
0592   return Standard_True;
0593 }
0594 
0595 
0596 const AppParCurves_MultiCurve& AppParCurves_Function::CurveValue() {
0597   if (!Contraintes)  MyMultiCurve = MyLeastSquare.BezierValue();
0598   return MyMultiCurve;
0599 }
0600 
0601 
0602 Standard_Real AppParCurves_Function::Error(const Standard_Integer IPoint,
0603                                      const Standard_Integer CurveIndex) const {
0604   return Sqrt(MyF(IPoint, CurveIndex));
0605 }
0606 
0607 Standard_Real AppParCurves_Function::MaxError3d() const
0608 {
0609   return ERR3d;
0610 }
0611 
0612 Standard_Real AppParCurves_Function::MaxError2d() const
0613 {
0614   return ERR2d;
0615 }
0616 
0617 
0618 
0619 const math_Vector& AppParCurves_Function::NewParameters() const
0620 {
0621   return myParameters;
0622 }