![]() |
|
|||
File indexing completed on 2025-02-21 10:05:25
0001 // Copyright 2013 the V8 project authors. All rights reserved. 0002 // Use of this source code is governed by a BSD-style license that can be 0003 // found in the LICENSE file. 0004 0005 #ifndef V8_V8_PLATFORM_H_ 0006 #define V8_V8_PLATFORM_H_ 0007 0008 #include <math.h> 0009 #include <stddef.h> 0010 #include <stdint.h> 0011 #include <stdlib.h> // For abort. 0012 0013 #include <memory> 0014 #include <string> 0015 0016 #include "v8-source-location.h" // NOLINT(build/include_directory) 0017 #include "v8config.h" // NOLINT(build/include_directory) 0018 0019 namespace v8 { 0020 0021 class Isolate; 0022 0023 // Valid priorities supported by the task scheduling infrastructure. 0024 enum class TaskPriority : uint8_t { 0025 /** 0026 * Best effort tasks are not critical for performance of the application. The 0027 * platform implementation should preempt such tasks if higher priority tasks 0028 * arrive. 0029 */ 0030 kBestEffort, 0031 /** 0032 * User visible tasks are long running background tasks that will 0033 * improve performance and memory usage of the application upon completion. 0034 * Example: background compilation and garbage collection. 0035 */ 0036 kUserVisible, 0037 /** 0038 * User blocking tasks are highest priority tasks that block the execution 0039 * thread (e.g. major garbage collection). They must be finished as soon as 0040 * possible. 0041 */ 0042 kUserBlocking, 0043 kMaxPriority = kUserBlocking 0044 }; 0045 0046 /** 0047 * A Task represents a unit of work. 0048 */ 0049 class Task { 0050 public: 0051 virtual ~Task() = default; 0052 0053 virtual void Run() = 0; 0054 }; 0055 0056 /** 0057 * An IdleTask represents a unit of work to be performed in idle time. 0058 * The Run method is invoked with an argument that specifies the deadline in 0059 * seconds returned by MonotonicallyIncreasingTime(). 0060 * The idle task is expected to complete by this deadline. 0061 */ 0062 class IdleTask { 0063 public: 0064 virtual ~IdleTask() = default; 0065 virtual void Run(double deadline_in_seconds) = 0; 0066 }; 0067 0068 /** 0069 * A TaskRunner allows scheduling of tasks. The TaskRunner may still be used to 0070 * post tasks after the isolate gets destructed, but these tasks may not get 0071 * executed anymore. All tasks posted to a given TaskRunner will be invoked in 0072 * sequence. Tasks can be posted from any thread. 0073 */ 0074 class TaskRunner { 0075 public: 0076 /** 0077 * Schedules a task to be invoked by this TaskRunner. The TaskRunner 0078 * implementation takes ownership of |task|. 0079 * 0080 * Embedders should override PostTaskImpl instead of this. 0081 */ 0082 virtual void PostTask(std::unique_ptr<Task> task) { 0083 PostTaskImpl(std::move(task), SourceLocation::Current()); 0084 } 0085 0086 /** 0087 * Schedules a task to be invoked by this TaskRunner. The TaskRunner 0088 * implementation takes ownership of |task|. The |task| cannot be nested 0089 * within other task executions. 0090 * 0091 * Tasks which shouldn't be interleaved with JS execution must be posted with 0092 * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the 0093 * embedder may process tasks in a callback which is called during JS 0094 * execution. 0095 * 0096 * In particular, tasks which execute JS must be non-nestable, since JS 0097 * execution is not allowed to nest. 0098 * 0099 * Requires that |TaskRunner::NonNestableTasksEnabled()| is true. 0100 * 0101 * Embedders should override PostNonNestableTaskImpl instead of this. 0102 */ 0103 virtual void PostNonNestableTask(std::unique_ptr<Task> task) { 0104 PostNonNestableTaskImpl(std::move(task), SourceLocation::Current()); 0105 } 0106 0107 /** 0108 * Schedules a task to be invoked by this TaskRunner. The task is scheduled 0109 * after the given number of seconds |delay_in_seconds|. The TaskRunner 0110 * implementation takes ownership of |task|. 0111 * 0112 * Embedders should override PostDelayedTaskImpl instead of this. 0113 */ 0114 virtual void PostDelayedTask(std::unique_ptr<Task> task, 0115 double delay_in_seconds) { 0116 PostDelayedTaskImpl(std::move(task), delay_in_seconds, 0117 SourceLocation::Current()); 0118 } 0119 0120 /** 0121 * Schedules a task to be invoked by this TaskRunner. The task is scheduled 0122 * after the given number of seconds |delay_in_seconds|. The TaskRunner 0123 * implementation takes ownership of |task|. The |task| cannot be nested 0124 * within other task executions. 0125 * 0126 * Tasks which shouldn't be interleaved with JS execution must be posted with 0127 * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the 0128 * embedder may process tasks in a callback which is called during JS 0129 * execution. 0130 * 0131 * In particular, tasks which execute JS must be non-nestable, since JS 0132 * execution is not allowed to nest. 0133 * 0134 * Requires that |TaskRunner::NonNestableDelayedTasksEnabled()| is true. 0135 * 0136 * Embedders should override PostNonNestableDelayedTaskImpl instead of this. 0137 */ 0138 virtual void PostNonNestableDelayedTask(std::unique_ptr<Task> task, 0139 double delay_in_seconds) { 0140 PostNonNestableDelayedTaskImpl(std::move(task), delay_in_seconds, 0141 SourceLocation::Current()); 0142 } 0143 0144 /** 0145 * Schedules an idle task to be invoked by this TaskRunner. The task is 0146 * scheduled when the embedder is idle. Requires that 0147 * |TaskRunner::IdleTasksEnabled()| is true. Idle tasks may be reordered 0148 * relative to other task types and may be starved for an arbitrarily long 0149 * time if no idle time is available. The TaskRunner implementation takes 0150 * ownership of |task|. 0151 * 0152 * Embedders should override PostIdleTaskImpl instead of this. 0153 */ 0154 virtual void PostIdleTask(std::unique_ptr<IdleTask> task) { 0155 PostIdleTaskImpl(std::move(task), SourceLocation::Current()); 0156 } 0157 0158 /** 0159 * Returns true if idle tasks are enabled for this TaskRunner. 0160 */ 0161 virtual bool IdleTasksEnabled() = 0; 0162 0163 /** 0164 * Returns true if non-nestable tasks are enabled for this TaskRunner. 0165 */ 0166 virtual bool NonNestableTasksEnabled() const { return false; } 0167 0168 /** 0169 * Returns true if non-nestable delayed tasks are enabled for this TaskRunner. 0170 */ 0171 virtual bool NonNestableDelayedTasksEnabled() const { return false; } 0172 0173 TaskRunner() = default; 0174 virtual ~TaskRunner() = default; 0175 0176 TaskRunner(const TaskRunner&) = delete; 0177 TaskRunner& operator=(const TaskRunner&) = delete; 0178 0179 protected: 0180 /** 0181 * Implementation of above methods with an additional `location` argument. 0182 */ 0183 virtual void PostTaskImpl(std::unique_ptr<Task> task, 0184 const SourceLocation& location) {} 0185 virtual void PostNonNestableTaskImpl(std::unique_ptr<Task> task, 0186 const SourceLocation& location) {} 0187 virtual void PostDelayedTaskImpl(std::unique_ptr<Task> task, 0188 double delay_in_seconds, 0189 const SourceLocation& location) {} 0190 virtual void PostNonNestableDelayedTaskImpl(std::unique_ptr<Task> task, 0191 double delay_in_seconds, 0192 const SourceLocation& location) {} 0193 virtual void PostIdleTaskImpl(std::unique_ptr<IdleTask> task, 0194 const SourceLocation& location) {} 0195 }; 0196 0197 /** 0198 * Delegate that's passed to Job's worker task, providing an entry point to 0199 * communicate with the scheduler. 0200 */ 0201 class JobDelegate { 0202 public: 0203 /** 0204 * Returns true if this thread *must* return from the worker task on the 0205 * current thread ASAP. Workers should periodically invoke ShouldYield (or 0206 * YieldIfNeeded()) as often as is reasonable. 0207 * After this method returned true, ShouldYield must not be called again. 0208 */ 0209 virtual bool ShouldYield() = 0; 0210 0211 /** 0212 * Notifies the scheduler that max concurrency was increased, and the number 0213 * of worker should be adjusted accordingly. See Platform::PostJob() for more 0214 * details. 0215 */ 0216 virtual void NotifyConcurrencyIncrease() = 0; 0217 0218 /** 0219 * Returns a task_id unique among threads currently running this job, such 0220 * that GetTaskId() < worker count. To achieve this, the same task_id may be 0221 * reused by a different thread after a worker_task returns. 0222 */ 0223 virtual uint8_t GetTaskId() = 0; 0224 0225 /** 0226 * Returns true if the current task is called from the thread currently 0227 * running JobHandle::Join(). 0228 */ 0229 virtual bool IsJoiningThread() const = 0; 0230 }; 0231 0232 /** 0233 * Handle returned when posting a Job. Provides methods to control execution of 0234 * the posted Job. 0235 */ 0236 class JobHandle { 0237 public: 0238 virtual ~JobHandle() = default; 0239 0240 /** 0241 * Notifies the scheduler that max concurrency was increased, and the number 0242 * of worker should be adjusted accordingly. See Platform::PostJob() for more 0243 * details. 0244 */ 0245 virtual void NotifyConcurrencyIncrease() = 0; 0246 0247 /** 0248 * Contributes to the job on this thread. Doesn't return until all tasks have 0249 * completed and max concurrency becomes 0. When Join() is called and max 0250 * concurrency reaches 0, it should not increase again. This also promotes 0251 * this Job's priority to be at least as high as the calling thread's 0252 * priority. 0253 */ 0254 virtual void Join() = 0; 0255 0256 /** 0257 * Forces all existing workers to yield ASAP. Waits until they have all 0258 * returned from the Job's callback before returning. 0259 */ 0260 virtual void Cancel() = 0; 0261 0262 /* 0263 * Forces all existing workers to yield ASAP but doesn’t wait for them. 0264 * Warning, this is dangerous if the Job's callback is bound to or has access 0265 * to state which may be deleted after this call. 0266 */ 0267 virtual void CancelAndDetach() = 0; 0268 0269 /** 0270 * Returns true if there's any work pending or any worker running. 0271 */ 0272 virtual bool IsActive() = 0; 0273 0274 /** 0275 * Returns true if associated with a Job and other methods may be called. 0276 * Returns false after Join() or Cancel() was called. This may return true 0277 * even if no workers are running and IsCompleted() returns true 0278 */ 0279 virtual bool IsValid() = 0; 0280 0281 /** 0282 * Returns true if job priority can be changed. 0283 */ 0284 virtual bool UpdatePriorityEnabled() const { return false; } 0285 0286 /** 0287 * Update this Job's priority. 0288 */ 0289 virtual void UpdatePriority(TaskPriority new_priority) {} 0290 }; 0291 0292 /** 0293 * A JobTask represents work to run in parallel from Platform::PostJob(). 0294 */ 0295 class JobTask { 0296 public: 0297 virtual ~JobTask() = default; 0298 0299 virtual void Run(JobDelegate* delegate) = 0; 0300 0301 /** 0302 * Controls the maximum number of threads calling Run() concurrently, given 0303 * the number of threads currently assigned to this job and executing Run(). 0304 * Run() is only invoked if the number of threads previously running Run() was 0305 * less than the value returned. In general, this should return the latest 0306 * number of incomplete work items (smallest unit of work) left to process, 0307 * including items that are currently in progress. |worker_count| is the 0308 * number of threads currently assigned to this job which some callers may 0309 * need to determine their return value. Since GetMaxConcurrency() is a leaf 0310 * function, it must not call back any JobHandle methods. 0311 */ 0312 virtual size_t GetMaxConcurrency(size_t worker_count) const = 0; 0313 }; 0314 0315 /** 0316 * A "blocking call" refers to any call that causes the calling thread to wait 0317 * off-CPU. It includes but is not limited to calls that wait on synchronous 0318 * file I/O operations: read or write a file from disk, interact with a pipe or 0319 * a socket, rename or delete a file, enumerate files in a directory, etc. 0320 * Acquiring a low contention lock is not considered a blocking call. 0321 */ 0322 0323 /** 0324 * BlockingType indicates the likelihood that a blocking call will actually 0325 * block. 0326 */ 0327 enum class BlockingType { 0328 // The call might block (e.g. file I/O that might hit in memory cache). 0329 kMayBlock, 0330 // The call will definitely block (e.g. cache already checked and now pinging 0331 // server synchronously). 0332 kWillBlock 0333 }; 0334 0335 /** 0336 * This class is instantiated with CreateBlockingScope() in every scope where a 0337 * blocking call is made and serves as a precise annotation of the scope that 0338 * may/will block. May be implemented by an embedder to adjust the thread count. 0339 * CPU usage should be minimal within that scope. ScopedBlockingCalls can be 0340 * nested. 0341 */ 0342 class ScopedBlockingCall { 0343 public: 0344 virtual ~ScopedBlockingCall() = default; 0345 }; 0346 0347 /** 0348 * The interface represents complex arguments to trace events. 0349 */ 0350 class ConvertableToTraceFormat { 0351 public: 0352 virtual ~ConvertableToTraceFormat() = default; 0353 0354 /** 0355 * Append the class info to the provided |out| string. The appended 0356 * data must be a valid JSON object. Strings must be properly quoted, and 0357 * escaped. There is no processing applied to the content after it is 0358 * appended. 0359 */ 0360 virtual void AppendAsTraceFormat(std::string* out) const = 0; 0361 }; 0362 0363 /** 0364 * V8 Tracing controller. 0365 * 0366 * Can be implemented by an embedder to record trace events from V8. 0367 * 0368 * Will become obsolete in Perfetto SDK build (v8_use_perfetto = true). 0369 */ 0370 class TracingController { 0371 public: 0372 virtual ~TracingController() = default; 0373 0374 // In Perfetto mode, trace events are written using Perfetto's Track Event 0375 // API directly without going through the embedder. However, it is still 0376 // possible to observe tracing being enabled and disabled. 0377 #if !defined(V8_USE_PERFETTO) 0378 /** 0379 * Called by TRACE_EVENT* macros, don't call this directly. 0380 * The name parameter is a category group for example: 0381 * TRACE_EVENT0("v8,parse", "V8.Parse") 0382 * The pointer returned points to a value with zero or more of the bits 0383 * defined in CategoryGroupEnabledFlags. 0384 **/ 0385 virtual const uint8_t* GetCategoryGroupEnabled(const char* name) { 0386 static uint8_t no = 0; 0387 return &no; 0388 } 0389 0390 /** 0391 * Adds a trace event to the platform tracing system. These function calls are 0392 * usually the result of a TRACE_* macro from trace_event_common.h when 0393 * tracing and the category of the particular trace are enabled. It is not 0394 * advisable to call these functions on their own; they are really only meant 0395 * to be used by the trace macros. The returned handle can be used by 0396 * UpdateTraceEventDuration to update the duration of COMPLETE events. 0397 */ 0398 virtual uint64_t AddTraceEvent( 0399 char phase, const uint8_t* category_enabled_flag, const char* name, 0400 const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args, 0401 const char** arg_names, const uint8_t* arg_types, 0402 const uint64_t* arg_values, 0403 std::unique_ptr<ConvertableToTraceFormat>* arg_convertables, 0404 unsigned int flags) { 0405 return 0; 0406 } 0407 virtual uint64_t AddTraceEventWithTimestamp( 0408 char phase, const uint8_t* category_enabled_flag, const char* name, 0409 const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args, 0410 const char** arg_names, const uint8_t* arg_types, 0411 const uint64_t* arg_values, 0412 std::unique_ptr<ConvertableToTraceFormat>* arg_convertables, 0413 unsigned int flags, int64_t timestamp) { 0414 return 0; 0415 } 0416 0417 /** 0418 * Sets the duration field of a COMPLETE trace event. It must be called with 0419 * the handle returned from AddTraceEvent(). 0420 **/ 0421 virtual void UpdateTraceEventDuration(const uint8_t* category_enabled_flag, 0422 const char* name, uint64_t handle) {} 0423 #endif // !defined(V8_USE_PERFETTO) 0424 0425 class TraceStateObserver { 0426 public: 0427 virtual ~TraceStateObserver() = default; 0428 virtual void OnTraceEnabled() = 0; 0429 virtual void OnTraceDisabled() = 0; 0430 }; 0431 0432 /** 0433 * Adds tracing state change observer. 0434 * Does nothing in Perfetto SDK build (v8_use_perfetto = true). 0435 */ 0436 virtual void AddTraceStateObserver(TraceStateObserver*) {} 0437 0438 /** 0439 * Removes tracing state change observer. 0440 * Does nothing in Perfetto SDK build (v8_use_perfetto = true). 0441 */ 0442 virtual void RemoveTraceStateObserver(TraceStateObserver*) {} 0443 }; 0444 0445 /** 0446 * A V8 memory page allocator. 0447 * 0448 * Can be implemented by an embedder to manage large host OS allocations. 0449 */ 0450 class PageAllocator { 0451 public: 0452 virtual ~PageAllocator() = default; 0453 0454 /** 0455 * Gets the page granularity for AllocatePages and FreePages. Addresses and 0456 * lengths for those calls should be multiples of AllocatePageSize(). 0457 */ 0458 virtual size_t AllocatePageSize() = 0; 0459 0460 /** 0461 * Gets the page granularity for SetPermissions and ReleasePages. Addresses 0462 * and lengths for those calls should be multiples of CommitPageSize(). 0463 */ 0464 virtual size_t CommitPageSize() = 0; 0465 0466 /** 0467 * Sets the random seed so that GetRandomMmapAddr() will generate repeatable 0468 * sequences of random mmap addresses. 0469 */ 0470 virtual void SetRandomMmapSeed(int64_t seed) = 0; 0471 0472 /** 0473 * Returns a randomized address, suitable for memory allocation under ASLR. 0474 * The address will be aligned to AllocatePageSize. 0475 */ 0476 virtual void* GetRandomMmapAddr() = 0; 0477 0478 /** 0479 * Memory permissions. 0480 */ 0481 enum Permission { 0482 kNoAccess, 0483 kRead, 0484 kReadWrite, 0485 kReadWriteExecute, 0486 kReadExecute, 0487 // Set this when reserving memory that will later require kReadWriteExecute 0488 // permissions. The resulting behavior is platform-specific, currently 0489 // this is used to set the MAP_JIT flag on Apple Silicon. 0490 // TODO(jkummerow): Remove this when Wasm has a platform-independent 0491 // w^x implementation. 0492 // TODO(saelo): Remove this once all JIT pages are allocated through the 0493 // VirtualAddressSpace API. 0494 kNoAccessWillJitLater 0495 }; 0496 0497 /** 0498 * Allocates memory in range with the given alignment and permission. 0499 */ 0500 virtual void* AllocatePages(void* address, size_t length, size_t alignment, 0501 Permission permissions) = 0; 0502 0503 /** 0504 * Frees memory in a range that was allocated by a call to AllocatePages. 0505 */ 0506 virtual bool FreePages(void* address, size_t length) = 0; 0507 0508 /** 0509 * Releases memory in a range that was allocated by a call to AllocatePages. 0510 */ 0511 virtual bool ReleasePages(void* address, size_t length, 0512 size_t new_length) = 0; 0513 0514 /** 0515 * Sets permissions on pages in an allocated range. 0516 */ 0517 virtual bool SetPermissions(void* address, size_t length, 0518 Permission permissions) = 0; 0519 0520 /** 0521 * Recommits discarded pages in the given range with given permissions. 0522 * Discarded pages must be recommitted with their original permissions 0523 * before they are used again. 0524 */ 0525 virtual bool RecommitPages(void* address, size_t length, 0526 Permission permissions) { 0527 // TODO(v8:12797): make it pure once it's implemented on Chromium side. 0528 return false; 0529 } 0530 0531 /** 0532 * Frees memory in the given [address, address + size) range. address and size 0533 * should be operating system page-aligned. The next write to this 0534 * memory area brings the memory transparently back. This should be treated as 0535 * a hint to the OS that the pages are no longer needed. It does not guarantee 0536 * that the pages will be discarded immediately or at all. 0537 */ 0538 virtual bool DiscardSystemPages(void* address, size_t size) { return true; } 0539 0540 /** 0541 * Decommits any wired memory pages in the given range, allowing the OS to 0542 * reclaim them, and marks the region as inacessible (kNoAccess). The address 0543 * range stays reserved and can be accessed again later by changing its 0544 * permissions. However, in that case the memory content is guaranteed to be 0545 * zero-initialized again. The memory must have been previously allocated by a 0546 * call to AllocatePages. Returns true on success, false otherwise. 0547 */ 0548 virtual bool DecommitPages(void* address, size_t size) = 0; 0549 0550 /** 0551 * INTERNAL ONLY: This interface has not been stabilised and may change 0552 * without notice from one release to another without being deprecated first. 0553 */ 0554 class SharedMemoryMapping { 0555 public: 0556 // Implementations are expected to free the shared memory mapping in the 0557 // destructor. 0558 virtual ~SharedMemoryMapping() = default; 0559 virtual void* GetMemory() const = 0; 0560 }; 0561 0562 /** 0563 * INTERNAL ONLY: This interface has not been stabilised and may change 0564 * without notice from one release to another without being deprecated first. 0565 */ 0566 class SharedMemory { 0567 public: 0568 // Implementations are expected to free the shared memory in the destructor. 0569 virtual ~SharedMemory() = default; 0570 virtual std::unique_ptr<SharedMemoryMapping> RemapTo( 0571 void* new_address) const = 0; 0572 virtual void* GetMemory() const = 0; 0573 virtual size_t GetSize() const = 0; 0574 }; 0575 0576 /** 0577 * INTERNAL ONLY: This interface has not been stabilised and may change 0578 * without notice from one release to another without being deprecated first. 0579 * 0580 * Reserve pages at a fixed address returning whether the reservation is 0581 * possible. The reserved memory is detached from the PageAllocator and so 0582 * should not be freed by it. It's intended for use with 0583 * SharedMemory::RemapTo, where ~SharedMemoryMapping would free the memory. 0584 */ 0585 virtual bool ReserveForSharedMemoryMapping(void* address, size_t size) { 0586 return false; 0587 } 0588 0589 /** 0590 * INTERNAL ONLY: This interface has not been stabilised and may change 0591 * without notice from one release to another without being deprecated first. 0592 * 0593 * Allocates shared memory pages. Not all PageAllocators need support this and 0594 * so this method need not be overridden. 0595 * Allocates a new read-only shared memory region of size |length| and copies 0596 * the memory at |original_address| into it. 0597 */ 0598 virtual std::unique_ptr<SharedMemory> AllocateSharedPages( 0599 size_t length, const void* original_address) { 0600 return {}; 0601 } 0602 0603 /** 0604 * INTERNAL ONLY: This interface has not been stabilised and may change 0605 * without notice from one release to another without being deprecated first. 0606 * 0607 * If not overridden and changed to return true, V8 will not attempt to call 0608 * AllocateSharedPages or RemapSharedPages. If overridden, AllocateSharedPages 0609 * and RemapSharedPages must also be overridden. 0610 */ 0611 virtual bool CanAllocateSharedPages() { return false; } 0612 }; 0613 0614 /** 0615 * An allocator that uses per-thread permissions to protect the memory. 0616 * 0617 * The implementation is platform/hardware specific, e.g. using pkeys on x64. 0618 * 0619 * INTERNAL ONLY: This interface has not been stabilised and may change 0620 * without notice from one release to another without being deprecated first. 0621 */ 0622 class ThreadIsolatedAllocator { 0623 public: 0624 virtual ~ThreadIsolatedAllocator() = default; 0625 0626 virtual void* Allocate(size_t size) = 0; 0627 0628 virtual void Free(void* object) = 0; 0629 0630 enum class Type { 0631 kPkey, 0632 }; 0633 0634 virtual Type Type() const = 0; 0635 0636 /** 0637 * Return the pkey used to implement the thread isolation if Type == kPkey. 0638 */ 0639 virtual int Pkey() const { return -1; } 0640 0641 /** 0642 * Per-thread permissions can be reset on signal handler entry. Even reading 0643 * ThreadIsolated memory will segfault in that case. 0644 * Call this function on signal handler entry to ensure that read permissions 0645 * are restored. 0646 */ 0647 static void SetDefaultPermissionsForSignalHandler(); 0648 }; 0649 0650 // Opaque type representing a handle to a shared memory region. 0651 using PlatformSharedMemoryHandle = intptr_t; 0652 static constexpr PlatformSharedMemoryHandle kInvalidSharedMemoryHandle = -1; 0653 0654 // Conversion routines from the platform-dependent shared memory identifiers 0655 // into the opaque PlatformSharedMemoryHandle type. These use the underlying 0656 // types (e.g. unsigned int) instead of the typedef'd ones (e.g. mach_port_t) 0657 // to avoid pulling in large OS header files into this header file. Instead, 0658 // the users of these routines are expected to include the respecitve OS 0659 // headers in addition to this one. 0660 #if V8_OS_DARWIN 0661 // Convert between a shared memory handle and a mach_port_t referencing a memory 0662 // entry object. 0663 inline PlatformSharedMemoryHandle SharedMemoryHandleFromMachMemoryEntry( 0664 unsigned int port) { 0665 return static_cast<PlatformSharedMemoryHandle>(port); 0666 } 0667 inline unsigned int MachMemoryEntryFromSharedMemoryHandle( 0668 PlatformSharedMemoryHandle handle) { 0669 return static_cast<unsigned int>(handle); 0670 } 0671 #elif V8_OS_FUCHSIA 0672 // Convert between a shared memory handle and a zx_handle_t to a VMO. 0673 inline PlatformSharedMemoryHandle SharedMemoryHandleFromVMO(uint32_t handle) { 0674 return static_cast<PlatformSharedMemoryHandle>(handle); 0675 } 0676 inline uint32_t VMOFromSharedMemoryHandle(PlatformSharedMemoryHandle handle) { 0677 return static_cast<uint32_t>(handle); 0678 } 0679 #elif V8_OS_WIN 0680 // Convert between a shared memory handle and a Windows HANDLE to a file mapping 0681 // object. 0682 inline PlatformSharedMemoryHandle SharedMemoryHandleFromFileMapping( 0683 void* handle) { 0684 return reinterpret_cast<PlatformSharedMemoryHandle>(handle); 0685 } 0686 inline void* FileMappingFromSharedMemoryHandle( 0687 PlatformSharedMemoryHandle handle) { 0688 return reinterpret_cast<void*>(handle); 0689 } 0690 #else 0691 // Convert between a shared memory handle and a file descriptor. 0692 inline PlatformSharedMemoryHandle SharedMemoryHandleFromFileDescriptor(int fd) { 0693 return static_cast<PlatformSharedMemoryHandle>(fd); 0694 } 0695 inline int FileDescriptorFromSharedMemoryHandle( 0696 PlatformSharedMemoryHandle handle) { 0697 return static_cast<int>(handle); 0698 } 0699 #endif 0700 0701 /** 0702 * Possible permissions for memory pages. 0703 */ 0704 enum class PagePermissions { 0705 kNoAccess, 0706 kRead, 0707 kReadWrite, 0708 kReadWriteExecute, 0709 kReadExecute, 0710 }; 0711 0712 /** 0713 * Class to manage a virtual memory address space. 0714 * 0715 * This class represents a contiguous region of virtual address space in which 0716 * sub-spaces and (private or shared) memory pages can be allocated, freed, and 0717 * modified. This interface is meant to eventually replace the PageAllocator 0718 * interface, and can be used as an alternative in the meantime. 0719 * 0720 * This API is not yet stable and may change without notice! 0721 */ 0722 class VirtualAddressSpace { 0723 public: 0724 using Address = uintptr_t; 0725 0726 VirtualAddressSpace(size_t page_size, size_t allocation_granularity, 0727 Address base, size_t size, 0728 PagePermissions max_page_permissions) 0729 : page_size_(page_size), 0730 allocation_granularity_(allocation_granularity), 0731 base_(base), 0732 size_(size), 0733 max_page_permissions_(max_page_permissions) {} 0734 0735 virtual ~VirtualAddressSpace() = default; 0736 0737 /** 0738 * The page size used inside this space. Guaranteed to be a power of two. 0739 * Used as granularity for all page-related operations except for allocation, 0740 * which use the allocation_granularity(), see below. 0741 * 0742 * \returns the page size in bytes. 0743 */ 0744 size_t page_size() const { return page_size_; } 0745 0746 /** 0747 * The granularity of page allocations and, by extension, of subspace 0748 * allocations. This is guaranteed to be a power of two and a multiple of the 0749 * page_size(). In practice, this is equal to the page size on most OSes, but 0750 * on Windows it is usually 64KB, while the page size is 4KB. 0751 * 0752 * \returns the allocation granularity in bytes. 0753 */ 0754 size_t allocation_granularity() const { return allocation_granularity_; } 0755 0756 /** 0757 * The base address of the address space managed by this instance. 0758 * 0759 * \returns the base address of this address space. 0760 */ 0761 Address base() const { return base_; } 0762 0763 /** 0764 * The size of the address space managed by this instance. 0765 * 0766 * \returns the size of this address space in bytes. 0767 */ 0768 size_t size() const { return size_; } 0769 0770 /** 0771 * The maximum page permissions that pages allocated inside this space can 0772 * obtain. 0773 * 0774 * \returns the maximum page permissions. 0775 */ 0776 PagePermissions max_page_permissions() const { return max_page_permissions_; } 0777 0778 /** 0779 * Whether the |address| is inside the address space managed by this instance. 0780 * 0781 * \returns true if it is inside the address space, false if not. 0782 */ 0783 bool Contains(Address address) const { 0784 return (address >= base()) && (address < base() + size()); 0785 } 0786 0787 /** 0788 * Sets the random seed so that GetRandomPageAddress() will generate 0789 * repeatable sequences of random addresses. 0790 * 0791 * \param The seed for the PRNG. 0792 */ 0793 virtual void SetRandomSeed(int64_t seed) = 0; 0794 0795 /** 0796 * Returns a random address inside this address space, suitable for page 0797 * allocations hints. 0798 * 0799 * \returns a random address aligned to allocation_granularity(). 0800 */ 0801 virtual Address RandomPageAddress() = 0; 0802 0803 /** 0804 * Allocates private memory pages with the given alignment and permissions. 0805 * 0806 * \param hint If nonzero, the allocation is attempted to be placed at the 0807 * given address first. If that fails, the allocation is attempted to be 0808 * placed elsewhere, possibly nearby, but that is not guaranteed. Specifying 0809 * zero for the hint always causes this function to choose a random address. 0810 * The hint, if specified, must be aligned to the specified alignment. 0811 * 0812 * \param size The size of the allocation in bytes. Must be a multiple of the 0813 * allocation_granularity(). 0814 * 0815 * \param alignment The alignment of the allocation in bytes. Must be a 0816 * multiple of the allocation_granularity() and should be a power of two. 0817 * 0818 * \param permissions The page permissions of the newly allocated pages. 0819 * 0820 * \returns the start address of the allocated pages on success, zero on 0821 * failure. 0822 */ 0823 static constexpr Address kNoHint = 0; 0824 virtual V8_WARN_UNUSED_RESULT Address 0825 AllocatePages(Address hint, size_t size, size_t alignment, 0826 PagePermissions permissions) = 0; 0827 0828 /** 0829 * Frees previously allocated pages. 0830 * 0831 * This function will terminate the process on failure as this implies a bug 0832 * in the client. As such, there is no return value. 0833 * 0834 * \param address The start address of the pages to free. This address must 0835 * have been obtained through a call to AllocatePages. 0836 * 0837 * \param size The size in bytes of the region to free. This must match the 0838 * size passed to AllocatePages when the pages were allocated. 0839 */ 0840 virtual void FreePages(Address address, size_t size) = 0; 0841 0842 /** 0843 * Sets permissions of all allocated pages in the given range. 0844 * 0845 * This operation can fail due to OOM, in which case false is returned. If 0846 * the operation fails for a reason other than OOM, this function will 0847 * terminate the process as this implies a bug in the client. 0848 * 0849 * \param address The start address of the range. Must be aligned to 0850 * page_size(). 0851 * 0852 * \param size The size in bytes of the range. Must be a multiple 0853 * of page_size(). 0854 * 0855 * \param permissions The new permissions for the range. 0856 * 0857 * \returns true on success, false on OOM. 0858 */ 0859 virtual V8_WARN_UNUSED_RESULT bool SetPagePermissions( 0860 Address address, size_t size, PagePermissions permissions) = 0; 0861 0862 /** 0863 * Creates a guard region at the specified address. 0864 * 0865 * Guard regions are guaranteed to cause a fault when accessed and generally 0866 * do not count towards any memory consumption limits. Further, allocating 0867 * guard regions can usually not fail in subspaces if the region does not 0868 * overlap with another region, subspace, or page allocation. 0869 * 0870 * \param address The start address of the guard region. Must be aligned to 0871 * the allocation_granularity(). 0872 * 0873 * \param size The size of the guard region in bytes. Must be a multiple of 0874 * the allocation_granularity(). 0875 * 0876 * \returns true on success, false otherwise. 0877 */ 0878 virtual V8_WARN_UNUSED_RESULT bool AllocateGuardRegion(Address address, 0879 size_t size) = 0; 0880 0881 /** 0882 * Frees an existing guard region. 0883 * 0884 * This function will terminate the process on failure as this implies a bug 0885 * in the client. As such, there is no return value. 0886 * 0887 * \param address The start address of the guard region to free. This address 0888 * must have previously been used as address parameter in a successful 0889 * invocation of AllocateGuardRegion. 0890 * 0891 * \param size The size in bytes of the guard region to free. This must match 0892 * the size passed to AllocateGuardRegion when the region was created. 0893 */ 0894 virtual void FreeGuardRegion(Address address, size_t size) = 0; 0895 0896 /** 0897 * Allocates shared memory pages with the given permissions. 0898 * 0899 * \param hint Placement hint. See AllocatePages. 0900 * 0901 * \param size The size of the allocation in bytes. Must be a multiple of the 0902 * allocation_granularity(). 0903 * 0904 * \param permissions The page permissions of the newly allocated pages. 0905 * 0906 * \param handle A platform-specific handle to a shared memory object. See 0907 * the SharedMemoryHandleFromX routines above for ways to obtain these. 0908 * 0909 * \param offset The offset in the shared memory object at which the mapping 0910 * should start. Must be a multiple of the allocation_granularity(). 0911 * 0912 * \returns the start address of the allocated pages on success, zero on 0913 * failure. 0914 */ 0915 virtual V8_WARN_UNUSED_RESULT Address 0916 AllocateSharedPages(Address hint, size_t size, PagePermissions permissions, 0917 PlatformSharedMemoryHandle handle, uint64_t offset) = 0; 0918 0919 /** 0920 * Frees previously allocated shared pages. 0921 * 0922 * This function will terminate the process on failure as this implies a bug 0923 * in the client. As such, there is no return value. 0924 * 0925 * \param address The start address of the pages to free. This address must 0926 * have been obtained through a call to AllocateSharedPages. 0927 * 0928 * \param size The size in bytes of the region to free. This must match the 0929 * size passed to AllocateSharedPages when the pages were allocated. 0930 */ 0931 virtual void FreeSharedPages(Address address, size_t size) = 0; 0932 0933 /** 0934 * Whether this instance can allocate subspaces or not. 0935 * 0936 * \returns true if subspaces can be allocated, false if not. 0937 */ 0938 virtual bool CanAllocateSubspaces() = 0; 0939 0940 /* 0941 * Allocate a subspace. 0942 * 0943 * The address space of a subspace stays reserved in the parent space for the 0944 * lifetime of the subspace. As such, it is guaranteed that page allocations 0945 * on the parent space cannot end up inside a subspace. 0946 * 0947 * \param hint Hints where the subspace should be allocated. See 0948 * AllocatePages() for more details. 0949 * 0950 * \param size The size in bytes of the subspace. Must be a multiple of the 0951 * allocation_granularity(). 0952 * 0953 * \param alignment The alignment of the subspace in bytes. Must be a multiple 0954 * of the allocation_granularity() and should be a power of two. 0955 * 0956 * \param max_page_permissions The maximum permissions that pages allocated in 0957 * the subspace can obtain. 0958 * 0959 * \returns a new subspace or nullptr on failure. 0960 */ 0961 virtual std::unique_ptr<VirtualAddressSpace> AllocateSubspace( 0962 Address hint, size_t size, size_t alignment, 0963 PagePermissions max_page_permissions) = 0; 0964 0965 // 0966 // TODO(v8) maybe refactor the methods below before stabilizing the API. For 0967 // example by combining them into some form of page operation method that 0968 // takes a command enum as parameter. 0969 // 0970 0971 /** 0972 * Recommits discarded pages in the given range with given permissions. 0973 * Discarded pages must be recommitted with their original permissions 0974 * before they are used again. 0975 * 0976 * \param address The start address of the range. Must be aligned to 0977 * page_size(). 0978 * 0979 * \param size The size in bytes of the range. Must be a multiple 0980 * of page_size(). 0981 * 0982 * \param permissions The permissions for the range that the pages must have. 0983 * 0984 * \returns true on success, false otherwise. 0985 */ 0986 virtual V8_WARN_UNUSED_RESULT bool RecommitPages( 0987 Address address, size_t size, PagePermissions permissions) = 0; 0988 0989 /** 0990 * Frees memory in the given [address, address + size) range. address and 0991 * size should be aligned to the page_size(). The next write to this memory 0992 * area brings the memory transparently back. This should be treated as a 0993 * hint to the OS that the pages are no longer needed. It does not guarantee 0994 * that the pages will be discarded immediately or at all. 0995 * 0996 * \returns true on success, false otherwise. Since this method is only a 0997 * hint, a successful invocation does not imply that pages have been removed. 0998 */ 0999 virtual V8_WARN_UNUSED_RESULT bool DiscardSystemPages(Address address, 1000 size_t size) { 1001 return true; 1002 } 1003 /** 1004 * Decommits any wired memory pages in the given range, allowing the OS to 1005 * reclaim them, and marks the region as inacessible (kNoAccess). The address 1006 * range stays reserved and can be accessed again later by changing its 1007 * permissions. However, in that case the memory content is guaranteed to be 1008 * zero-initialized again. The memory must have been previously allocated by a 1009 * call to AllocatePages. 1010 * 1011 * \returns true on success, false otherwise. 1012 */ 1013 virtual V8_WARN_UNUSED_RESULT bool DecommitPages(Address address, 1014 size_t size) = 0; 1015 1016 private: 1017 const size_t page_size_; 1018 const size_t allocation_granularity_; 1019 const Address base_; 1020 const size_t size_; 1021 const PagePermissions max_page_permissions_; 1022 }; 1023 1024 /** 1025 * V8 Allocator used for allocating zone backings. 1026 */ 1027 class ZoneBackingAllocator { 1028 public: 1029 using MallocFn = void* (*)(size_t); 1030 using FreeFn = void (*)(void*); 1031 1032 virtual MallocFn GetMallocFn() const { return ::malloc; } 1033 virtual FreeFn GetFreeFn() const { return ::free; } 1034 }; 1035 1036 /** 1037 * Observer used by V8 to notify the embedder about entering/leaving sections 1038 * with high throughput of malloc/free operations. 1039 */ 1040 class HighAllocationThroughputObserver { 1041 public: 1042 virtual void EnterSection() {} 1043 virtual void LeaveSection() {} 1044 }; 1045 1046 /** 1047 * V8 Platform abstraction layer. 1048 * 1049 * The embedder has to provide an implementation of this interface before 1050 * initializing the rest of V8. 1051 */ 1052 class Platform { 1053 public: 1054 virtual ~Platform() = default; 1055 1056 /** 1057 * Allows the embedder to manage memory page allocations. 1058 * Returning nullptr will cause V8 to use the default page allocator. 1059 */ 1060 virtual PageAllocator* GetPageAllocator() = 0; 1061 1062 /** 1063 * Allows the embedder to provide an allocator that uses per-thread memory 1064 * permissions to protect allocations. 1065 * Returning nullptr will cause V8 to disable protections that rely on this 1066 * feature. 1067 */ 1068 virtual ThreadIsolatedAllocator* GetThreadIsolatedAllocator() { 1069 return nullptr; 1070 } 1071 1072 /** 1073 * Allows the embedder to specify a custom allocator used for zones. 1074 */ 1075 virtual ZoneBackingAllocator* GetZoneBackingAllocator() { 1076 static ZoneBackingAllocator default_allocator; 1077 return &default_allocator; 1078 } 1079 1080 /** 1081 * Enables the embedder to respond in cases where V8 can't allocate large 1082 * blocks of memory. V8 retries the failed allocation once after calling this 1083 * method. On success, execution continues; otherwise V8 exits with a fatal 1084 * error. 1085 * Embedder overrides of this function must NOT call back into V8. 1086 */ 1087 virtual void OnCriticalMemoryPressure() {} 1088 1089 /** 1090 * Gets the max number of worker threads that may be used to execute 1091 * concurrent work scheduled for any single TaskPriority by 1092 * Call(BlockingTask)OnWorkerThread() or PostJob(). This can be used to 1093 * estimate the number of tasks a work package should be split into. A return 1094 * value of 0 means that there are no worker threads available. Note that a 1095 * value of 0 won't prohibit V8 from posting tasks using |CallOnWorkerThread|. 1096 */ 1097 virtual int NumberOfWorkerThreads() = 0; 1098 1099 /** 1100 * Returns a TaskRunner which can be used to post a task on the foreground. 1101 * The TaskRunner's NonNestableTasksEnabled() must be true. This function 1102 * should only be called from a foreground thread. 1103 * TODO(chromium:1448758): Deprecate once |GetForegroundTaskRunner(Isolate*, 1104 * TaskPriority)| is ready. 1105 */ 1106 virtual std::shared_ptr<v8::TaskRunner> GetForegroundTaskRunner( 1107 Isolate* isolate) { 1108 return GetForegroundTaskRunner(isolate, TaskPriority::kUserBlocking); 1109 } 1110 1111 /** 1112 * Returns a TaskRunner with a specific |priority| which can be used to post a 1113 * task on the foreground thread. The TaskRunner's NonNestableTasksEnabled() 1114 * must be true. This function should only be called from a foreground thread. 1115 * TODO(chromium:1448758): Make pure virtual once embedders implement it. 1116 */ 1117 virtual std::shared_ptr<v8::TaskRunner> GetForegroundTaskRunner( 1118 Isolate* isolate, TaskPriority priority) { 1119 return nullptr; 1120 } 1121 1122 /** 1123 * Schedules a task to be invoked on a worker thread. 1124 * Embedders should override PostTaskOnWorkerThreadImpl() instead of 1125 * CallOnWorkerThread(). 1126 */ 1127 void CallOnWorkerThread( 1128 std::unique_ptr<Task> task, 1129 const SourceLocation& location = SourceLocation::Current()) { 1130 PostTaskOnWorkerThreadImpl(TaskPriority::kUserVisible, std::move(task), 1131 location); 1132 } 1133 1134 /** 1135 * Schedules a task that blocks the main thread to be invoked with 1136 * high-priority on a worker thread. 1137 * Embedders should override PostTaskOnWorkerThreadImpl() instead of 1138 * CallBlockingTaskOnWorkerThread(). 1139 */ 1140 void CallBlockingTaskOnWorkerThread( 1141 std::unique_ptr<Task> task, 1142 const SourceLocation& location = SourceLocation::Current()) { 1143 // Embedders may optionally override this to process these tasks in a high 1144 // priority pool. 1145 PostTaskOnWorkerThreadImpl(TaskPriority::kUserBlocking, std::move(task), 1146 location); 1147 } 1148 1149 /** 1150 * Schedules a task to be invoked with low-priority on a worker thread. 1151 * Embedders should override PostTaskOnWorkerThreadImpl() instead of 1152 * CallLowPriorityTaskOnWorkerThread(). 1153 */ 1154 void CallLowPriorityTaskOnWorkerThread( 1155 std::unique_ptr<Task> task, 1156 const SourceLocation& location = SourceLocation::Current()) { 1157 // Embedders may optionally override this to process these tasks in a low 1158 // priority pool. 1159 PostTaskOnWorkerThreadImpl(TaskPriority::kBestEffort, std::move(task), 1160 location); 1161 } 1162 1163 /** 1164 * Schedules a task to be invoked on a worker thread after |delay_in_seconds| 1165 * expires. 1166 * Embedders should override PostDelayedTaskOnWorkerThreadImpl() instead of 1167 * CallDelayedOnWorkerThread(). 1168 */ 1169 void CallDelayedOnWorkerThread( 1170 std::unique_ptr<Task> task, double delay_in_seconds, 1171 const SourceLocation& location = SourceLocation::Current()) { 1172 PostDelayedTaskOnWorkerThreadImpl(TaskPriority::kUserVisible, 1173 std::move(task), delay_in_seconds, 1174 location); 1175 } 1176 1177 /** 1178 * Returns true if idle tasks are enabled for the given |isolate|. 1179 */ 1180 virtual bool IdleTasksEnabled(Isolate* isolate) { return false; } 1181 1182 /** 1183 * Posts |job_task| to run in parallel. Returns a JobHandle associated with 1184 * the Job, which can be joined or canceled. 1185 * This avoids degenerate cases: 1186 * - Calling CallOnWorkerThread() for each work item, causing significant 1187 * overhead. 1188 * - Fixed number of CallOnWorkerThread() calls that split the work and might 1189 * run for a long time. This is problematic when many components post 1190 * "num cores" tasks and all expect to use all the cores. In these cases, 1191 * the scheduler lacks context to be fair to multiple same-priority requests 1192 * and/or ability to request lower priority work to yield when high priority 1193 * work comes in. 1194 * A canonical implementation of |job_task| looks like: 1195 * class MyJobTask : public JobTask { 1196 * public: 1197 * MyJobTask(...) : worker_queue_(...) {} 1198 * // JobTask: 1199 * void Run(JobDelegate* delegate) override { 1200 * while (!delegate->ShouldYield()) { 1201 * // Smallest unit of work. 1202 * auto work_item = worker_queue_.TakeWorkItem(); // Thread safe. 1203 * if (!work_item) return; 1204 * ProcessWork(work_item); 1205 * } 1206 * } 1207 * 1208 * size_t GetMaxConcurrency() const override { 1209 * return worker_queue_.GetSize(); // Thread safe. 1210 * } 1211 * }; 1212 * auto handle = PostJob(TaskPriority::kUserVisible, 1213 * std::make_unique<MyJobTask>(...)); 1214 * handle->Join(); 1215 * 1216 * PostJob() and methods of the returned JobHandle/JobDelegate, must never be 1217 * called while holding a lock that could be acquired by JobTask::Run or 1218 * JobTask::GetMaxConcurrency -- that could result in a deadlock. This is 1219 * because [1] JobTask::GetMaxConcurrency may be invoked while holding 1220 * internal lock (A), hence JobTask::GetMaxConcurrency can only use a lock (B) 1221 * if that lock is *never* held while calling back into JobHandle from any 1222 * thread (A=>B/B=>A deadlock) and [2] JobTask::Run or 1223 * JobTask::GetMaxConcurrency may be invoked synchronously from JobHandle 1224 * (B=>JobHandle::foo=>B deadlock). 1225 * Embedders should override CreateJobImpl() instead of PostJob(). 1226 */ 1227 std::unique_ptr<JobHandle> PostJob( 1228 TaskPriority priority, std::unique_ptr<JobTask> job_task, 1229 const SourceLocation& location = SourceLocation::Current()) { 1230 auto handle = CreateJob(priority, std::move(job_task), location); 1231 handle->NotifyConcurrencyIncrease(); 1232 return handle; 1233 } 1234 1235 /** 1236 * Creates and returns a JobHandle associated with a Job. Unlike PostJob(), 1237 * this doesn't immediately schedules |worker_task| to run; the Job is then 1238 * scheduled by calling either NotifyConcurrencyIncrease() or Join(). 1239 * 1240 * A sufficient CreateJob() implementation that uses the default Job provided 1241 * in libplatform looks like: 1242 * std::unique_ptr<JobHandle> CreateJob( 1243 * TaskPriority priority, std::unique_ptr<JobTask> job_task) override { 1244 * return v8::platform::NewDefaultJobHandle( 1245 * this, priority, std::move(job_task), NumberOfWorkerThreads()); 1246 * } 1247 * 1248 * Embedders should override CreateJobImpl() instead of CreateJob(). 1249 */ 1250 std::unique_ptr<JobHandle> CreateJob( 1251 TaskPriority priority, std::unique_ptr<JobTask> job_task, 1252 const SourceLocation& location = SourceLocation::Current()) { 1253 return CreateJobImpl(priority, std::move(job_task), location); 1254 } 1255 1256 /** 1257 * Instantiates a ScopedBlockingCall to annotate a scope that may/will block. 1258 */ 1259 virtual std::unique_ptr<ScopedBlockingCall> CreateBlockingScope( 1260 BlockingType blocking_type) { 1261 return nullptr; 1262 } 1263 1264 /** 1265 * Monotonically increasing time in seconds from an arbitrary fixed point in 1266 * the past. This function is expected to return at least 1267 * millisecond-precision values. For this reason, 1268 * it is recommended that the fixed point be no further in the past than 1269 * the epoch. 1270 **/ 1271 virtual double MonotonicallyIncreasingTime() = 0; 1272 1273 /** 1274 * Current wall-clock time in milliseconds since epoch. Use 1275 * CurrentClockTimeMillisHighResolution() when higher precision is 1276 * required. 1277 */ 1278 virtual int64_t CurrentClockTimeMilliseconds() { 1279 return static_cast<int64_t>(floor(CurrentClockTimeMillis())); 1280 } 1281 1282 /** 1283 * This function is deprecated and will be deleted. Use either 1284 * CurrentClockTimeMilliseconds() or 1285 * CurrentClockTimeMillisecondsHighResolution(). 1286 */ 1287 virtual double CurrentClockTimeMillis() = 0; 1288 1289 /** 1290 * Same as CurrentClockTimeMilliseconds(), but with more precision. 1291 */ 1292 virtual double CurrentClockTimeMillisecondsHighResolution() { 1293 return CurrentClockTimeMillis(); 1294 } 1295 1296 typedef void (*StackTracePrinter)(); 1297 1298 /** 1299 * Returns a function pointer that print a stack trace of the current stack 1300 * on invocation. Disables printing of the stack trace if nullptr. 1301 */ 1302 virtual StackTracePrinter GetStackTracePrinter() { return nullptr; } 1303 1304 /** 1305 * Returns an instance of a v8::TracingController. This must be non-nullptr. 1306 */ 1307 virtual TracingController* GetTracingController() = 0; 1308 1309 /** 1310 * Tells the embedder to generate and upload a crashdump during an unexpected 1311 * but non-critical scenario. 1312 */ 1313 virtual void DumpWithoutCrashing() {} 1314 1315 /** 1316 * Allows the embedder to observe sections with high throughput allocation 1317 * operations. 1318 */ 1319 virtual HighAllocationThroughputObserver* 1320 GetHighAllocationThroughputObserver() { 1321 static HighAllocationThroughputObserver default_observer; 1322 return &default_observer; 1323 } 1324 1325 protected: 1326 /** 1327 * Default implementation of current wall-clock time in milliseconds 1328 * since epoch. Useful for implementing |CurrentClockTimeMillis| if 1329 * nothing special needed. 1330 */ 1331 V8_EXPORT static double SystemClockTimeMillis(); 1332 1333 /** 1334 * Creates and returns a JobHandle associated with a Job. 1335 */ 1336 virtual std::unique_ptr<JobHandle> CreateJobImpl( 1337 TaskPriority priority, std::unique_ptr<JobTask> job_task, 1338 const SourceLocation& location) = 0; 1339 1340 /** 1341 * Schedules a task with |priority| to be invoked on a worker thread. 1342 */ 1343 virtual void PostTaskOnWorkerThreadImpl(TaskPriority priority, 1344 std::unique_ptr<Task> task, 1345 const SourceLocation& location) = 0; 1346 1347 /** 1348 * Schedules a task with |priority| to be invoked on a worker thread after 1349 * |delay_in_seconds| expires. 1350 */ 1351 virtual void PostDelayedTaskOnWorkerThreadImpl( 1352 TaskPriority priority, std::unique_ptr<Task> task, 1353 double delay_in_seconds, const SourceLocation& location) = 0; 1354 }; 1355 1356 } // namespace v8 1357 1358 #endif // V8_V8_PLATFORM_H_
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |
![]() ![]() |