Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 10:01:50

0001 /*
0002  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
0003  * All Rights Reserved.
0004  *
0005  * Permission is hereby granted, free of charge, to any person obtaining a
0006  * copy of this software and associated documentation files (the
0007  * "Software"), to deal in the Software without restriction, including
0008  * without limitation the rights to use, copy, modify, merge, publish,
0009  * distribute, sub license, and/or sell copies of the Software, and to
0010  * permit persons to whom the Software is furnished to do so, subject to
0011  * the following conditions:
0012  *
0013  * The above copyright notice and this permission notice (including the
0014  * next paragraph) shall be included in all copies or substantial portions
0015  * of the Software.
0016  *
0017  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
0018  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
0019  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
0020  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
0021  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
0022  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
0023  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
0024  *
0025  */
0026 
0027 #ifndef _I915_DRM_H_
0028 #define _I915_DRM_H_
0029 
0030 #include "drm.h"
0031 
0032 #if defined(__cplusplus)
0033 extern "C" {
0034 #endif
0035 
0036 /* Please note that modifications to all structs defined here are
0037  * subject to backwards-compatibility constraints.
0038  */
0039 
0040 /**
0041  * DOC: uevents generated by i915 on it's device node
0042  *
0043  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
0044  *  event from the gpu l3 cache. Additional information supplied is ROW,
0045  *  BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
0046  *  track of these events and if a specific cache-line seems to have a
0047  *  persistent error remap it with the l3 remapping tool supplied in
0048  *  intel-gpu-tools.  The value supplied with the event is always 1.
0049  *
0050  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
0051  *  hangcheck. The error detection event is a good indicator of when things
0052  *  began to go badly. The value supplied with the event is a 1 upon error
0053  *  detection, and a 0 upon reset completion, signifying no more error
0054  *  exists. NOTE: Disabling hangcheck or reset via module parameter will
0055  *  cause the related events to not be seen.
0056  *
0057  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
0058  *  GPU. The value supplied with the event is always 1. NOTE: Disable
0059  *  reset via module parameter will cause this event to not be seen.
0060  */
0061 #define I915_L3_PARITY_UEVENT       "L3_PARITY_ERROR"
0062 #define I915_ERROR_UEVENT       "ERROR"
0063 #define I915_RESET_UEVENT       "RESET"
0064 
0065 /**
0066  * struct i915_user_extension - Base class for defining a chain of extensions
0067  *
0068  * Many interfaces need to grow over time. In most cases we can simply
0069  * extend the struct and have userspace pass in more data. Another option,
0070  * as demonstrated by Vulkan's approach to providing extensions for forward
0071  * and backward compatibility, is to use a list of optional structs to
0072  * provide those extra details.
0073  *
0074  * The key advantage to using an extension chain is that it allows us to
0075  * redefine the interface more easily than an ever growing struct of
0076  * increasing complexity, and for large parts of that interface to be
0077  * entirely optional. The downside is more pointer chasing; chasing across
0078  * the boundary with pointers encapsulated inside u64.
0079  *
0080  * Example chaining:
0081  *
0082  * .. code-block:: C
0083  *
0084  *  struct i915_user_extension ext3 {
0085  *      .next_extension = 0, // end
0086  *      .name = ...,
0087  *  };
0088  *  struct i915_user_extension ext2 {
0089  *      .next_extension = (uintptr_t)&ext3,
0090  *      .name = ...,
0091  *  };
0092  *  struct i915_user_extension ext1 {
0093  *      .next_extension = (uintptr_t)&ext2,
0094  *      .name = ...,
0095  *  };
0096  *
0097  * Typically the struct i915_user_extension would be embedded in some uAPI
0098  * struct, and in this case we would feed it the head of the chain(i.e ext1),
0099  * which would then apply all of the above extensions.
0100  *
0101  */
0102 struct i915_user_extension {
0103     /**
0104      * @next_extension:
0105      *
0106      * Pointer to the next struct i915_user_extension, or zero if the end.
0107      */
0108     __u64 next_extension;
0109     /**
0110      * @name: Name of the extension.
0111      *
0112      * Note that the name here is just some integer.
0113      *
0114      * Also note that the name space for this is not global for the whole
0115      * driver, but rather its scope/meaning is limited to the specific piece
0116      * of uAPI which has embedded the struct i915_user_extension.
0117      */
0118     __u32 name;
0119     /**
0120      * @flags: MBZ
0121      *
0122      * All undefined bits must be zero.
0123      */
0124     __u32 flags;
0125     /**
0126      * @rsvd: MBZ
0127      *
0128      * Reserved for future use; must be zero.
0129      */
0130     __u32 rsvd[4];
0131 };
0132 
0133 /*
0134  * MOCS indexes used for GPU surfaces, defining the cacheability of the
0135  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
0136  */
0137 enum i915_mocs_table_index {
0138     /*
0139      * Not cached anywhere, coherency between CPU and GPU accesses is
0140      * guaranteed.
0141      */
0142     I915_MOCS_UNCACHED,
0143     /*
0144      * Cacheability and coherency controlled by the kernel automatically
0145      * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
0146      * usage of the surface (used for display scanout or not).
0147      */
0148     I915_MOCS_PTE,
0149     /*
0150      * Cached in all GPU caches available on the platform.
0151      * Coherency between CPU and GPU accesses to the surface is not
0152      * guaranteed without extra synchronization.
0153      */
0154     I915_MOCS_CACHED,
0155 };
0156 
0157 /**
0158  * enum drm_i915_gem_engine_class - uapi engine type enumeration
0159  *
0160  * Different engines serve different roles, and there may be more than one
0161  * engine serving each role.  This enum provides a classification of the role
0162  * of the engine, which may be used when requesting operations to be performed
0163  * on a certain subset of engines, or for providing information about that
0164  * group.
0165  */
0166 enum drm_i915_gem_engine_class {
0167     /**
0168      * @I915_ENGINE_CLASS_RENDER:
0169      *
0170      * Render engines support instructions used for 3D, Compute (GPGPU),
0171      * and programmable media workloads.  These instructions fetch data and
0172      * dispatch individual work items to threads that operate in parallel.
0173      * The threads run small programs (called "kernels" or "shaders") on
0174      * the GPU's execution units (EUs).
0175      */
0176     I915_ENGINE_CLASS_RENDER    = 0,
0177 
0178     /**
0179      * @I915_ENGINE_CLASS_COPY:
0180      *
0181      * Copy engines (also referred to as "blitters") support instructions
0182      * that move blocks of data from one location in memory to another,
0183      * or that fill a specified location of memory with fixed data.
0184      * Copy engines can perform pre-defined logical or bitwise operations
0185      * on the source, destination, or pattern data.
0186      */
0187     I915_ENGINE_CLASS_COPY      = 1,
0188 
0189     /**
0190      * @I915_ENGINE_CLASS_VIDEO:
0191      *
0192      * Video engines (also referred to as "bit stream decode" (BSD) or
0193      * "vdbox") support instructions that perform fixed-function media
0194      * decode and encode.
0195      */
0196     I915_ENGINE_CLASS_VIDEO     = 2,
0197 
0198     /**
0199      * @I915_ENGINE_CLASS_VIDEO_ENHANCE:
0200      *
0201      * Video enhancement engines (also referred to as "vebox") support
0202      * instructions related to image enhancement.
0203      */
0204     I915_ENGINE_CLASS_VIDEO_ENHANCE = 3,
0205 
0206     /**
0207      * @I915_ENGINE_CLASS_COMPUTE:
0208      *
0209      * Compute engines support a subset of the instructions available
0210      * on render engines:  compute engines support Compute (GPGPU) and
0211      * programmable media workloads, but do not support the 3D pipeline.
0212      */
0213     I915_ENGINE_CLASS_COMPUTE   = 4,
0214 
0215     /* Values in this enum should be kept compact. */
0216 
0217     /**
0218      * @I915_ENGINE_CLASS_INVALID:
0219      *
0220      * Placeholder value to represent an invalid engine class assignment.
0221      */
0222     I915_ENGINE_CLASS_INVALID   = -1
0223 };
0224 
0225 /**
0226  * struct i915_engine_class_instance - Engine class/instance identifier
0227  *
0228  * There may be more than one engine fulfilling any role within the system.
0229  * Each engine of a class is given a unique instance number and therefore
0230  * any engine can be specified by its class:instance tuplet. APIs that allow
0231  * access to any engine in the system will use struct i915_engine_class_instance
0232  * for this identification.
0233  */
0234 struct i915_engine_class_instance {
0235     /**
0236      * @engine_class:
0237      *
0238      * Engine class from enum drm_i915_gem_engine_class
0239      */
0240     __u16 engine_class;
0241 #define I915_ENGINE_CLASS_INVALID_NONE -1
0242 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
0243 
0244     /**
0245      * @engine_instance:
0246      *
0247      * Engine instance.
0248      */
0249     __u16 engine_instance;
0250 };
0251 
0252 /**
0253  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
0254  *
0255  */
0256 
0257 enum drm_i915_pmu_engine_sample {
0258     I915_SAMPLE_BUSY = 0,
0259     I915_SAMPLE_WAIT = 1,
0260     I915_SAMPLE_SEMA = 2
0261 };
0262 
0263 #define I915_PMU_SAMPLE_BITS (4)
0264 #define I915_PMU_SAMPLE_MASK (0xf)
0265 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
0266 #define I915_PMU_CLASS_SHIFT \
0267     (I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
0268 
0269 #define __I915_PMU_ENGINE(class, instance, sample) \
0270     ((class) << I915_PMU_CLASS_SHIFT | \
0271     (instance) << I915_PMU_SAMPLE_BITS | \
0272     (sample))
0273 
0274 #define I915_PMU_ENGINE_BUSY(class, instance) \
0275     __I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
0276 
0277 #define I915_PMU_ENGINE_WAIT(class, instance) \
0278     __I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
0279 
0280 #define I915_PMU_ENGINE_SEMA(class, instance) \
0281     __I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
0282 
0283 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
0284 
0285 #define I915_PMU_ACTUAL_FREQUENCY   __I915_PMU_OTHER(0)
0286 #define I915_PMU_REQUESTED_FREQUENCY    __I915_PMU_OTHER(1)
0287 #define I915_PMU_INTERRUPTS     __I915_PMU_OTHER(2)
0288 #define I915_PMU_RC6_RESIDENCY      __I915_PMU_OTHER(3)
0289 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME __I915_PMU_OTHER(4)
0290 
0291 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
0292 
0293 /* Each region is a minimum of 16k, and there are at most 255 of them.
0294  */
0295 #define I915_NR_TEX_REGIONS 255 /* table size 2k - maximum due to use
0296                  * of chars for next/prev indices */
0297 #define I915_LOG_MIN_TEX_REGION_SIZE 14
0298 
0299 typedef struct _drm_i915_init {
0300     enum {
0301         I915_INIT_DMA = 0x01,
0302         I915_CLEANUP_DMA = 0x02,
0303         I915_RESUME_DMA = 0x03
0304     } func;
0305     unsigned int mmio_offset;
0306     int sarea_priv_offset;
0307     unsigned int ring_start;
0308     unsigned int ring_end;
0309     unsigned int ring_size;
0310     unsigned int front_offset;
0311     unsigned int back_offset;
0312     unsigned int depth_offset;
0313     unsigned int w;
0314     unsigned int h;
0315     unsigned int pitch;
0316     unsigned int pitch_bits;
0317     unsigned int back_pitch;
0318     unsigned int depth_pitch;
0319     unsigned int cpp;
0320     unsigned int chipset;
0321 } drm_i915_init_t;
0322 
0323 typedef struct _drm_i915_sarea {
0324     struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
0325     int last_upload;    /* last time texture was uploaded */
0326     int last_enqueue;   /* last time a buffer was enqueued */
0327     int last_dispatch;  /* age of the most recently dispatched buffer */
0328     int ctxOwner;       /* last context to upload state */
0329     int texAge;
0330     int pf_enabled;     /* is pageflipping allowed? */
0331     int pf_active;
0332     int pf_current_page;    /* which buffer is being displayed? */
0333     int perf_boxes;     /* performance boxes to be displayed */
0334     int width, height;      /* screen size in pixels */
0335 
0336     drm_handle_t front_handle;
0337     int front_offset;
0338     int front_size;
0339 
0340     drm_handle_t back_handle;
0341     int back_offset;
0342     int back_size;
0343 
0344     drm_handle_t depth_handle;
0345     int depth_offset;
0346     int depth_size;
0347 
0348     drm_handle_t tex_handle;
0349     int tex_offset;
0350     int tex_size;
0351     int log_tex_granularity;
0352     int pitch;
0353     int rotation;           /* 0, 90, 180 or 270 */
0354     int rotated_offset;
0355     int rotated_size;
0356     int rotated_pitch;
0357     int virtualX, virtualY;
0358 
0359     unsigned int front_tiled;
0360     unsigned int back_tiled;
0361     unsigned int depth_tiled;
0362     unsigned int rotated_tiled;
0363     unsigned int rotated2_tiled;
0364 
0365     int pipeA_x;
0366     int pipeA_y;
0367     int pipeA_w;
0368     int pipeA_h;
0369     int pipeB_x;
0370     int pipeB_y;
0371     int pipeB_w;
0372     int pipeB_h;
0373 
0374     /* fill out some space for old userspace triple buffer */
0375     drm_handle_t unused_handle;
0376     __u32 unused1, unused2, unused3;
0377 
0378     /* buffer object handles for static buffers. May change
0379      * over the lifetime of the client.
0380      */
0381     __u32 front_bo_handle;
0382     __u32 back_bo_handle;
0383     __u32 unused_bo_handle;
0384     __u32 depth_bo_handle;
0385 
0386 } drm_i915_sarea_t;
0387 
0388 /* due to userspace building against these headers we need some compat here */
0389 #define planeA_x pipeA_x
0390 #define planeA_y pipeA_y
0391 #define planeA_w pipeA_w
0392 #define planeA_h pipeA_h
0393 #define planeB_x pipeB_x
0394 #define planeB_y pipeB_y
0395 #define planeB_w pipeB_w
0396 #define planeB_h pipeB_h
0397 
0398 /* Flags for perf_boxes
0399  */
0400 #define I915_BOX_RING_EMPTY    0x1
0401 #define I915_BOX_FLIP          0x2
0402 #define I915_BOX_WAIT          0x4
0403 #define I915_BOX_TEXTURE_LOAD  0x8
0404 #define I915_BOX_LOST_CONTEXT  0x10
0405 
0406 /*
0407  * i915 specific ioctls.
0408  *
0409  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
0410  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
0411  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
0412  */
0413 #define DRM_I915_INIT       0x00
0414 #define DRM_I915_FLUSH      0x01
0415 #define DRM_I915_FLIP       0x02
0416 #define DRM_I915_BATCHBUFFER    0x03
0417 #define DRM_I915_IRQ_EMIT   0x04
0418 #define DRM_I915_IRQ_WAIT   0x05
0419 #define DRM_I915_GETPARAM   0x06
0420 #define DRM_I915_SETPARAM   0x07
0421 #define DRM_I915_ALLOC      0x08
0422 #define DRM_I915_FREE       0x09
0423 #define DRM_I915_INIT_HEAP  0x0a
0424 #define DRM_I915_CMDBUFFER  0x0b
0425 #define DRM_I915_DESTROY_HEAP   0x0c
0426 #define DRM_I915_SET_VBLANK_PIPE    0x0d
0427 #define DRM_I915_GET_VBLANK_PIPE    0x0e
0428 #define DRM_I915_VBLANK_SWAP    0x0f
0429 #define DRM_I915_HWS_ADDR   0x11
0430 #define DRM_I915_GEM_INIT   0x13
0431 #define DRM_I915_GEM_EXECBUFFER 0x14
0432 #define DRM_I915_GEM_PIN    0x15
0433 #define DRM_I915_GEM_UNPIN  0x16
0434 #define DRM_I915_GEM_BUSY   0x17
0435 #define DRM_I915_GEM_THROTTLE   0x18
0436 #define DRM_I915_GEM_ENTERVT    0x19
0437 #define DRM_I915_GEM_LEAVEVT    0x1a
0438 #define DRM_I915_GEM_CREATE 0x1b
0439 #define DRM_I915_GEM_PREAD  0x1c
0440 #define DRM_I915_GEM_PWRITE 0x1d
0441 #define DRM_I915_GEM_MMAP   0x1e
0442 #define DRM_I915_GEM_SET_DOMAIN 0x1f
0443 #define DRM_I915_GEM_SW_FINISH  0x20
0444 #define DRM_I915_GEM_SET_TILING 0x21
0445 #define DRM_I915_GEM_GET_TILING 0x22
0446 #define DRM_I915_GEM_GET_APERTURE 0x23
0447 #define DRM_I915_GEM_MMAP_GTT   0x24
0448 #define DRM_I915_GET_PIPE_FROM_CRTC_ID  0x25
0449 #define DRM_I915_GEM_MADVISE    0x26
0450 #define DRM_I915_OVERLAY_PUT_IMAGE  0x27
0451 #define DRM_I915_OVERLAY_ATTRS  0x28
0452 #define DRM_I915_GEM_EXECBUFFER2    0x29
0453 #define DRM_I915_GEM_EXECBUFFER2_WR DRM_I915_GEM_EXECBUFFER2
0454 #define DRM_I915_GET_SPRITE_COLORKEY    0x2a
0455 #define DRM_I915_SET_SPRITE_COLORKEY    0x2b
0456 #define DRM_I915_GEM_WAIT   0x2c
0457 #define DRM_I915_GEM_CONTEXT_CREATE 0x2d
0458 #define DRM_I915_GEM_CONTEXT_DESTROY    0x2e
0459 #define DRM_I915_GEM_SET_CACHING    0x2f
0460 #define DRM_I915_GEM_GET_CACHING    0x30
0461 #define DRM_I915_REG_READ       0x31
0462 #define DRM_I915_GET_RESET_STATS    0x32
0463 #define DRM_I915_GEM_USERPTR        0x33
0464 #define DRM_I915_GEM_CONTEXT_GETPARAM   0x34
0465 #define DRM_I915_GEM_CONTEXT_SETPARAM   0x35
0466 #define DRM_I915_PERF_OPEN      0x36
0467 #define DRM_I915_PERF_ADD_CONFIG    0x37
0468 #define DRM_I915_PERF_REMOVE_CONFIG 0x38
0469 #define DRM_I915_QUERY          0x39
0470 #define DRM_I915_GEM_VM_CREATE      0x3a
0471 #define DRM_I915_GEM_VM_DESTROY     0x3b
0472 #define DRM_I915_GEM_CREATE_EXT     0x3c
0473 /* Must be kept compact -- no holes */
0474 
0475 #define DRM_IOCTL_I915_INIT     DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
0476 #define DRM_IOCTL_I915_FLUSH        DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
0477 #define DRM_IOCTL_I915_FLIP     DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
0478 #define DRM_IOCTL_I915_BATCHBUFFER  DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
0479 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
0480 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
0481 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
0482 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
0483 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
0484 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
0485 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
0486 #define DRM_IOCTL_I915_CMDBUFFER    DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
0487 #define DRM_IOCTL_I915_DESTROY_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
0488 #define DRM_IOCTL_I915_SET_VBLANK_PIPE  DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
0489 #define DRM_IOCTL_I915_GET_VBLANK_PIPE  DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
0490 #define DRM_IOCTL_I915_VBLANK_SWAP  DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
0491 #define DRM_IOCTL_I915_HWS_ADDR     DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
0492 #define DRM_IOCTL_I915_GEM_INIT     DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
0493 #define DRM_IOCTL_I915_GEM_EXECBUFFER   DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
0494 #define DRM_IOCTL_I915_GEM_EXECBUFFER2  DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
0495 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR   DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
0496 #define DRM_IOCTL_I915_GEM_PIN      DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
0497 #define DRM_IOCTL_I915_GEM_UNPIN    DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
0498 #define DRM_IOCTL_I915_GEM_BUSY     DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
0499 #define DRM_IOCTL_I915_GEM_SET_CACHING      DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
0500 #define DRM_IOCTL_I915_GEM_GET_CACHING      DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
0501 #define DRM_IOCTL_I915_GEM_THROTTLE DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
0502 #define DRM_IOCTL_I915_GEM_ENTERVT  DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
0503 #define DRM_IOCTL_I915_GEM_LEAVEVT  DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
0504 #define DRM_IOCTL_I915_GEM_CREATE   DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
0505 #define DRM_IOCTL_I915_GEM_CREATE_EXT   DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
0506 #define DRM_IOCTL_I915_GEM_PREAD    DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
0507 #define DRM_IOCTL_I915_GEM_PWRITE   DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
0508 #define DRM_IOCTL_I915_GEM_MMAP     DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
0509 #define DRM_IOCTL_I915_GEM_MMAP_GTT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
0510 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET  DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
0511 #define DRM_IOCTL_I915_GEM_SET_DOMAIN   DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
0512 #define DRM_IOCTL_I915_GEM_SW_FINISH    DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
0513 #define DRM_IOCTL_I915_GEM_SET_TILING   DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
0514 #define DRM_IOCTL_I915_GEM_GET_TILING   DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
0515 #define DRM_IOCTL_I915_GEM_GET_APERTURE DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
0516 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
0517 #define DRM_IOCTL_I915_GEM_MADVISE  DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
0518 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE    DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
0519 #define DRM_IOCTL_I915_OVERLAY_ATTRS    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
0520 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
0521 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
0522 #define DRM_IOCTL_I915_GEM_WAIT     DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
0523 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE   DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
0524 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT   DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
0525 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY  DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
0526 #define DRM_IOCTL_I915_REG_READ         DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
0527 #define DRM_IOCTL_I915_GET_RESET_STATS      DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
0528 #define DRM_IOCTL_I915_GEM_USERPTR          DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
0529 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
0530 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
0531 #define DRM_IOCTL_I915_PERF_OPEN    DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
0532 #define DRM_IOCTL_I915_PERF_ADD_CONFIG  DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
0533 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG   DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
0534 #define DRM_IOCTL_I915_QUERY            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
0535 #define DRM_IOCTL_I915_GEM_VM_CREATE    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
0536 #define DRM_IOCTL_I915_GEM_VM_DESTROY   DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
0537 
0538 /* Allow drivers to submit batchbuffers directly to hardware, relying
0539  * on the security mechanisms provided by hardware.
0540  */
0541 typedef struct drm_i915_batchbuffer {
0542     int start;      /* agp offset */
0543     int used;       /* nr bytes in use */
0544     int DR1;        /* hw flags for GFX_OP_DRAWRECT_INFO */
0545     int DR4;        /* window origin for GFX_OP_DRAWRECT_INFO */
0546     int num_cliprects;  /* mulitpass with multiple cliprects? */
0547     struct drm_clip_rect *cliprects;    /* pointer to userspace cliprects */
0548 } drm_i915_batchbuffer_t;
0549 
0550 /* As above, but pass a pointer to userspace buffer which can be
0551  * validated by the kernel prior to sending to hardware.
0552  */
0553 typedef struct _drm_i915_cmdbuffer {
0554     char *buf;  /* pointer to userspace command buffer */
0555     int sz;         /* nr bytes in buf */
0556     int DR1;        /* hw flags for GFX_OP_DRAWRECT_INFO */
0557     int DR4;        /* window origin for GFX_OP_DRAWRECT_INFO */
0558     int num_cliprects;  /* mulitpass with multiple cliprects? */
0559     struct drm_clip_rect *cliprects;    /* pointer to userspace cliprects */
0560 } drm_i915_cmdbuffer_t;
0561 
0562 /* Userspace can request & wait on irq's:
0563  */
0564 typedef struct drm_i915_irq_emit {
0565     int *irq_seq;
0566 } drm_i915_irq_emit_t;
0567 
0568 typedef struct drm_i915_irq_wait {
0569     int irq_seq;
0570 } drm_i915_irq_wait_t;
0571 
0572 /*
0573  * Different modes of per-process Graphics Translation Table,
0574  * see I915_PARAM_HAS_ALIASING_PPGTT
0575  */
0576 #define I915_GEM_PPGTT_NONE 0
0577 #define I915_GEM_PPGTT_ALIASING 1
0578 #define I915_GEM_PPGTT_FULL 2
0579 
0580 /* Ioctl to query kernel params:
0581  */
0582 #define I915_PARAM_IRQ_ACTIVE            1
0583 #define I915_PARAM_ALLOW_BATCHBUFFER     2
0584 #define I915_PARAM_LAST_DISPATCH         3
0585 #define I915_PARAM_CHIPSET_ID            4
0586 #define I915_PARAM_HAS_GEM               5
0587 #define I915_PARAM_NUM_FENCES_AVAIL      6
0588 #define I915_PARAM_HAS_OVERLAY           7
0589 #define I915_PARAM_HAS_PAGEFLIPPING  8
0590 #define I915_PARAM_HAS_EXECBUF2          9
0591 #define I915_PARAM_HAS_BSD       10
0592 #define I915_PARAM_HAS_BLT       11
0593 #define I915_PARAM_HAS_RELAXED_FENCING   12
0594 #define I915_PARAM_HAS_COHERENT_RINGS    13
0595 #define I915_PARAM_HAS_EXEC_CONSTANTS    14
0596 #define I915_PARAM_HAS_RELAXED_DELTA     15
0597 #define I915_PARAM_HAS_GEN7_SOL_RESET    16
0598 #define I915_PARAM_HAS_LLC           17
0599 #define I915_PARAM_HAS_ALIASING_PPGTT    18
0600 #define I915_PARAM_HAS_WAIT_TIMEOUT  19
0601 #define I915_PARAM_HAS_SEMAPHORES    20
0602 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH  21
0603 #define I915_PARAM_HAS_VEBOX         22
0604 #define I915_PARAM_HAS_SECURE_BATCHES    23
0605 #define I915_PARAM_HAS_PINNED_BATCHES    24
0606 #define I915_PARAM_HAS_EXEC_NO_RELOC     25
0607 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
0608 #define I915_PARAM_HAS_WT            27
0609 #define I915_PARAM_CMD_PARSER_VERSION    28
0610 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
0611 #define I915_PARAM_MMAP_VERSION          30
0612 #define I915_PARAM_HAS_BSD2      31
0613 #define I915_PARAM_REVISION              32
0614 #define I915_PARAM_SUBSLICE_TOTAL    33
0615 #define I915_PARAM_EU_TOTAL      34
0616 #define I915_PARAM_HAS_GPU_RESET     35
0617 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
0618 #define I915_PARAM_HAS_EXEC_SOFTPIN  37
0619 #define I915_PARAM_HAS_POOLED_EU     38
0620 #define I915_PARAM_MIN_EU_IN_POOL    39
0621 #define I915_PARAM_MMAP_GTT_VERSION  40
0622 
0623 /*
0624  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
0625  * priorities and the driver will attempt to execute batches in priority order.
0626  * The param returns a capability bitmask, nonzero implies that the scheduler
0627  * is enabled, with different features present according to the mask.
0628  *
0629  * The initial priority for each batch is supplied by the context and is
0630  * controlled via I915_CONTEXT_PARAM_PRIORITY.
0631  */
0632 #define I915_PARAM_HAS_SCHEDULER     41
0633 #define   I915_SCHEDULER_CAP_ENABLED    (1ul << 0)
0634 #define   I915_SCHEDULER_CAP_PRIORITY   (1ul << 1)
0635 #define   I915_SCHEDULER_CAP_PREEMPTION (1ul << 2)
0636 #define   I915_SCHEDULER_CAP_SEMAPHORES (1ul << 3)
0637 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS  (1ul << 4)
0638 /*
0639  * Indicates the 2k user priority levels are statically mapped into 3 buckets as
0640  * follows:
0641  *
0642  * -1k to -1    Low priority
0643  * 0        Normal priority
0644  * 1 to 1k  Highest priority
0645  */
0646 #define   I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP    (1ul << 5)
0647 
0648 #define I915_PARAM_HUC_STATUS        42
0649 
0650 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
0651  * synchronisation with implicit fencing on individual objects.
0652  * See EXEC_OBJECT_ASYNC.
0653  */
0654 #define I915_PARAM_HAS_EXEC_ASYNC    43
0655 
0656 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
0657  * both being able to pass in a sync_file fd to wait upon before executing,
0658  * and being able to return a new sync_file fd that is signaled when the
0659  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
0660  */
0661 #define I915_PARAM_HAS_EXEC_FENCE    44
0662 
0663 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
0664  * user specified bufffers for post-mortem debugging of GPU hangs. See
0665  * EXEC_OBJECT_CAPTURE.
0666  */
0667 #define I915_PARAM_HAS_EXEC_CAPTURE  45
0668 
0669 #define I915_PARAM_SLICE_MASK        46
0670 
0671 /* Assuming it's uniform for each slice, this queries the mask of subslices
0672  * per-slice for this system.
0673  */
0674 #define I915_PARAM_SUBSLICE_MASK     47
0675 
0676 /*
0677  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
0678  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
0679  */
0680 #define I915_PARAM_HAS_EXEC_BATCH_FIRST  48
0681 
0682 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
0683  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
0684  */
0685 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
0686 
0687 /*
0688  * Query whether every context (both per-file default and user created) is
0689  * isolated (insofar as HW supports). If this parameter is not true, then
0690  * freshly created contexts may inherit values from an existing context,
0691  * rather than default HW values. If true, it also ensures (insofar as HW
0692  * supports) that all state set by this context will not leak to any other
0693  * context.
0694  *
0695  * As not every engine across every gen support contexts, the returned
0696  * value reports the support of context isolation for individual engines by
0697  * returning a bitmask of each engine class set to true if that class supports
0698  * isolation.
0699  */
0700 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
0701 
0702 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
0703  * registers. This used to be fixed per platform but from CNL onwards, this
0704  * might vary depending on the parts.
0705  */
0706 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
0707 
0708 /*
0709  * Once upon a time we supposed that writes through the GGTT would be
0710  * immediately in physical memory (once flushed out of the CPU path). However,
0711  * on a few different processors and chipsets, this is not necessarily the case
0712  * as the writes appear to be buffered internally. Thus a read of the backing
0713  * storage (physical memory) via a different path (with different physical tags
0714  * to the indirect write via the GGTT) will see stale values from before
0715  * the GGTT write. Inside the kernel, we can for the most part keep track of
0716  * the different read/write domains in use (e.g. set-domain), but the assumption
0717  * of coherency is baked into the ABI, hence reporting its true state in this
0718  * parameter.
0719  *
0720  * Reports true when writes via mmap_gtt are immediately visible following an
0721  * lfence to flush the WCB.
0722  *
0723  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
0724  * internal buffer and are _not_ immediately visible to third parties accessing
0725  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
0726  * communications channel when reporting false is strongly disadvised.
0727  */
0728 #define I915_PARAM_MMAP_GTT_COHERENT    52
0729 
0730 /*
0731  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
0732  * execution through use of explicit fence support.
0733  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
0734  */
0735 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
0736 
0737 /*
0738  * Revision of the i915-perf uAPI. The value returned helps determine what
0739  * i915-perf features are available. See drm_i915_perf_property_id.
0740  */
0741 #define I915_PARAM_PERF_REVISION    54
0742 
0743 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
0744  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
0745  * I915_EXEC_USE_EXTENSIONS.
0746  */
0747 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
0748 
0749 /* Query if the kernel supports the I915_USERPTR_PROBE flag. */
0750 #define I915_PARAM_HAS_USERPTR_PROBE 56
0751 
0752 /* Must be kept compact -- no holes and well documented */
0753 
0754 /**
0755  * struct drm_i915_getparam - Driver parameter query structure.
0756  */
0757 struct drm_i915_getparam {
0758     /** @param: Driver parameter to query. */
0759     __s32 param;
0760 
0761     /**
0762      * @value: Address of memory where queried value should be put.
0763      *
0764      * WARNING: Using pointers instead of fixed-size u64 means we need to write
0765      * compat32 code. Don't repeat this mistake.
0766      */
0767     int *value;
0768 };
0769 
0770 /**
0771  * typedef drm_i915_getparam_t - Driver parameter query structure.
0772  * See struct drm_i915_getparam.
0773  */
0774 typedef struct drm_i915_getparam drm_i915_getparam_t;
0775 
0776 /* Ioctl to set kernel params:
0777  */
0778 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
0779 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
0780 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
0781 #define I915_SETPARAM_NUM_USED_FENCES                     4
0782 /* Must be kept compact -- no holes */
0783 
0784 typedef struct drm_i915_setparam {
0785     int param;
0786     int value;
0787 } drm_i915_setparam_t;
0788 
0789 /* A memory manager for regions of shared memory:
0790  */
0791 #define I915_MEM_REGION_AGP 1
0792 
0793 typedef struct drm_i915_mem_alloc {
0794     int region;
0795     int alignment;
0796     int size;
0797     int *region_offset; /* offset from start of fb or agp */
0798 } drm_i915_mem_alloc_t;
0799 
0800 typedef struct drm_i915_mem_free {
0801     int region;
0802     int region_offset;
0803 } drm_i915_mem_free_t;
0804 
0805 typedef struct drm_i915_mem_init_heap {
0806     int region;
0807     int size;
0808     int start;
0809 } drm_i915_mem_init_heap_t;
0810 
0811 /* Allow memory manager to be torn down and re-initialized (eg on
0812  * rotate):
0813  */
0814 typedef struct drm_i915_mem_destroy_heap {
0815     int region;
0816 } drm_i915_mem_destroy_heap_t;
0817 
0818 /* Allow X server to configure which pipes to monitor for vblank signals
0819  */
0820 #define DRM_I915_VBLANK_PIPE_A  1
0821 #define DRM_I915_VBLANK_PIPE_B  2
0822 
0823 typedef struct drm_i915_vblank_pipe {
0824     int pipe;
0825 } drm_i915_vblank_pipe_t;
0826 
0827 /* Schedule buffer swap at given vertical blank:
0828  */
0829 typedef struct drm_i915_vblank_swap {
0830     drm_drawable_t drawable;
0831     enum drm_vblank_seq_type seqtype;
0832     unsigned int sequence;
0833 } drm_i915_vblank_swap_t;
0834 
0835 typedef struct drm_i915_hws_addr {
0836     __u64 addr;
0837 } drm_i915_hws_addr_t;
0838 
0839 struct drm_i915_gem_init {
0840     /**
0841      * Beginning offset in the GTT to be managed by the DRM memory
0842      * manager.
0843      */
0844     __u64 gtt_start;
0845     /**
0846      * Ending offset in the GTT to be managed by the DRM memory
0847      * manager.
0848      */
0849     __u64 gtt_end;
0850 };
0851 
0852 struct drm_i915_gem_create {
0853     /**
0854      * Requested size for the object.
0855      *
0856      * The (page-aligned) allocated size for the object will be returned.
0857      */
0858     __u64 size;
0859     /**
0860      * Returned handle for the object.
0861      *
0862      * Object handles are nonzero.
0863      */
0864     __u32 handle;
0865     __u32 pad;
0866 };
0867 
0868 struct drm_i915_gem_pread {
0869     /** Handle for the object being read. */
0870     __u32 handle;
0871     __u32 pad;
0872     /** Offset into the object to read from */
0873     __u64 offset;
0874     /** Length of data to read */
0875     __u64 size;
0876     /**
0877      * Pointer to write the data into.
0878      *
0879      * This is a fixed-size type for 32/64 compatibility.
0880      */
0881     __u64 data_ptr;
0882 };
0883 
0884 struct drm_i915_gem_pwrite {
0885     /** Handle for the object being written to. */
0886     __u32 handle;
0887     __u32 pad;
0888     /** Offset into the object to write to */
0889     __u64 offset;
0890     /** Length of data to write */
0891     __u64 size;
0892     /**
0893      * Pointer to read the data from.
0894      *
0895      * This is a fixed-size type for 32/64 compatibility.
0896      */
0897     __u64 data_ptr;
0898 };
0899 
0900 struct drm_i915_gem_mmap {
0901     /** Handle for the object being mapped. */
0902     __u32 handle;
0903     __u32 pad;
0904     /** Offset in the object to map. */
0905     __u64 offset;
0906     /**
0907      * Length of data to map.
0908      *
0909      * The value will be page-aligned.
0910      */
0911     __u64 size;
0912     /**
0913      * Returned pointer the data was mapped at.
0914      *
0915      * This is a fixed-size type for 32/64 compatibility.
0916      */
0917     __u64 addr_ptr;
0918 
0919     /**
0920      * Flags for extended behaviour.
0921      *
0922      * Added in version 2.
0923      */
0924     __u64 flags;
0925 #define I915_MMAP_WC 0x1
0926 };
0927 
0928 struct drm_i915_gem_mmap_gtt {
0929     /** Handle for the object being mapped. */
0930     __u32 handle;
0931     __u32 pad;
0932     /**
0933      * Fake offset to use for subsequent mmap call
0934      *
0935      * This is a fixed-size type for 32/64 compatibility.
0936      */
0937     __u64 offset;
0938 };
0939 
0940 /**
0941  * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
0942  *
0943  * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
0944  * and is used to retrieve the fake offset to mmap an object specified by &handle.
0945  *
0946  * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
0947  * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
0948  * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
0949  */
0950 struct drm_i915_gem_mmap_offset {
0951     /** @handle: Handle for the object being mapped. */
0952     __u32 handle;
0953     /** @pad: Must be zero */
0954     __u32 pad;
0955     /**
0956      * @offset: The fake offset to use for subsequent mmap call
0957      *
0958      * This is a fixed-size type for 32/64 compatibility.
0959      */
0960     __u64 offset;
0961 
0962     /**
0963      * @flags: Flags for extended behaviour.
0964      *
0965      * It is mandatory that one of the `MMAP_OFFSET` types
0966      * should be included:
0967      *
0968      * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
0969      * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
0970      * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
0971      * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
0972      *
0973      * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
0974      * type. On devices without local memory, this caching mode is invalid.
0975      *
0976      * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
0977      * be used, depending on the object placement on creation. WB will be used
0978      * when the object can only exist in system memory, WC otherwise.
0979      */
0980     __u64 flags;
0981 
0982 #define I915_MMAP_OFFSET_GTT    0
0983 #define I915_MMAP_OFFSET_WC 1
0984 #define I915_MMAP_OFFSET_WB 2
0985 #define I915_MMAP_OFFSET_UC 3
0986 #define I915_MMAP_OFFSET_FIXED  4
0987 
0988     /**
0989      * @extensions: Zero-terminated chain of extensions.
0990      *
0991      * No current extensions defined; mbz.
0992      */
0993     __u64 extensions;
0994 };
0995 
0996 /**
0997  * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
0998  * preparation for accessing the pages via some CPU domain.
0999  *
1000  * Specifying a new write or read domain will flush the object out of the
1001  * previous domain(if required), before then updating the objects domain
1002  * tracking with the new domain.
1003  *
1004  * Note this might involve waiting for the object first if it is still active on
1005  * the GPU.
1006  *
1007  * Supported values for @read_domains and @write_domain:
1008  *
1009  *  - I915_GEM_DOMAIN_WC: Uncached write-combined domain
1010  *  - I915_GEM_DOMAIN_CPU: CPU cache domain
1011  *  - I915_GEM_DOMAIN_GTT: Mappable aperture domain
1012  *
1013  * All other domains are rejected.
1014  *
1015  * Note that for discrete, starting from DG1, this is no longer supported, and
1016  * is instead rejected. On such platforms the CPU domain is effectively static,
1017  * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
1018  * which can't be set explicitly and instead depends on the object placements,
1019  * as per the below.
1020  *
1021  * Implicit caching rules, starting from DG1:
1022  *
1023  *  - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1024  *    contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1025  *    mapped as write-combined only.
1026  *
1027  *  - Everything else is always allocated and mapped as write-back, with the
1028  *    guarantee that everything is also coherent with the GPU.
1029  *
1030  * Note that this is likely to change in the future again, where we might need
1031  * more flexibility on future devices, so making this all explicit as part of a
1032  * new &drm_i915_gem_create_ext extension is probable.
1033  */
1034 struct drm_i915_gem_set_domain {
1035     /** @handle: Handle for the object. */
1036     __u32 handle;
1037 
1038     /** @read_domains: New read domains. */
1039     __u32 read_domains;
1040 
1041     /**
1042      * @write_domain: New write domain.
1043      *
1044      * Note that having something in the write domain implies it's in the
1045      * read domain, and only that read domain.
1046      */
1047     __u32 write_domain;
1048 };
1049 
1050 struct drm_i915_gem_sw_finish {
1051     /** Handle for the object */
1052     __u32 handle;
1053 };
1054 
1055 struct drm_i915_gem_relocation_entry {
1056     /**
1057      * Handle of the buffer being pointed to by this relocation entry.
1058      *
1059      * It's appealing to make this be an index into the mm_validate_entry
1060      * list to refer to the buffer, but this allows the driver to create
1061      * a relocation list for state buffers and not re-write it per
1062      * exec using the buffer.
1063      */
1064     __u32 target_handle;
1065 
1066     /**
1067      * Value to be added to the offset of the target buffer to make up
1068      * the relocation entry.
1069      */
1070     __u32 delta;
1071 
1072     /** Offset in the buffer the relocation entry will be written into */
1073     __u64 offset;
1074 
1075     /**
1076      * Offset value of the target buffer that the relocation entry was last
1077      * written as.
1078      *
1079      * If the buffer has the same offset as last time, we can skip syncing
1080      * and writing the relocation.  This value is written back out by
1081      * the execbuffer ioctl when the relocation is written.
1082      */
1083     __u64 presumed_offset;
1084 
1085     /**
1086      * Target memory domains read by this operation.
1087      */
1088     __u32 read_domains;
1089 
1090     /**
1091      * Target memory domains written by this operation.
1092      *
1093      * Note that only one domain may be written by the whole
1094      * execbuffer operation, so that where there are conflicts,
1095      * the application will get -EINVAL back.
1096      */
1097     __u32 write_domain;
1098 };
1099 
1100 /** @{
1101  * Intel memory domains
1102  *
1103  * Most of these just align with the various caches in
1104  * the system and are used to flush and invalidate as
1105  * objects end up cached in different domains.
1106  */
1107 /** CPU cache */
1108 #define I915_GEM_DOMAIN_CPU     0x00000001
1109 /** Render cache, used by 2D and 3D drawing */
1110 #define I915_GEM_DOMAIN_RENDER      0x00000002
1111 /** Sampler cache, used by texture engine */
1112 #define I915_GEM_DOMAIN_SAMPLER     0x00000004
1113 /** Command queue, used to load batch buffers */
1114 #define I915_GEM_DOMAIN_COMMAND     0x00000008
1115 /** Instruction cache, used by shader programs */
1116 #define I915_GEM_DOMAIN_INSTRUCTION 0x00000010
1117 /** Vertex address cache */
1118 #define I915_GEM_DOMAIN_VERTEX      0x00000020
1119 /** GTT domain - aperture and scanout */
1120 #define I915_GEM_DOMAIN_GTT     0x00000040
1121 /** WC domain - uncached access */
1122 #define I915_GEM_DOMAIN_WC      0x00000080
1123 /** @} */
1124 
1125 struct drm_i915_gem_exec_object {
1126     /**
1127      * User's handle for a buffer to be bound into the GTT for this
1128      * operation.
1129      */
1130     __u32 handle;
1131 
1132     /** Number of relocations to be performed on this buffer */
1133     __u32 relocation_count;
1134     /**
1135      * Pointer to array of struct drm_i915_gem_relocation_entry containing
1136      * the relocations to be performed in this buffer.
1137      */
1138     __u64 relocs_ptr;
1139 
1140     /** Required alignment in graphics aperture */
1141     __u64 alignment;
1142 
1143     /**
1144      * Returned value of the updated offset of the object, for future
1145      * presumed_offset writes.
1146      */
1147     __u64 offset;
1148 };
1149 
1150 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1151 struct drm_i915_gem_execbuffer {
1152     /**
1153      * List of buffers to be validated with their relocations to be
1154      * performend on them.
1155      *
1156      * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1157      *
1158      * These buffers must be listed in an order such that all relocations
1159      * a buffer is performing refer to buffers that have already appeared
1160      * in the validate list.
1161      */
1162     __u64 buffers_ptr;
1163     __u32 buffer_count;
1164 
1165     /** Offset in the batchbuffer to start execution from. */
1166     __u32 batch_start_offset;
1167     /** Bytes used in batchbuffer from batch_start_offset */
1168     __u32 batch_len;
1169     __u32 DR1;
1170     __u32 DR4;
1171     __u32 num_cliprects;
1172     /** This is a struct drm_clip_rect *cliprects */
1173     __u64 cliprects_ptr;
1174 };
1175 
1176 struct drm_i915_gem_exec_object2 {
1177     /**
1178      * User's handle for a buffer to be bound into the GTT for this
1179      * operation.
1180      */
1181     __u32 handle;
1182 
1183     /** Number of relocations to be performed on this buffer */
1184     __u32 relocation_count;
1185     /**
1186      * Pointer to array of struct drm_i915_gem_relocation_entry containing
1187      * the relocations to be performed in this buffer.
1188      */
1189     __u64 relocs_ptr;
1190 
1191     /** Required alignment in graphics aperture */
1192     __u64 alignment;
1193 
1194     /**
1195      * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1196      * the user with the GTT offset at which this object will be pinned.
1197      *
1198      * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1199      * presumed_offset of the object.
1200      *
1201      * During execbuffer2 the kernel populates it with the value of the
1202      * current GTT offset of the object, for future presumed_offset writes.
1203      *
1204      * See struct drm_i915_gem_create_ext for the rules when dealing with
1205      * alignment restrictions with I915_MEMORY_CLASS_DEVICE, on devices with
1206      * minimum page sizes, like DG2.
1207      */
1208     __u64 offset;
1209 
1210 #define EXEC_OBJECT_NEEDS_FENCE      (1<<0)
1211 #define EXEC_OBJECT_NEEDS_GTT        (1<<1)
1212 #define EXEC_OBJECT_WRITE        (1<<2)
1213 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1214 #define EXEC_OBJECT_PINNED       (1<<4)
1215 #define EXEC_OBJECT_PAD_TO_SIZE      (1<<5)
1216 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1217  * synchronises operations with outstanding rendering. This includes
1218  * rendering on other devices if exported via dma-buf. However, sometimes
1219  * this tracking is too coarse and the user knows better. For example,
1220  * if the object is split into non-overlapping ranges shared between different
1221  * clients or engines (i.e. suballocating objects), the implicit tracking
1222  * by kernel assumes that each operation affects the whole object rather
1223  * than an individual range, causing needless synchronisation between clients.
1224  * The kernel will also forgo any CPU cache flushes prior to rendering from
1225  * the object as the client is expected to be also handling such domain
1226  * tracking.
1227  *
1228  * The kernel maintains the implicit tracking in order to manage resources
1229  * used by the GPU - this flag only disables the synchronisation prior to
1230  * rendering with this object in this execbuf.
1231  *
1232  * Opting out of implicit synhronisation requires the user to do its own
1233  * explicit tracking to avoid rendering corruption. See, for example,
1234  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1235  */
1236 #define EXEC_OBJECT_ASYNC       (1<<6)
1237 /* Request that the contents of this execobject be copied into the error
1238  * state upon a GPU hang involving this batch for post-mortem debugging.
1239  * These buffers are recorded in no particular order as "user" in
1240  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1241  * if the kernel supports this flag.
1242  */
1243 #define EXEC_OBJECT_CAPTURE     (1<<7)
1244 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1245 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1246     __u64 flags;
1247 
1248     union {
1249         __u64 rsvd1;
1250         __u64 pad_to_size;
1251     };
1252     __u64 rsvd2;
1253 };
1254 
1255 /**
1256  * struct drm_i915_gem_exec_fence - An input or output fence for the execbuf
1257  * ioctl.
1258  *
1259  * The request will wait for input fence to signal before submission.
1260  *
1261  * The returned output fence will be signaled after the completion of the
1262  * request.
1263  */
1264 struct drm_i915_gem_exec_fence {
1265     /** @handle: User's handle for a drm_syncobj to wait on or signal. */
1266     __u32 handle;
1267 
1268     /**
1269      * @flags: Supported flags are:
1270      *
1271      * I915_EXEC_FENCE_WAIT:
1272      * Wait for the input fence before request submission.
1273      *
1274      * I915_EXEC_FENCE_SIGNAL:
1275      * Return request completion fence as output
1276      */
1277     __u32 flags;
1278 #define I915_EXEC_FENCE_WAIT            (1<<0)
1279 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1280 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1281 };
1282 
1283 /**
1284  * struct drm_i915_gem_execbuffer_ext_timeline_fences - Timeline fences
1285  * for execbuf ioctl.
1286  *
1287  * This structure describes an array of drm_syncobj and associated points for
1288  * timeline variants of drm_syncobj. It is invalid to append this structure to
1289  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1290  */
1291 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1292 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1293     /** @base: Extension link. See struct i915_user_extension. */
1294     struct i915_user_extension base;
1295 
1296     /**
1297      * @fence_count: Number of elements in the @handles_ptr & @value_ptr
1298      * arrays.
1299      */
1300     __u64 fence_count;
1301 
1302     /**
1303      * @handles_ptr: Pointer to an array of struct drm_i915_gem_exec_fence
1304      * of length @fence_count.
1305      */
1306     __u64 handles_ptr;
1307 
1308     /**
1309      * @values_ptr: Pointer to an array of u64 values of length
1310      * @fence_count.
1311      * Values must be 0 for a binary drm_syncobj. A Value of 0 for a
1312      * timeline drm_syncobj is invalid as it turns a drm_syncobj into a
1313      * binary one.
1314      */
1315     __u64 values_ptr;
1316 };
1317 
1318 /**
1319  * struct drm_i915_gem_execbuffer2 - Structure for DRM_I915_GEM_EXECBUFFER2
1320  * ioctl.
1321  */
1322 struct drm_i915_gem_execbuffer2 {
1323     /** @buffers_ptr: Pointer to a list of gem_exec_object2 structs */
1324     __u64 buffers_ptr;
1325 
1326     /** @buffer_count: Number of elements in @buffers_ptr array */
1327     __u32 buffer_count;
1328 
1329     /**
1330      * @batch_start_offset: Offset in the batchbuffer to start execution
1331      * from.
1332      */
1333     __u32 batch_start_offset;
1334 
1335     /**
1336      * @batch_len: Length in bytes of the batch buffer, starting from the
1337      * @batch_start_offset. If 0, length is assumed to be the batch buffer
1338      * object size.
1339      */
1340     __u32 batch_len;
1341 
1342     /** @DR1: deprecated */
1343     __u32 DR1;
1344 
1345     /** @DR4: deprecated */
1346     __u32 DR4;
1347 
1348     /** @num_cliprects: See @cliprects_ptr */
1349     __u32 num_cliprects;
1350 
1351     /**
1352      * @cliprects_ptr: Kernel clipping was a DRI1 misfeature.
1353      *
1354      * It is invalid to use this field if I915_EXEC_FENCE_ARRAY or
1355      * I915_EXEC_USE_EXTENSIONS flags are not set.
1356      *
1357      * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1358      * of &drm_i915_gem_exec_fence and @num_cliprects is the length of the
1359      * array.
1360      *
1361      * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1362      * single &i915_user_extension and num_cliprects is 0.
1363      */
1364     __u64 cliprects_ptr;
1365 
1366     /** @flags: Execbuf flags */
1367     __u64 flags;
1368 #define I915_EXEC_RING_MASK              (0x3f)
1369 #define I915_EXEC_DEFAULT                (0<<0)
1370 #define I915_EXEC_RENDER                 (1<<0)
1371 #define I915_EXEC_BSD                    (2<<0)
1372 #define I915_EXEC_BLT                    (3<<0)
1373 #define I915_EXEC_VEBOX                  (4<<0)
1374 
1375 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1376  * Gen6+ only supports relative addressing to dynamic state (default) and
1377  * absolute addressing.
1378  *
1379  * These flags are ignored for the BSD and BLT rings.
1380  */
1381 #define I915_EXEC_CONSTANTS_MASK    (3<<6)
1382 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1383 #define I915_EXEC_CONSTANTS_ABSOLUTE    (1<<6)
1384 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1385 
1386 /** Resets the SO write offset registers for transform feedback on gen7. */
1387 #define I915_EXEC_GEN7_SOL_RESET    (1<<8)
1388 
1389 /** Request a privileged ("secure") batch buffer. Note only available for
1390  * DRM_ROOT_ONLY | DRM_MASTER processes.
1391  */
1392 #define I915_EXEC_SECURE        (1<<9)
1393 
1394 /** Inform the kernel that the batch is and will always be pinned. This
1395  * negates the requirement for a workaround to be performed to avoid
1396  * an incoherent CS (such as can be found on 830/845). If this flag is
1397  * not passed, the kernel will endeavour to make sure the batch is
1398  * coherent with the CS before execution. If this flag is passed,
1399  * userspace assumes the responsibility for ensuring the same.
1400  */
1401 #define I915_EXEC_IS_PINNED     (1<<10)
1402 
1403 /** Provide a hint to the kernel that the command stream and auxiliary
1404  * state buffers already holds the correct presumed addresses and so the
1405  * relocation process may be skipped if no buffers need to be moved in
1406  * preparation for the execbuffer.
1407  */
1408 #define I915_EXEC_NO_RELOC      (1<<11)
1409 
1410 /** Use the reloc.handle as an index into the exec object array rather
1411  * than as the per-file handle.
1412  */
1413 #define I915_EXEC_HANDLE_LUT        (1<<12)
1414 
1415 /** Used for switching BSD rings on the platforms with two BSD rings */
1416 #define I915_EXEC_BSD_SHIFT  (13)
1417 #define I915_EXEC_BSD_MASK   (3 << I915_EXEC_BSD_SHIFT)
1418 /* default ping-pong mode */
1419 #define I915_EXEC_BSD_DEFAULT    (0 << I915_EXEC_BSD_SHIFT)
1420 #define I915_EXEC_BSD_RING1  (1 << I915_EXEC_BSD_SHIFT)
1421 #define I915_EXEC_BSD_RING2  (2 << I915_EXEC_BSD_SHIFT)
1422 
1423 /** Tell the kernel that the batchbuffer is processed by
1424  *  the resource streamer.
1425  */
1426 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1427 
1428 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1429  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1430  * the batch.
1431  *
1432  * Returns -EINVAL if the sync_file fd cannot be found.
1433  */
1434 #define I915_EXEC_FENCE_IN      (1<<16)
1435 
1436 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1437  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1438  * to the caller, and it should be close() after use. (The fd is a regular
1439  * file descriptor and will be cleaned up on process termination. It holds
1440  * a reference to the request, but nothing else.)
1441  *
1442  * The sync_file fd can be combined with other sync_file and passed either
1443  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1444  * will only occur after this request completes), or to other devices.
1445  *
1446  * Using I915_EXEC_FENCE_OUT requires use of
1447  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1448  * back to userspace. Failure to do so will cause the out-fence to always
1449  * be reported as zero, and the real fence fd to be leaked.
1450  */
1451 #define I915_EXEC_FENCE_OUT     (1<<17)
1452 
1453 /*
1454  * Traditionally the execbuf ioctl has only considered the final element in
1455  * the execobject[] to be the executable batch. Often though, the client
1456  * will known the batch object prior to construction and being able to place
1457  * it into the execobject[] array first can simplify the relocation tracking.
1458  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1459  * execobject[] as the * batch instead (the default is to use the last
1460  * element).
1461  */
1462 #define I915_EXEC_BATCH_FIRST       (1<<18)
1463 
1464 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1465  * define an array of i915_gem_exec_fence structures which specify a set of
1466  * dma fences to wait upon or signal.
1467  */
1468 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1469 
1470 /*
1471  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1472  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1473  * the batch.
1474  *
1475  * Returns -EINVAL if the sync_file fd cannot be found.
1476  */
1477 #define I915_EXEC_FENCE_SUBMIT      (1 << 20)
1478 
1479 /*
1480  * Setting I915_EXEC_USE_EXTENSIONS implies that
1481  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1482  * list of i915_user_extension. Each i915_user_extension node is the base of a
1483  * larger structure. The list of supported structures are listed in the
1484  * drm_i915_gem_execbuffer_ext enum.
1485  */
1486 #define I915_EXEC_USE_EXTENSIONS    (1 << 21)
1487 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1488 
1489     /** @rsvd1: Context id */
1490     __u64 rsvd1;
1491 
1492     /**
1493      * @rsvd2: in and out sync_file file descriptors.
1494      *
1495      * When I915_EXEC_FENCE_IN or I915_EXEC_FENCE_SUBMIT flag is set, the
1496      * lower 32 bits of this field will have the in sync_file fd (input).
1497      *
1498      * When I915_EXEC_FENCE_OUT flag is set, the upper 32 bits of this
1499      * field will have the out sync_file fd (output).
1500      */
1501     __u64 rsvd2;
1502 };
1503 
1504 #define I915_EXEC_CONTEXT_ID_MASK   (0xffffffff)
1505 #define i915_execbuffer2_set_context_id(eb2, context) \
1506     (eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1507 #define i915_execbuffer2_get_context_id(eb2) \
1508     ((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1509 
1510 struct drm_i915_gem_pin {
1511     /** Handle of the buffer to be pinned. */
1512     __u32 handle;
1513     __u32 pad;
1514 
1515     /** alignment required within the aperture */
1516     __u64 alignment;
1517 
1518     /** Returned GTT offset of the buffer. */
1519     __u64 offset;
1520 };
1521 
1522 struct drm_i915_gem_unpin {
1523     /** Handle of the buffer to be unpinned. */
1524     __u32 handle;
1525     __u32 pad;
1526 };
1527 
1528 struct drm_i915_gem_busy {
1529     /** Handle of the buffer to check for busy */
1530     __u32 handle;
1531 
1532     /** Return busy status
1533      *
1534      * A return of 0 implies that the object is idle (after
1535      * having flushed any pending activity), and a non-zero return that
1536      * the object is still in-flight on the GPU. (The GPU has not yet
1537      * signaled completion for all pending requests that reference the
1538      * object.) An object is guaranteed to become idle eventually (so
1539      * long as no new GPU commands are executed upon it). Due to the
1540      * asynchronous nature of the hardware, an object reported
1541      * as busy may become idle before the ioctl is completed.
1542      *
1543      * Furthermore, if the object is busy, which engine is busy is only
1544      * provided as a guide and only indirectly by reporting its class
1545      * (there may be more than one engine in each class). There are race
1546      * conditions which prevent the report of which engines are busy from
1547      * being always accurate.  However, the converse is not true. If the
1548      * object is idle, the result of the ioctl, that all engines are idle,
1549      * is accurate.
1550      *
1551      * The returned dword is split into two fields to indicate both
1552      * the engine classess on which the object is being read, and the
1553      * engine class on which it is currently being written (if any).
1554      *
1555      * The low word (bits 0:15) indicate if the object is being written
1556      * to by any engine (there can only be one, as the GEM implicit
1557      * synchronisation rules force writes to be serialised). Only the
1558      * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1559      * 1 not 0 etc) for the last write is reported.
1560      *
1561      * The high word (bits 16:31) are a bitmask of which engines classes
1562      * are currently reading from the object. Multiple engines may be
1563      * reading from the object simultaneously.
1564      *
1565      * The value of each engine class is the same as specified in the
1566      * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1567      * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1568      * Some hardware may have parallel execution engines, e.g. multiple
1569      * media engines, which are mapped to the same class identifier and so
1570      * are not separately reported for busyness.
1571      *
1572      * Caveat emptor:
1573      * Only the boolean result of this query is reliable; that is whether
1574      * the object is idle or busy. The report of which engines are busy
1575      * should be only used as a heuristic.
1576      */
1577     __u32 busy;
1578 };
1579 
1580 /**
1581  * struct drm_i915_gem_caching - Set or get the caching for given object
1582  * handle.
1583  *
1584  * Allow userspace to control the GTT caching bits for a given object when the
1585  * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1586  * ppGTT support, or if the object is used for scanout). Note that this might
1587  * require unbinding the object from the GTT first, if its current caching value
1588  * doesn't match.
1589  *
1590  * Note that this all changes on discrete platforms, starting from DG1, the
1591  * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1592  * caching attributes(WB vs WC) will become an immutable creation time property
1593  * for the object, along with the GTT caching level. For now we don't expose any
1594  * new uAPI for this, instead on DG1 this is all implicit, although this largely
1595  * shouldn't matter since DG1 is coherent by default(without any way of
1596  * controlling it).
1597  *
1598  * Implicit caching rules, starting from DG1:
1599  *
1600  *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1601  *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1602  *       mapped as write-combined only.
1603  *
1604  *     - Everything else is always allocated and mapped as write-back, with the
1605  *       guarantee that everything is also coherent with the GPU.
1606  *
1607  * Note that this is likely to change in the future again, where we might need
1608  * more flexibility on future devices, so making this all explicit as part of a
1609  * new &drm_i915_gem_create_ext extension is probable.
1610  *
1611  * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1612  * caching attributes for the pages might be required(and is expensive) if we
1613  * need to then CPU map the pages later with different caching attributes. This
1614  * inconsistent caching behaviour, while supported on x86, is not universally
1615  * supported on other architectures. So for simplicity we opt for setting
1616  * everything at creation time, whilst also making it immutable, on discrete
1617  * platforms.
1618  */
1619 struct drm_i915_gem_caching {
1620     /**
1621      * @handle: Handle of the buffer to set/get the caching level.
1622      */
1623     __u32 handle;
1624 
1625     /**
1626      * @caching: The GTT caching level to apply or possible return value.
1627      *
1628      * The supported @caching values:
1629      *
1630      * I915_CACHING_NONE:
1631      *
1632      * GPU access is not coherent with CPU caches.  Default for machines
1633      * without an LLC. This means manual flushing might be needed, if we
1634      * want GPU access to be coherent.
1635      *
1636      * I915_CACHING_CACHED:
1637      *
1638      * GPU access is coherent with CPU caches and furthermore the data is
1639      * cached in last-level caches shared between CPU cores and the GPU GT.
1640      *
1641      * I915_CACHING_DISPLAY:
1642      *
1643      * Special GPU caching mode which is coherent with the scanout engines.
1644      * Transparently falls back to I915_CACHING_NONE on platforms where no
1645      * special cache mode (like write-through or gfdt flushing) is
1646      * available. The kernel automatically sets this mode when using a
1647      * buffer as a scanout target.  Userspace can manually set this mode to
1648      * avoid a costly stall and clflush in the hotpath of drawing the first
1649      * frame.
1650      */
1651 #define I915_CACHING_NONE       0
1652 #define I915_CACHING_CACHED     1
1653 #define I915_CACHING_DISPLAY        2
1654     __u32 caching;
1655 };
1656 
1657 #define I915_TILING_NONE    0
1658 #define I915_TILING_X       1
1659 #define I915_TILING_Y       2
1660 /*
1661  * Do not add new tiling types here.  The I915_TILING_* values are for
1662  * de-tiling fence registers that no longer exist on modern platforms.  Although
1663  * the hardware may support new types of tiling in general (e.g., Tile4), we
1664  * do not need to add them to the uapi that is specific to now-defunct ioctls.
1665  */
1666 #define I915_TILING_LAST    I915_TILING_Y
1667 
1668 #define I915_BIT_6_SWIZZLE_NONE     0
1669 #define I915_BIT_6_SWIZZLE_9        1
1670 #define I915_BIT_6_SWIZZLE_9_10     2
1671 #define I915_BIT_6_SWIZZLE_9_11     3
1672 #define I915_BIT_6_SWIZZLE_9_10_11  4
1673 /* Not seen by userland */
1674 #define I915_BIT_6_SWIZZLE_UNKNOWN  5
1675 /* Seen by userland. */
1676 #define I915_BIT_6_SWIZZLE_9_17     6
1677 #define I915_BIT_6_SWIZZLE_9_10_17  7
1678 
1679 struct drm_i915_gem_set_tiling {
1680     /** Handle of the buffer to have its tiling state updated */
1681     __u32 handle;
1682 
1683     /**
1684      * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1685      * I915_TILING_Y).
1686      *
1687      * This value is to be set on request, and will be updated by the
1688      * kernel on successful return with the actual chosen tiling layout.
1689      *
1690      * The tiling mode may be demoted to I915_TILING_NONE when the system
1691      * has bit 6 swizzling that can't be managed correctly by GEM.
1692      *
1693      * Buffer contents become undefined when changing tiling_mode.
1694      */
1695     __u32 tiling_mode;
1696 
1697     /**
1698      * Stride in bytes for the object when in I915_TILING_X or
1699      * I915_TILING_Y.
1700      */
1701     __u32 stride;
1702 
1703     /**
1704      * Returned address bit 6 swizzling required for CPU access through
1705      * mmap mapping.
1706      */
1707     __u32 swizzle_mode;
1708 };
1709 
1710 struct drm_i915_gem_get_tiling {
1711     /** Handle of the buffer to get tiling state for. */
1712     __u32 handle;
1713 
1714     /**
1715      * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1716      * I915_TILING_Y).
1717      */
1718     __u32 tiling_mode;
1719 
1720     /**
1721      * Returned address bit 6 swizzling required for CPU access through
1722      * mmap mapping.
1723      */
1724     __u32 swizzle_mode;
1725 
1726     /**
1727      * Returned address bit 6 swizzling required for CPU access through
1728      * mmap mapping whilst bound.
1729      */
1730     __u32 phys_swizzle_mode;
1731 };
1732 
1733 struct drm_i915_gem_get_aperture {
1734     /** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1735     __u64 aper_size;
1736 
1737     /**
1738      * Available space in the aperture used by i915_gem_execbuffer, in
1739      * bytes
1740      */
1741     __u64 aper_available_size;
1742 };
1743 
1744 struct drm_i915_get_pipe_from_crtc_id {
1745     /** ID of CRTC being requested **/
1746     __u32 crtc_id;
1747 
1748     /** pipe of requested CRTC **/
1749     __u32 pipe;
1750 };
1751 
1752 #define I915_MADV_WILLNEED 0
1753 #define I915_MADV_DONTNEED 1
1754 #define __I915_MADV_PURGED 2 /* internal state */
1755 
1756 struct drm_i915_gem_madvise {
1757     /** Handle of the buffer to change the backing store advice */
1758     __u32 handle;
1759 
1760     /* Advice: either the buffer will be needed again in the near future,
1761      *         or wont be and could be discarded under memory pressure.
1762      */
1763     __u32 madv;
1764 
1765     /** Whether the backing store still exists. */
1766     __u32 retained;
1767 };
1768 
1769 /* flags */
1770 #define I915_OVERLAY_TYPE_MASK      0xff
1771 #define I915_OVERLAY_YUV_PLANAR     0x01
1772 #define I915_OVERLAY_YUV_PACKED     0x02
1773 #define I915_OVERLAY_RGB        0x03
1774 
1775 #define I915_OVERLAY_DEPTH_MASK     0xff00
1776 #define I915_OVERLAY_RGB24      0x1000
1777 #define I915_OVERLAY_RGB16      0x2000
1778 #define I915_OVERLAY_RGB15      0x3000
1779 #define I915_OVERLAY_YUV422     0x0100
1780 #define I915_OVERLAY_YUV411     0x0200
1781 #define I915_OVERLAY_YUV420     0x0300
1782 #define I915_OVERLAY_YUV410     0x0400
1783 
1784 #define I915_OVERLAY_SWAP_MASK      0xff0000
1785 #define I915_OVERLAY_NO_SWAP        0x000000
1786 #define I915_OVERLAY_UV_SWAP        0x010000
1787 #define I915_OVERLAY_Y_SWAP     0x020000
1788 #define I915_OVERLAY_Y_AND_UV_SWAP  0x030000
1789 
1790 #define I915_OVERLAY_FLAGS_MASK     0xff000000
1791 #define I915_OVERLAY_ENABLE     0x01000000
1792 
1793 struct drm_intel_overlay_put_image {
1794     /* various flags and src format description */
1795     __u32 flags;
1796     /* source picture description */
1797     __u32 bo_handle;
1798     /* stride values and offsets are in bytes, buffer relative */
1799     __u16 stride_Y; /* stride for packed formats */
1800     __u16 stride_UV;
1801     __u32 offset_Y; /* offset for packet formats */
1802     __u32 offset_U;
1803     __u32 offset_V;
1804     /* in pixels */
1805     __u16 src_width;
1806     __u16 src_height;
1807     /* to compensate the scaling factors for partially covered surfaces */
1808     __u16 src_scan_width;
1809     __u16 src_scan_height;
1810     /* output crtc description */
1811     __u32 crtc_id;
1812     __u16 dst_x;
1813     __u16 dst_y;
1814     __u16 dst_width;
1815     __u16 dst_height;
1816 };
1817 
1818 /* flags */
1819 #define I915_OVERLAY_UPDATE_ATTRS   (1<<0)
1820 #define I915_OVERLAY_UPDATE_GAMMA   (1<<1)
1821 #define I915_OVERLAY_DISABLE_DEST_COLORKEY  (1<<2)
1822 struct drm_intel_overlay_attrs {
1823     __u32 flags;
1824     __u32 color_key;
1825     __s32 brightness;
1826     __u32 contrast;
1827     __u32 saturation;
1828     __u32 gamma0;
1829     __u32 gamma1;
1830     __u32 gamma2;
1831     __u32 gamma3;
1832     __u32 gamma4;
1833     __u32 gamma5;
1834 };
1835 
1836 /*
1837  * Intel sprite handling
1838  *
1839  * Color keying works with a min/mask/max tuple.  Both source and destination
1840  * color keying is allowed.
1841  *
1842  * Source keying:
1843  * Sprite pixels within the min & max values, masked against the color channels
1844  * specified in the mask field, will be transparent.  All other pixels will
1845  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1846  * and mask fields will be used; ranged compares are not allowed.
1847  *
1848  * Destination keying:
1849  * Primary plane pixels that match the min value, masked against the color
1850  * channels specified in the mask field, will be replaced by corresponding
1851  * pixels from the sprite plane.
1852  *
1853  * Note that source & destination keying are exclusive; only one can be
1854  * active on a given plane.
1855  */
1856 
1857 #define I915_SET_COLORKEY_NONE      (1<<0) /* Deprecated. Instead set
1858                         * flags==0 to disable colorkeying.
1859                         */
1860 #define I915_SET_COLORKEY_DESTINATION   (1<<1)
1861 #define I915_SET_COLORKEY_SOURCE    (1<<2)
1862 struct drm_intel_sprite_colorkey {
1863     __u32 plane_id;
1864     __u32 min_value;
1865     __u32 channel_mask;
1866     __u32 max_value;
1867     __u32 flags;
1868 };
1869 
1870 struct drm_i915_gem_wait {
1871     /** Handle of BO we shall wait on */
1872     __u32 bo_handle;
1873     __u32 flags;
1874     /** Number of nanoseconds to wait, Returns time remaining. */
1875     __s64 timeout_ns;
1876 };
1877 
1878 struct drm_i915_gem_context_create {
1879     __u32 ctx_id; /* output: id of new context*/
1880     __u32 pad;
1881 };
1882 
1883 /**
1884  * struct drm_i915_gem_context_create_ext - Structure for creating contexts.
1885  */
1886 struct drm_i915_gem_context_create_ext {
1887     /** @ctx_id: Id of the created context (output) */
1888     __u32 ctx_id;
1889 
1890     /**
1891      * @flags: Supported flags are:
1892      *
1893      * I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS:
1894      *
1895      * Extensions may be appended to this structure and driver must check
1896      * for those. See @extensions.
1897      *
1898      * I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE
1899      *
1900      * Created context will have single timeline.
1901      */
1902     __u32 flags;
1903 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS    (1u << 0)
1904 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE   (1u << 1)
1905 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1906     (-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1907 
1908     /**
1909      * @extensions: Zero-terminated chain of extensions.
1910      *
1911      * I915_CONTEXT_CREATE_EXT_SETPARAM:
1912      * Context parameter to set or query during context creation.
1913      * See struct drm_i915_gem_context_create_ext_setparam.
1914      *
1915      * I915_CONTEXT_CREATE_EXT_CLONE:
1916      * This extension has been removed. On the off chance someone somewhere
1917      * has attempted to use it, never re-use this extension number.
1918      */
1919     __u64 extensions;
1920 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1921 #define I915_CONTEXT_CREATE_EXT_CLONE 1
1922 };
1923 
1924 /**
1925  * struct drm_i915_gem_context_param - Context parameter to set or query.
1926  */
1927 struct drm_i915_gem_context_param {
1928     /** @ctx_id: Context id */
1929     __u32 ctx_id;
1930 
1931     /** @size: Size of the parameter @value */
1932     __u32 size;
1933 
1934     /** @param: Parameter to set or query */
1935     __u64 param;
1936 #define I915_CONTEXT_PARAM_BAN_PERIOD   0x1
1937 /* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
1938  * someone somewhere has attempted to use it, never re-use this context
1939  * param number.
1940  */
1941 #define I915_CONTEXT_PARAM_NO_ZEROMAP   0x2
1942 #define I915_CONTEXT_PARAM_GTT_SIZE 0x3
1943 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE 0x4
1944 #define I915_CONTEXT_PARAM_BANNABLE 0x5
1945 #define I915_CONTEXT_PARAM_PRIORITY 0x6
1946 #define   I915_CONTEXT_MAX_USER_PRIORITY    1023 /* inclusive */
1947 #define   I915_CONTEXT_DEFAULT_PRIORITY     0
1948 #define   I915_CONTEXT_MIN_USER_PRIORITY    -1023 /* inclusive */
1949     /*
1950      * When using the following param, value should be a pointer to
1951      * drm_i915_gem_context_param_sseu.
1952      */
1953 #define I915_CONTEXT_PARAM_SSEU     0x7
1954 
1955 /*
1956  * Not all clients may want to attempt automatic recover of a context after
1957  * a hang (for example, some clients may only submit very small incremental
1958  * batches relying on known logical state of previous batches which will never
1959  * recover correctly and each attempt will hang), and so would prefer that
1960  * the context is forever banned instead.
1961  *
1962  * If set to false (0), after a reset, subsequent (and in flight) rendering
1963  * from this context is discarded, and the client will need to create a new
1964  * context to use instead.
1965  *
1966  * If set to true (1), the kernel will automatically attempt to recover the
1967  * context by skipping the hanging batch and executing the next batch starting
1968  * from the default context state (discarding the incomplete logical context
1969  * state lost due to the reset).
1970  *
1971  * On creation, all new contexts are marked as recoverable.
1972  */
1973 #define I915_CONTEXT_PARAM_RECOVERABLE  0x8
1974 
1975     /*
1976      * The id of the associated virtual memory address space (ppGTT) of
1977      * this context. Can be retrieved and passed to another context
1978      * (on the same fd) for both to use the same ppGTT and so share
1979      * address layouts, and avoid reloading the page tables on context
1980      * switches between themselves.
1981      *
1982      * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1983      */
1984 #define I915_CONTEXT_PARAM_VM       0x9
1985 
1986 /*
1987  * I915_CONTEXT_PARAM_ENGINES:
1988  *
1989  * Bind this context to operate on this subset of available engines. Henceforth,
1990  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1991  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1992  * and upwards. Slots 0...N are filled in using the specified (class, instance).
1993  * Use
1994  *  engine_class: I915_ENGINE_CLASS_INVALID,
1995  *  engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1996  * to specify a gap in the array that can be filled in later, e.g. by a
1997  * virtual engine used for load balancing.
1998  *
1999  * Setting the number of engines bound to the context to 0, by passing a zero
2000  * sized argument, will revert back to default settings.
2001  *
2002  * See struct i915_context_param_engines.
2003  *
2004  * Extensions:
2005  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
2006  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
2007  *   i915_context_engines_parallel_submit (I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT)
2008  */
2009 #define I915_CONTEXT_PARAM_ENGINES  0xa
2010 
2011 /*
2012  * I915_CONTEXT_PARAM_PERSISTENCE:
2013  *
2014  * Allow the context and active rendering to survive the process until
2015  * completion. Persistence allows fire-and-forget clients to queue up a
2016  * bunch of work, hand the output over to a display server and then quit.
2017  * If the context is marked as not persistent, upon closing (either via
2018  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
2019  * or process termination), the context and any outstanding requests will be
2020  * cancelled (and exported fences for cancelled requests marked as -EIO).
2021  *
2022  * By default, new contexts allow persistence.
2023  */
2024 #define I915_CONTEXT_PARAM_PERSISTENCE  0xb
2025 
2026 /* This API has been removed.  On the off chance someone somewhere has
2027  * attempted to use it, never re-use this context param number.
2028  */
2029 #define I915_CONTEXT_PARAM_RINGSIZE 0xc
2030 
2031 /*
2032  * I915_CONTEXT_PARAM_PROTECTED_CONTENT:
2033  *
2034  * Mark that the context makes use of protected content, which will result
2035  * in the context being invalidated when the protected content session is.
2036  * Given that the protected content session is killed on suspend, the device
2037  * is kept awake for the lifetime of a protected context, so the user should
2038  * make sure to dispose of them once done.
2039  * This flag can only be set at context creation time and, when set to true,
2040  * must be preceded by an explicit setting of I915_CONTEXT_PARAM_RECOVERABLE
2041  * to false. This flag can't be set to true in conjunction with setting the
2042  * I915_CONTEXT_PARAM_BANNABLE flag to false. Creation example:
2043  *
2044  * .. code-block:: C
2045  *
2046  *  struct drm_i915_gem_context_create_ext_setparam p_protected = {
2047  *      .base = {
2048  *          .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2049  *      },
2050  *      .param = {
2051  *          .param = I915_CONTEXT_PARAM_PROTECTED_CONTENT,
2052  *          .value = 1,
2053  *      }
2054  *  };
2055  *  struct drm_i915_gem_context_create_ext_setparam p_norecover = {
2056  *      .base = {
2057  *          .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2058  *          .next_extension = to_user_pointer(&p_protected),
2059  *      },
2060  *      .param = {
2061  *          .param = I915_CONTEXT_PARAM_RECOVERABLE,
2062  *          .value = 0,
2063  *      }
2064  *  };
2065  *  struct drm_i915_gem_context_create_ext create = {
2066  *      .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2067  *      .extensions = to_user_pointer(&p_norecover);
2068  *  };
2069  *
2070  *  ctx_id = gem_context_create_ext(drm_fd, &create);
2071  *
2072  * In addition to the normal failure cases, setting this flag during context
2073  * creation can result in the following errors:
2074  *
2075  * -ENODEV: feature not available
2076  * -EPERM: trying to mark a recoverable or not bannable context as protected
2077  */
2078 #define I915_CONTEXT_PARAM_PROTECTED_CONTENT    0xd
2079 /* Must be kept compact -- no holes and well documented */
2080 
2081     /** @value: Context parameter value to be set or queried */
2082     __u64 value;
2083 };
2084 
2085 /*
2086  * Context SSEU programming
2087  *
2088  * It may be necessary for either functional or performance reason to configure
2089  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
2090  * Sub-slice/EU).
2091  *
2092  * This is done by configuring SSEU configuration using the below
2093  * @struct drm_i915_gem_context_param_sseu for every supported engine which
2094  * userspace intends to use.
2095  *
2096  * Not all GPUs or engines support this functionality in which case an error
2097  * code -ENODEV will be returned.
2098  *
2099  * Also, flexibility of possible SSEU configuration permutations varies between
2100  * GPU generations and software imposed limitations. Requesting such a
2101  * combination will return an error code of -EINVAL.
2102  *
2103  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
2104  * favour of a single global setting.
2105  */
2106 struct drm_i915_gem_context_param_sseu {
2107     /*
2108      * Engine class & instance to be configured or queried.
2109      */
2110     struct i915_engine_class_instance engine;
2111 
2112     /*
2113      * Unknown flags must be cleared to zero.
2114      */
2115     __u32 flags;
2116 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
2117 
2118     /*
2119      * Mask of slices to enable for the context. Valid values are a subset
2120      * of the bitmask value returned for I915_PARAM_SLICE_MASK.
2121      */
2122     __u64 slice_mask;
2123 
2124     /*
2125      * Mask of subslices to enable for the context. Valid values are a
2126      * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
2127      */
2128     __u64 subslice_mask;
2129 
2130     /*
2131      * Minimum/Maximum number of EUs to enable per subslice for the
2132      * context. min_eus_per_subslice must be inferior or equal to
2133      * max_eus_per_subslice.
2134      */
2135     __u16 min_eus_per_subslice;
2136     __u16 max_eus_per_subslice;
2137 
2138     /*
2139      * Unused for now. Must be cleared to zero.
2140      */
2141     __u32 rsvd;
2142 };
2143 
2144 /**
2145  * DOC: Virtual Engine uAPI
2146  *
2147  * Virtual engine is a concept where userspace is able to configure a set of
2148  * physical engines, submit a batch buffer, and let the driver execute it on any
2149  * engine from the set as it sees fit.
2150  *
2151  * This is primarily useful on parts which have multiple instances of a same
2152  * class engine, like for example GT3+ Skylake parts with their two VCS engines.
2153  *
2154  * For instance userspace can enumerate all engines of a certain class using the
2155  * previously described `Engine Discovery uAPI`_. After that userspace can
2156  * create a GEM context with a placeholder slot for the virtual engine (using
2157  * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
2158  * and instance respectively) and finally using the
2159  * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
2160  * the same reserved slot.
2161  *
2162  * Example of creating a virtual engine and submitting a batch buffer to it:
2163  *
2164  * .. code-block:: C
2165  *
2166  *  I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
2167  *      .base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
2168  *      .engine_index = 0, // Place this virtual engine into engine map slot 0
2169  *      .num_siblings = 2,
2170  *      .engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
2171  *               { I915_ENGINE_CLASS_VIDEO, 1 }, },
2172  *  };
2173  *  I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
2174  *      .engines = { { I915_ENGINE_CLASS_INVALID,
2175  *                 I915_ENGINE_CLASS_INVALID_NONE } },
2176  *      .extensions = to_user_pointer(&virtual), // Chains after load_balance extension
2177  *  };
2178  *  struct drm_i915_gem_context_create_ext_setparam p_engines = {
2179  *      .base = {
2180  *          .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2181  *      },
2182  *      .param = {
2183  *          .param = I915_CONTEXT_PARAM_ENGINES,
2184  *          .value = to_user_pointer(&engines),
2185  *          .size = sizeof(engines),
2186  *      },
2187  *  };
2188  *  struct drm_i915_gem_context_create_ext create = {
2189  *      .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2190  *      .extensions = to_user_pointer(&p_engines);
2191  *  };
2192  *
2193  *  ctx_id = gem_context_create_ext(drm_fd, &create);
2194  *
2195  *  // Now we have created a GEM context with its engine map containing a
2196  *  // single virtual engine. Submissions to this slot can go either to
2197  *  // vcs0 or vcs1, depending on the load balancing algorithm used inside
2198  *  // the driver. The load balancing is dynamic from one batch buffer to
2199  *  // another and transparent to userspace.
2200  *
2201  *  ...
2202  *  execbuf.rsvd1 = ctx_id;
2203  *  execbuf.flags = 0; // Submits to index 0 which is the virtual engine
2204  *  gem_execbuf(drm_fd, &execbuf);
2205  */
2206 
2207 /*
2208  * i915_context_engines_load_balance:
2209  *
2210  * Enable load balancing across this set of engines.
2211  *
2212  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
2213  * used will proxy the execbuffer request onto one of the set of engines
2214  * in such a way as to distribute the load evenly across the set.
2215  *
2216  * The set of engines must be compatible (e.g. the same HW class) as they
2217  * will share the same logical GPU context and ring.
2218  *
2219  * To intermix rendering with the virtual engine and direct rendering onto
2220  * the backing engines (bypassing the load balancing proxy), the context must
2221  * be defined to use a single timeline for all engines.
2222  */
2223 struct i915_context_engines_load_balance {
2224     struct i915_user_extension base;
2225 
2226     __u16 engine_index;
2227     __u16 num_siblings;
2228     __u32 flags; /* all undefined flags must be zero */
2229 
2230     __u64 mbz64; /* reserved for future use; must be zero */
2231 
2232     struct i915_engine_class_instance engines[];
2233 } __attribute__((packed));
2234 
2235 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
2236     struct i915_user_extension base; \
2237     __u16 engine_index; \
2238     __u16 num_siblings; \
2239     __u32 flags; \
2240     __u64 mbz64; \
2241     struct i915_engine_class_instance engines[N__]; \
2242 } __attribute__((packed)) name__
2243 
2244 /*
2245  * i915_context_engines_bond:
2246  *
2247  * Constructed bonded pairs for execution within a virtual engine.
2248  *
2249  * All engines are equal, but some are more equal than others. Given
2250  * the distribution of resources in the HW, it may be preferable to run
2251  * a request on a given subset of engines in parallel to a request on a
2252  * specific engine. We enable this selection of engines within a virtual
2253  * engine by specifying bonding pairs, for any given master engine we will
2254  * only execute on one of the corresponding siblings within the virtual engine.
2255  *
2256  * To execute a request in parallel on the master engine and a sibling requires
2257  * coordination with a I915_EXEC_FENCE_SUBMIT.
2258  */
2259 struct i915_context_engines_bond {
2260     struct i915_user_extension base;
2261 
2262     struct i915_engine_class_instance master;
2263 
2264     __u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2265     __u16 num_bonds;
2266 
2267     __u64 flags; /* all undefined flags must be zero */
2268     __u64 mbz64[4]; /* reserved for future use; must be zero */
2269 
2270     struct i915_engine_class_instance engines[];
2271 } __attribute__((packed));
2272 
2273 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2274     struct i915_user_extension base; \
2275     struct i915_engine_class_instance master; \
2276     __u16 virtual_index; \
2277     __u16 num_bonds; \
2278     __u64 flags; \
2279     __u64 mbz64[4]; \
2280     struct i915_engine_class_instance engines[N__]; \
2281 } __attribute__((packed)) name__
2282 
2283 /**
2284  * struct i915_context_engines_parallel_submit - Configure engine for
2285  * parallel submission.
2286  *
2287  * Setup a slot in the context engine map to allow multiple BBs to be submitted
2288  * in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU
2289  * in parallel. Multiple hardware contexts are created internally in the i915 to
2290  * run these BBs. Once a slot is configured for N BBs only N BBs can be
2291  * submitted in each execbuf IOCTL and this is implicit behavior e.g. The user
2292  * doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how
2293  * many BBs there are based on the slot's configuration. The N BBs are the last
2294  * N buffer objects or first N if I915_EXEC_BATCH_FIRST is set.
2295  *
2296  * The default placement behavior is to create implicit bonds between each
2297  * context if each context maps to more than 1 physical engine (e.g. context is
2298  * a virtual engine). Also we only allow contexts of same engine class and these
2299  * contexts must be in logically contiguous order. Examples of the placement
2300  * behavior are described below. Lastly, the default is to not allow BBs to be
2301  * preempted mid-batch. Rather insert coordinated preemption points on all
2302  * hardware contexts between each set of BBs. Flags could be added in the future
2303  * to change both of these default behaviors.
2304  *
2305  * Returns -EINVAL if hardware context placement configuration is invalid or if
2306  * the placement configuration isn't supported on the platform / submission
2307  * interface.
2308  * Returns -ENODEV if extension isn't supported on the platform / submission
2309  * interface.
2310  *
2311  * .. code-block:: none
2312  *
2313  *  Examples syntax:
2314  *  CS[X] = generic engine of same class, logical instance X
2315  *  INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
2316  *
2317  *  Example 1 pseudo code:
2318  *  set_engines(INVALID)
2319  *  set_parallel(engine_index=0, width=2, num_siblings=1,
2320  *           engines=CS[0],CS[1])
2321  *
2322  *  Results in the following valid placement:
2323  *  CS[0], CS[1]
2324  *
2325  *  Example 2 pseudo code:
2326  *  set_engines(INVALID)
2327  *  set_parallel(engine_index=0, width=2, num_siblings=2,
2328  *           engines=CS[0],CS[2],CS[1],CS[3])
2329  *
2330  *  Results in the following valid placements:
2331  *  CS[0], CS[1]
2332  *  CS[2], CS[3]
2333  *
2334  *  This can be thought of as two virtual engines, each containing two
2335  *  engines thereby making a 2D array. However, there are bonds tying the
2336  *  entries together and placing restrictions on how they can be scheduled.
2337  *  Specifically, the scheduler can choose only vertical columns from the 2D
2338  *  array. That is, CS[0] is bonded to CS[1] and CS[2] to CS[3]. So if the
2339  *  scheduler wants to submit to CS[0], it must also choose CS[1] and vice
2340  *  versa. Same for CS[2] requires also using CS[3].
2341  *  VE[0] = CS[0], CS[2]
2342  *  VE[1] = CS[1], CS[3]
2343  *
2344  *  Example 3 pseudo code:
2345  *  set_engines(INVALID)
2346  *  set_parallel(engine_index=0, width=2, num_siblings=2,
2347  *           engines=CS[0],CS[1],CS[1],CS[3])
2348  *
2349  *  Results in the following valid and invalid placements:
2350  *  CS[0], CS[1]
2351  *  CS[1], CS[3] - Not logically contiguous, return -EINVAL
2352  */
2353 struct i915_context_engines_parallel_submit {
2354     /**
2355      * @base: base user extension.
2356      */
2357     struct i915_user_extension base;
2358 
2359     /**
2360      * @engine_index: slot for parallel engine
2361      */
2362     __u16 engine_index;
2363 
2364     /**
2365      * @width: number of contexts per parallel engine or in other words the
2366      * number of batches in each submission
2367      */
2368     __u16 width;
2369 
2370     /**
2371      * @num_siblings: number of siblings per context or in other words the
2372      * number of possible placements for each submission
2373      */
2374     __u16 num_siblings;
2375 
2376     /**
2377      * @mbz16: reserved for future use; must be zero
2378      */
2379     __u16 mbz16;
2380 
2381     /**
2382      * @flags: all undefined flags must be zero, currently not defined flags
2383      */
2384     __u64 flags;
2385 
2386     /**
2387      * @mbz64: reserved for future use; must be zero
2388      */
2389     __u64 mbz64[3];
2390 
2391     /**
2392      * @engines: 2-d array of engine instances to configure parallel engine
2393      *
2394      * length = width (i) * num_siblings (j)
2395      * index = j + i * num_siblings
2396      */
2397     struct i915_engine_class_instance engines[];
2398 
2399 } __attribute__((packed));
2400 
2401 #define I915_DEFINE_CONTEXT_ENGINES_PARALLEL_SUBMIT(name__, N__) struct { \
2402     struct i915_user_extension base; \
2403     __u16 engine_index; \
2404     __u16 width; \
2405     __u16 num_siblings; \
2406     __u16 mbz16; \
2407     __u64 flags; \
2408     __u64 mbz64[3]; \
2409     struct i915_engine_class_instance engines[N__]; \
2410 } __attribute__((packed)) name__
2411 
2412 /**
2413  * DOC: Context Engine Map uAPI
2414  *
2415  * Context engine map is a new way of addressing engines when submitting batch-
2416  * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2417  * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2418  *
2419  * To use it created GEM contexts need to be configured with a list of engines
2420  * the user is intending to submit to. This is accomplished using the
2421  * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2422  * i915_context_param_engines`.
2423  *
2424  * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2425  * configured map.
2426  *
2427  * Example of creating such context and submitting against it:
2428  *
2429  * .. code-block:: C
2430  *
2431  *  I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2432  *      .engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2433  *               { I915_ENGINE_CLASS_COPY, 0 } }
2434  *  };
2435  *  struct drm_i915_gem_context_create_ext_setparam p_engines = {
2436  *      .base = {
2437  *          .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2438  *      },
2439  *      .param = {
2440  *          .param = I915_CONTEXT_PARAM_ENGINES,
2441  *          .value = to_user_pointer(&engines),
2442  *          .size = sizeof(engines),
2443  *      },
2444  *  };
2445  *  struct drm_i915_gem_context_create_ext create = {
2446  *      .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2447  *      .extensions = to_user_pointer(&p_engines);
2448  *  };
2449  *
2450  *  ctx_id = gem_context_create_ext(drm_fd, &create);
2451  *
2452  *  // We have now created a GEM context with two engines in the map:
2453  *  // Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2454  *  // will not be accessible from this context.
2455  *
2456  *  ...
2457  *  execbuf.rsvd1 = ctx_id;
2458  *  execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2459  *  gem_execbuf(drm_fd, &execbuf);
2460  *
2461  *  ...
2462  *  execbuf.rsvd1 = ctx_id;
2463  *  execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2464  *  gem_execbuf(drm_fd, &execbuf);
2465  */
2466 
2467 struct i915_context_param_engines {
2468     __u64 extensions; /* linked chain of extension blocks, 0 terminates */
2469 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2470 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2471 #define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */
2472     struct i915_engine_class_instance engines[0];
2473 } __attribute__((packed));
2474 
2475 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2476     __u64 extensions; \
2477     struct i915_engine_class_instance engines[N__]; \
2478 } __attribute__((packed)) name__
2479 
2480 /**
2481  * struct drm_i915_gem_context_create_ext_setparam - Context parameter
2482  * to set or query during context creation.
2483  */
2484 struct drm_i915_gem_context_create_ext_setparam {
2485     /** @base: Extension link. See struct i915_user_extension. */
2486     struct i915_user_extension base;
2487 
2488     /**
2489      * @param: Context parameter to set or query.
2490      * See struct drm_i915_gem_context_param.
2491      */
2492     struct drm_i915_gem_context_param param;
2493 };
2494 
2495 struct drm_i915_gem_context_destroy {
2496     __u32 ctx_id;
2497     __u32 pad;
2498 };
2499 
2500 /**
2501  * struct drm_i915_gem_vm_control - Structure to create or destroy VM.
2502  *
2503  * DRM_I915_GEM_VM_CREATE -
2504  *
2505  * Create a new virtual memory address space (ppGTT) for use within a context
2506  * on the same file. Extensions can be provided to configure exactly how the
2507  * address space is setup upon creation.
2508  *
2509  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2510  * returned in the outparam @id.
2511  *
2512  * An extension chain maybe provided, starting with @extensions, and terminated
2513  * by the @next_extension being 0. Currently, no extensions are defined.
2514  *
2515  * DRM_I915_GEM_VM_DESTROY -
2516  *
2517  * Destroys a previously created VM id, specified in @vm_id.
2518  *
2519  * No extensions or flags are allowed currently, and so must be zero.
2520  */
2521 struct drm_i915_gem_vm_control {
2522     /** @extensions: Zero-terminated chain of extensions. */
2523     __u64 extensions;
2524 
2525     /** @flags: reserved for future usage, currently MBZ */
2526     __u32 flags;
2527 
2528     /** @vm_id: Id of the VM created or to be destroyed */
2529     __u32 vm_id;
2530 };
2531 
2532 struct drm_i915_reg_read {
2533     /*
2534      * Register offset.
2535      * For 64bit wide registers where the upper 32bits don't immediately
2536      * follow the lower 32bits, the offset of the lower 32bits must
2537      * be specified
2538      */
2539     __u64 offset;
2540 #define I915_REG_READ_8B_WA (1ul << 0)
2541 
2542     __u64 val; /* Return value */
2543 };
2544 
2545 /* Known registers:
2546  *
2547  * Render engine timestamp - 0x2358 + 64bit - gen7+
2548  * - Note this register returns an invalid value if using the default
2549  *   single instruction 8byte read, in order to workaround that pass
2550  *   flag I915_REG_READ_8B_WA in offset field.
2551  *
2552  */
2553 
2554 struct drm_i915_reset_stats {
2555     __u32 ctx_id;
2556     __u32 flags;
2557 
2558     /* All resets since boot/module reload, for all contexts */
2559     __u32 reset_count;
2560 
2561     /* Number of batches lost when active in GPU, for this context */
2562     __u32 batch_active;
2563 
2564     /* Number of batches lost pending for execution, for this context */
2565     __u32 batch_pending;
2566 
2567     __u32 pad;
2568 };
2569 
2570 /**
2571  * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2572  *
2573  * Userptr objects have several restrictions on what ioctls can be used with the
2574  * object handle.
2575  */
2576 struct drm_i915_gem_userptr {
2577     /**
2578      * @user_ptr: The pointer to the allocated memory.
2579      *
2580      * Needs to be aligned to PAGE_SIZE.
2581      */
2582     __u64 user_ptr;
2583 
2584     /**
2585      * @user_size:
2586      *
2587      * The size in bytes for the allocated memory. This will also become the
2588      * object size.
2589      *
2590      * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2591      * or larger.
2592      */
2593     __u64 user_size;
2594 
2595     /**
2596      * @flags:
2597      *
2598      * Supported flags:
2599      *
2600      * I915_USERPTR_READ_ONLY:
2601      *
2602      * Mark the object as readonly, this also means GPU access can only be
2603      * readonly. This is only supported on HW which supports readonly access
2604      * through the GTT. If the HW can't support readonly access, an error is
2605      * returned.
2606      *
2607      * I915_USERPTR_PROBE:
2608      *
2609      * Probe the provided @user_ptr range and validate that the @user_ptr is
2610      * indeed pointing to normal memory and that the range is also valid.
2611      * For example if some garbage address is given to the kernel, then this
2612      * should complain.
2613      *
2614      * Returns -EFAULT if the probe failed.
2615      *
2616      * Note that this doesn't populate the backing pages, and also doesn't
2617      * guarantee that the object will remain valid when the object is
2618      * eventually used.
2619      *
2620      * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
2621      * returns a non-zero value.
2622      *
2623      * I915_USERPTR_UNSYNCHRONIZED:
2624      *
2625      * NOT USED. Setting this flag will result in an error.
2626      */
2627     __u32 flags;
2628 #define I915_USERPTR_READ_ONLY 0x1
2629 #define I915_USERPTR_PROBE 0x2
2630 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2631     /**
2632      * @handle: Returned handle for the object.
2633      *
2634      * Object handles are nonzero.
2635      */
2636     __u32 handle;
2637 };
2638 
2639 enum drm_i915_oa_format {
2640     I915_OA_FORMAT_A13 = 1,     /* HSW only */
2641     I915_OA_FORMAT_A29,     /* HSW only */
2642     I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2643     I915_OA_FORMAT_B4_C8,       /* HSW only */
2644     I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2645     I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2646     I915_OA_FORMAT_C4_B8,       /* HSW+ */
2647 
2648     /* Gen8+ */
2649     I915_OA_FORMAT_A12,
2650     I915_OA_FORMAT_A12_B8_C8,
2651     I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2652 
2653     I915_OA_FORMAT_MAX      /* non-ABI */
2654 };
2655 
2656 enum drm_i915_perf_property_id {
2657     /**
2658      * Open the stream for a specific context handle (as used with
2659      * execbuffer2). A stream opened for a specific context this way
2660      * won't typically require root privileges.
2661      *
2662      * This property is available in perf revision 1.
2663      */
2664     DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2665 
2666     /**
2667      * A value of 1 requests the inclusion of raw OA unit reports as
2668      * part of stream samples.
2669      *
2670      * This property is available in perf revision 1.
2671      */
2672     DRM_I915_PERF_PROP_SAMPLE_OA,
2673 
2674     /**
2675      * The value specifies which set of OA unit metrics should be
2676      * configured, defining the contents of any OA unit reports.
2677      *
2678      * This property is available in perf revision 1.
2679      */
2680     DRM_I915_PERF_PROP_OA_METRICS_SET,
2681 
2682     /**
2683      * The value specifies the size and layout of OA unit reports.
2684      *
2685      * This property is available in perf revision 1.
2686      */
2687     DRM_I915_PERF_PROP_OA_FORMAT,
2688 
2689     /**
2690      * Specifying this property implicitly requests periodic OA unit
2691      * sampling and (at least on Haswell) the sampling frequency is derived
2692      * from this exponent as follows:
2693      *
2694      *   80ns * 2^(period_exponent + 1)
2695      *
2696      * This property is available in perf revision 1.
2697      */
2698     DRM_I915_PERF_PROP_OA_EXPONENT,
2699 
2700     /**
2701      * Specifying this property is only valid when specify a context to
2702      * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2703      * will hold preemption of the particular context we want to gather
2704      * performance data about. The execbuf2 submissions must include a
2705      * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2706      *
2707      * This property is available in perf revision 3.
2708      */
2709     DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2710 
2711     /**
2712      * Specifying this pins all contexts to the specified SSEU power
2713      * configuration for the duration of the recording.
2714      *
2715      * This parameter's value is a pointer to a struct
2716      * drm_i915_gem_context_param_sseu.
2717      *
2718      * This property is available in perf revision 4.
2719      */
2720     DRM_I915_PERF_PROP_GLOBAL_SSEU,
2721 
2722     /**
2723      * This optional parameter specifies the timer interval in nanoseconds
2724      * at which the i915 driver will check the OA buffer for available data.
2725      * Minimum allowed value is 100 microseconds. A default value is used by
2726      * the driver if this parameter is not specified. Note that larger timer
2727      * values will reduce cpu consumption during OA perf captures. However,
2728      * excessively large values would potentially result in OA buffer
2729      * overwrites as captures reach end of the OA buffer.
2730      *
2731      * This property is available in perf revision 5.
2732      */
2733     DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2734 
2735     DRM_I915_PERF_PROP_MAX /* non-ABI */
2736 };
2737 
2738 struct drm_i915_perf_open_param {
2739     __u32 flags;
2740 #define I915_PERF_FLAG_FD_CLOEXEC   (1<<0)
2741 #define I915_PERF_FLAG_FD_NONBLOCK  (1<<1)
2742 #define I915_PERF_FLAG_DISABLED     (1<<2)
2743 
2744     /** The number of u64 (id, value) pairs */
2745     __u32 num_properties;
2746 
2747     /**
2748      * Pointer to array of u64 (id, value) pairs configuring the stream
2749      * to open.
2750      */
2751     __u64 properties_ptr;
2752 };
2753 
2754 /*
2755  * Enable data capture for a stream that was either opened in a disabled state
2756  * via I915_PERF_FLAG_DISABLED or was later disabled via
2757  * I915_PERF_IOCTL_DISABLE.
2758  *
2759  * It is intended to be cheaper to disable and enable a stream than it may be
2760  * to close and re-open a stream with the same configuration.
2761  *
2762  * It's undefined whether any pending data for the stream will be lost.
2763  *
2764  * This ioctl is available in perf revision 1.
2765  */
2766 #define I915_PERF_IOCTL_ENABLE  _IO('i', 0x0)
2767 
2768 /*
2769  * Disable data capture for a stream.
2770  *
2771  * It is an error to try and read a stream that is disabled.
2772  *
2773  * This ioctl is available in perf revision 1.
2774  */
2775 #define I915_PERF_IOCTL_DISABLE _IO('i', 0x1)
2776 
2777 /*
2778  * Change metrics_set captured by a stream.
2779  *
2780  * If the stream is bound to a specific context, the configuration change
2781  * will performed __inline__ with that context such that it takes effect before
2782  * the next execbuf submission.
2783  *
2784  * Returns the previously bound metrics set id, or a negative error code.
2785  *
2786  * This ioctl is available in perf revision 2.
2787  */
2788 #define I915_PERF_IOCTL_CONFIG  _IO('i', 0x2)
2789 
2790 /*
2791  * Common to all i915 perf records
2792  */
2793 struct drm_i915_perf_record_header {
2794     __u32 type;
2795     __u16 pad;
2796     __u16 size;
2797 };
2798 
2799 enum drm_i915_perf_record_type {
2800 
2801     /**
2802      * Samples are the work horse record type whose contents are extensible
2803      * and defined when opening an i915 perf stream based on the given
2804      * properties.
2805      *
2806      * Boolean properties following the naming convention
2807      * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2808      * every sample.
2809      *
2810      * The order of these sample properties given by userspace has no
2811      * affect on the ordering of data within a sample. The order is
2812      * documented here.
2813      *
2814      * struct {
2815      *     struct drm_i915_perf_record_header header;
2816      *
2817      *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2818      * };
2819      */
2820     DRM_I915_PERF_RECORD_SAMPLE = 1,
2821 
2822     /*
2823      * Indicates that one or more OA reports were not written by the
2824      * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2825      * command collides with periodic sampling - which would be more likely
2826      * at higher sampling frequencies.
2827      */
2828     DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2829 
2830     /**
2831      * An error occurred that resulted in all pending OA reports being lost.
2832      */
2833     DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2834 
2835     DRM_I915_PERF_RECORD_MAX /* non-ABI */
2836 };
2837 
2838 /**
2839  * struct drm_i915_perf_oa_config
2840  *
2841  * Structure to upload perf dynamic configuration into the kernel.
2842  */
2843 struct drm_i915_perf_oa_config {
2844     /**
2845      * @uuid:
2846      *
2847      * String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x"
2848      */
2849     char uuid[36];
2850 
2851     /**
2852      * @n_mux_regs:
2853      *
2854      * Number of mux regs in &mux_regs_ptr.
2855      */
2856     __u32 n_mux_regs;
2857 
2858     /**
2859      * @n_boolean_regs:
2860      *
2861      * Number of boolean regs in &boolean_regs_ptr.
2862      */
2863     __u32 n_boolean_regs;
2864 
2865     /**
2866      * @n_flex_regs:
2867      *
2868      * Number of flex regs in &flex_regs_ptr.
2869      */
2870     __u32 n_flex_regs;
2871 
2872     /**
2873      * @mux_regs_ptr:
2874      *
2875      * Pointer to tuples of u32 values (register address, value) for mux
2876      * registers.  Expected length of buffer is (2 * sizeof(u32) *
2877      * &n_mux_regs).
2878      */
2879     __u64 mux_regs_ptr;
2880 
2881     /**
2882      * @boolean_regs_ptr:
2883      *
2884      * Pointer to tuples of u32 values (register address, value) for mux
2885      * registers.  Expected length of buffer is (2 * sizeof(u32) *
2886      * &n_boolean_regs).
2887      */
2888     __u64 boolean_regs_ptr;
2889 
2890     /**
2891      * @flex_regs_ptr:
2892      *
2893      * Pointer to tuples of u32 values (register address, value) for mux
2894      * registers.  Expected length of buffer is (2 * sizeof(u32) *
2895      * &n_flex_regs).
2896      */
2897     __u64 flex_regs_ptr;
2898 };
2899 
2900 /**
2901  * struct drm_i915_query_item - An individual query for the kernel to process.
2902  *
2903  * The behaviour is determined by the @query_id. Note that exactly what
2904  * @data_ptr is also depends on the specific @query_id.
2905  */
2906 struct drm_i915_query_item {
2907     /**
2908      * @query_id:
2909      *
2910      * The id for this query.  Currently accepted query IDs are:
2911      *  - %DRM_I915_QUERY_TOPOLOGY_INFO (see struct drm_i915_query_topology_info)
2912      *  - %DRM_I915_QUERY_ENGINE_INFO (see struct drm_i915_engine_info)
2913      *  - %DRM_I915_QUERY_PERF_CONFIG (see struct drm_i915_query_perf_config)
2914      *  - %DRM_I915_QUERY_MEMORY_REGIONS (see struct drm_i915_query_memory_regions)
2915      *  - %DRM_I915_QUERY_HWCONFIG_BLOB (see `GuC HWCONFIG blob uAPI`)
2916      *  - %DRM_I915_QUERY_GEOMETRY_SUBSLICES (see struct drm_i915_query_topology_info)
2917      */
2918     __u64 query_id;
2919 #define DRM_I915_QUERY_TOPOLOGY_INFO        1
2920 #define DRM_I915_QUERY_ENGINE_INFO      2
2921 #define DRM_I915_QUERY_PERF_CONFIG      3
2922 #define DRM_I915_QUERY_MEMORY_REGIONS       4
2923 #define DRM_I915_QUERY_HWCONFIG_BLOB        5
2924 #define DRM_I915_QUERY_GEOMETRY_SUBSLICES   6
2925 /* Must be kept compact -- no holes and well documented */
2926 
2927     /**
2928      * @length:
2929      *
2930      * When set to zero by userspace, this is filled with the size of the
2931      * data to be written at the @data_ptr pointer. The kernel sets this
2932      * value to a negative value to signal an error on a particular query
2933      * item.
2934      */
2935     __s32 length;
2936 
2937     /**
2938      * @flags:
2939      *
2940      * When &query_id == %DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2941      *
2942      * When &query_id == %DRM_I915_QUERY_PERF_CONFIG, must be one of the
2943      * following:
2944      *
2945      *  - %DRM_I915_QUERY_PERF_CONFIG_LIST
2946      *      - %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2947      *      - %DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2948      *
2949      * When &query_id == %DRM_I915_QUERY_GEOMETRY_SUBSLICES must contain
2950      * a struct i915_engine_class_instance that references a render engine.
2951      */
2952     __u32 flags;
2953 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2954 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2955 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2956 
2957     /**
2958      * @data_ptr:
2959      *
2960      * Data will be written at the location pointed by @data_ptr when the
2961      * value of @length matches the length of the data to be written by the
2962      * kernel.
2963      */
2964     __u64 data_ptr;
2965 };
2966 
2967 /**
2968  * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
2969  * kernel to fill out.
2970  *
2971  * Note that this is generally a two step process for each struct
2972  * drm_i915_query_item in the array:
2973  *
2974  * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
2975  *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
2976  *    kernel will then fill in the size, in bytes, which tells userspace how
2977  *    memory it needs to allocate for the blob(say for an array of properties).
2978  *
2979  * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
2980  *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
2981  *    the &drm_i915_query_item.length should still be the same as what the
2982  *    kernel previously set. At this point the kernel can fill in the blob.
2983  *
2984  * Note that for some query items it can make sense for userspace to just pass
2985  * in a buffer/blob equal to or larger than the required size. In this case only
2986  * a single ioctl call is needed. For some smaller query items this can work
2987  * quite well.
2988  *
2989  */
2990 struct drm_i915_query {
2991     /** @num_items: The number of elements in the @items_ptr array */
2992     __u32 num_items;
2993 
2994     /**
2995      * @flags: Unused for now. Must be cleared to zero.
2996      */
2997     __u32 flags;
2998 
2999     /**
3000      * @items_ptr:
3001      *
3002      * Pointer to an array of struct drm_i915_query_item. The number of
3003      * array elements is @num_items.
3004      */
3005     __u64 items_ptr;
3006 };
3007 
3008 /**
3009  * struct drm_i915_query_topology_info
3010  *
3011  * Describes slice/subslice/EU information queried by
3012  * %DRM_I915_QUERY_TOPOLOGY_INFO
3013  */
3014 struct drm_i915_query_topology_info {
3015     /**
3016      * @flags:
3017      *
3018      * Unused for now. Must be cleared to zero.
3019      */
3020     __u16 flags;
3021 
3022     /**
3023      * @max_slices:
3024      *
3025      * The number of bits used to express the slice mask.
3026      */
3027     __u16 max_slices;
3028 
3029     /**
3030      * @max_subslices:
3031      *
3032      * The number of bits used to express the subslice mask.
3033      */
3034     __u16 max_subslices;
3035 
3036     /**
3037      * @max_eus_per_subslice:
3038      *
3039      * The number of bits in the EU mask that correspond to a single
3040      * subslice's EUs.
3041      */
3042     __u16 max_eus_per_subslice;
3043 
3044     /**
3045      * @subslice_offset:
3046      *
3047      * Offset in data[] at which the subslice masks are stored.
3048      */
3049     __u16 subslice_offset;
3050 
3051     /**
3052      * @subslice_stride:
3053      *
3054      * Stride at which each of the subslice masks for each slice are
3055      * stored.
3056      */
3057     __u16 subslice_stride;
3058 
3059     /**
3060      * @eu_offset:
3061      *
3062      * Offset in data[] at which the EU masks are stored.
3063      */
3064     __u16 eu_offset;
3065 
3066     /**
3067      * @eu_stride:
3068      *
3069      * Stride at which each of the EU masks for each subslice are stored.
3070      */
3071     __u16 eu_stride;
3072 
3073     /**
3074      * @data:
3075      *
3076      * Contains 3 pieces of information :
3077      *
3078      * - The slice mask with one bit per slice telling whether a slice is
3079      *   available. The availability of slice X can be queried with the
3080      *   following formula :
3081      *
3082      *   .. code:: c
3083      *
3084      *      (data[X / 8] >> (X % 8)) & 1
3085      *
3086      *   Starting with Xe_HP platforms, Intel hardware no longer has
3087      *   traditional slices so i915 will always report a single slice
3088      *   (hardcoded slicemask = 0x1) which contains all of the platform's
3089      *   subslices.  I.e., the mask here does not reflect any of the newer
3090      *   hardware concepts such as "gslices" or "cslices" since userspace
3091      *   is capable of inferring those from the subslice mask.
3092      *
3093      * - The subslice mask for each slice with one bit per subslice telling
3094      *   whether a subslice is available.  Starting with Gen12 we use the
3095      *   term "subslice" to refer to what the hardware documentation
3096      *   describes as a "dual-subslices."  The availability of subslice Y
3097      *   in slice X can be queried with the following formula :
3098      *
3099      *   .. code:: c
3100      *
3101      *      (data[subslice_offset + X * subslice_stride + Y / 8] >> (Y % 8)) & 1
3102      *
3103      * - The EU mask for each subslice in each slice, with one bit per EU
3104      *   telling whether an EU is available. The availability of EU Z in
3105      *   subslice Y in slice X can be queried with the following formula :
3106      *
3107      *   .. code:: c
3108      *
3109      *      (data[eu_offset +
3110      *            (X * max_subslices + Y) * eu_stride +
3111      *            Z / 8
3112      *       ] >> (Z % 8)) & 1
3113      */
3114     __u8 data[];
3115 };
3116 
3117 /**
3118  * DOC: Engine Discovery uAPI
3119  *
3120  * Engine discovery uAPI is a way of enumerating physical engines present in a
3121  * GPU associated with an open i915 DRM file descriptor. This supersedes the old
3122  * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
3123  * `I915_PARAM_HAS_BLT`.
3124  *
3125  * The need for this interface came starting with Icelake and newer GPUs, which
3126  * started to establish a pattern of having multiple engines of a same class,
3127  * where not all instances were always completely functionally equivalent.
3128  *
3129  * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
3130  * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
3131  *
3132  * Example for getting the list of engines:
3133  *
3134  * .. code-block:: C
3135  *
3136  *  struct drm_i915_query_engine_info *info;
3137  *  struct drm_i915_query_item item = {
3138  *      .query_id = DRM_I915_QUERY_ENGINE_INFO;
3139  *  };
3140  *  struct drm_i915_query query = {
3141  *      .num_items = 1,
3142  *      .items_ptr = (uintptr_t)&item,
3143  *  };
3144  *  int err, i;
3145  *
3146  *  // First query the size of the blob we need, this needs to be large
3147  *  // enough to hold our array of engines. The kernel will fill out the
3148  *  // item.length for us, which is the number of bytes we need.
3149  *  //
3150  *  // Alternatively a large buffer can be allocated straight away enabling
3151  *  // querying in one pass, in which case item.length should contain the
3152  *  // length of the provided buffer.
3153  *  err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3154  *  if (err) ...
3155  *
3156  *  info = calloc(1, item.length);
3157  *  // Now that we allocated the required number of bytes, we call the ioctl
3158  *  // again, this time with the data_ptr pointing to our newly allocated
3159  *  // blob, which the kernel can then populate with info on all engines.
3160  *  item.data_ptr = (uintptr_t)&info,
3161  *
3162  *  err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3163  *  if (err) ...
3164  *
3165  *  // We can now access each engine in the array
3166  *  for (i = 0; i < info->num_engines; i++) {
3167  *      struct drm_i915_engine_info einfo = info->engines[i];
3168  *      u16 class = einfo.engine.class;
3169  *      u16 instance = einfo.engine.instance;
3170  *      ....
3171  *  }
3172  *
3173  *  free(info);
3174  *
3175  * Each of the enumerated engines, apart from being defined by its class and
3176  * instance (see `struct i915_engine_class_instance`), also can have flags and
3177  * capabilities defined as documented in i915_drm.h.
3178  *
3179  * For instance video engines which support HEVC encoding will have the
3180  * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
3181  *
3182  * Engine discovery only fully comes to its own when combined with the new way
3183  * of addressing engines when submitting batch buffers using contexts with
3184  * engine maps configured.
3185  */
3186 
3187 /**
3188  * struct drm_i915_engine_info
3189  *
3190  * Describes one engine and it's capabilities as known to the driver.
3191  */
3192 struct drm_i915_engine_info {
3193     /** @engine: Engine class and instance. */
3194     struct i915_engine_class_instance engine;
3195 
3196     /** @rsvd0: Reserved field. */
3197     __u32 rsvd0;
3198 
3199     /** @flags: Engine flags. */
3200     __u64 flags;
3201 #define I915_ENGINE_INFO_HAS_LOGICAL_INSTANCE       (1 << 0)
3202 
3203     /** @capabilities: Capabilities of this engine. */
3204     __u64 capabilities;
3205 #define I915_VIDEO_CLASS_CAPABILITY_HEVC        (1 << 0)
3206 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC (1 << 1)
3207 
3208     /** @logical_instance: Logical instance of engine */
3209     __u16 logical_instance;
3210 
3211     /** @rsvd1: Reserved fields. */
3212     __u16 rsvd1[3];
3213     /** @rsvd2: Reserved fields. */
3214     __u64 rsvd2[3];
3215 };
3216 
3217 /**
3218  * struct drm_i915_query_engine_info
3219  *
3220  * Engine info query enumerates all engines known to the driver by filling in
3221  * an array of struct drm_i915_engine_info structures.
3222  */
3223 struct drm_i915_query_engine_info {
3224     /** @num_engines: Number of struct drm_i915_engine_info structs following. */
3225     __u32 num_engines;
3226 
3227     /** @rsvd: MBZ */
3228     __u32 rsvd[3];
3229 
3230     /** @engines: Marker for drm_i915_engine_info structures. */
3231     struct drm_i915_engine_info engines[];
3232 };
3233 
3234 /**
3235  * struct drm_i915_query_perf_config
3236  *
3237  * Data written by the kernel with query %DRM_I915_QUERY_PERF_CONFIG and
3238  * %DRM_I915_QUERY_GEOMETRY_SUBSLICES.
3239  */
3240 struct drm_i915_query_perf_config {
3241     union {
3242         /**
3243          * @n_configs:
3244          *
3245          * When &drm_i915_query_item.flags ==
3246          * %DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets this fields to
3247          * the number of configurations available.
3248          */
3249         __u64 n_configs;
3250 
3251         /**
3252          * @config:
3253          *
3254          * When &drm_i915_query_item.flags ==
3255          * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, i915 will use the
3256          * value in this field as configuration identifier to decide
3257          * what data to write into config_ptr.
3258          */
3259         __u64 config;
3260 
3261         /**
3262          * @uuid:
3263          *
3264          * When &drm_i915_query_item.flags ==
3265          * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, i915 will use the
3266          * value in this field as configuration identifier to decide
3267          * what data to write into config_ptr.
3268          *
3269          * String formatted like "%08x-%04x-%04x-%04x-%012x"
3270          */
3271         char uuid[36];
3272     };
3273 
3274     /**
3275      * @flags:
3276      *
3277      * Unused for now. Must be cleared to zero.
3278      */
3279     __u32 flags;
3280 
3281     /**
3282      * @data:
3283      *
3284      * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_LIST,
3285      * i915 will write an array of __u64 of configuration identifiers.
3286      *
3287      * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_DATA,
3288      * i915 will write a struct drm_i915_perf_oa_config. If the following
3289      * fields of struct drm_i915_perf_oa_config are not set to 0, i915 will
3290      * write into the associated pointers the values of submitted when the
3291      * configuration was created :
3292      *
3293      *  - &drm_i915_perf_oa_config.n_mux_regs
3294      *  - &drm_i915_perf_oa_config.n_boolean_regs
3295      *  - &drm_i915_perf_oa_config.n_flex_regs
3296      */
3297     __u8 data[];
3298 };
3299 
3300 /**
3301  * enum drm_i915_gem_memory_class - Supported memory classes
3302  */
3303 enum drm_i915_gem_memory_class {
3304     /** @I915_MEMORY_CLASS_SYSTEM: System memory */
3305     I915_MEMORY_CLASS_SYSTEM = 0,
3306     /** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
3307     I915_MEMORY_CLASS_DEVICE,
3308 };
3309 
3310 /**
3311  * struct drm_i915_gem_memory_class_instance - Identify particular memory region
3312  */
3313 struct drm_i915_gem_memory_class_instance {
3314     /** @memory_class: See enum drm_i915_gem_memory_class */
3315     __u16 memory_class;
3316 
3317     /** @memory_instance: Which instance */
3318     __u16 memory_instance;
3319 };
3320 
3321 /**
3322  * struct drm_i915_memory_region_info - Describes one region as known to the
3323  * driver.
3324  *
3325  * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
3326  * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
3327  * at &drm_i915_query_item.query_id.
3328  */
3329 struct drm_i915_memory_region_info {
3330     /** @region: The class:instance pair encoding */
3331     struct drm_i915_gem_memory_class_instance region;
3332 
3333     /** @rsvd0: MBZ */
3334     __u32 rsvd0;
3335 
3336     /**
3337      * @probed_size: Memory probed by the driver
3338      *
3339      * Note that it should not be possible to ever encounter a zero value
3340      * here, also note that no current region type will ever return -1 here.
3341      * Although for future region types, this might be a possibility. The
3342      * same applies to the other size fields.
3343      */
3344     __u64 probed_size;
3345 
3346     /**
3347      * @unallocated_size: Estimate of memory remaining
3348      *
3349      * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable accounting.
3350      * Without this (or if this is an older kernel) the value here will
3351      * always equal the @probed_size. Note this is only currently tracked
3352      * for I915_MEMORY_CLASS_DEVICE regions (for other types the value here
3353      * will always equal the @probed_size).
3354      */
3355     __u64 unallocated_size;
3356 
3357     union {
3358         /** @rsvd1: MBZ */
3359         __u64 rsvd1[8];
3360         struct {
3361             /**
3362              * @probed_cpu_visible_size: Memory probed by the driver
3363              * that is CPU accessible.
3364              *
3365              * This will be always be <= @probed_size, and the
3366              * remainder (if there is any) will not be CPU
3367              * accessible.
3368              *
3369              * On systems without small BAR, the @probed_size will
3370              * always equal the @probed_cpu_visible_size, since all
3371              * of it will be CPU accessible.
3372              *
3373              * Note this is only tracked for
3374              * I915_MEMORY_CLASS_DEVICE regions (for other types the
3375              * value here will always equal the @probed_size).
3376              *
3377              * Note that if the value returned here is zero, then
3378              * this must be an old kernel which lacks the relevant
3379              * small-bar uAPI support (including
3380              * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS), but on
3381              * such systems we should never actually end up with a
3382              * small BAR configuration, assuming we are able to load
3383              * the kernel module. Hence it should be safe to treat
3384              * this the same as when @probed_cpu_visible_size ==
3385              * @probed_size.
3386              */
3387             __u64 probed_cpu_visible_size;
3388 
3389             /**
3390              * @unallocated_cpu_visible_size: Estimate of CPU
3391              * visible memory remaining.
3392              *
3393              * Note this is only tracked for
3394              * I915_MEMORY_CLASS_DEVICE regions (for other types the
3395              * value here will always equal the
3396              * @probed_cpu_visible_size).
3397              *
3398              * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
3399              * accounting.  Without this the value here will always
3400              * equal the @probed_cpu_visible_size. Note this is only
3401              * currently tracked for I915_MEMORY_CLASS_DEVICE
3402              * regions (for other types the value here will also
3403              * always equal the @probed_cpu_visible_size).
3404              *
3405              * If this is an older kernel the value here will be
3406              * zero, see also @probed_cpu_visible_size.
3407              */
3408             __u64 unallocated_cpu_visible_size;
3409         };
3410     };
3411 };
3412 
3413 /**
3414  * struct drm_i915_query_memory_regions
3415  *
3416  * The region info query enumerates all regions known to the driver by filling
3417  * in an array of struct drm_i915_memory_region_info structures.
3418  *
3419  * Example for getting the list of supported regions:
3420  *
3421  * .. code-block:: C
3422  *
3423  *  struct drm_i915_query_memory_regions *info;
3424  *  struct drm_i915_query_item item = {
3425  *      .query_id = DRM_I915_QUERY_MEMORY_REGIONS;
3426  *  };
3427  *  struct drm_i915_query query = {
3428  *      .num_items = 1,
3429  *      .items_ptr = (uintptr_t)&item,
3430  *  };
3431  *  int err, i;
3432  *
3433  *  // First query the size of the blob we need, this needs to be large
3434  *  // enough to hold our array of regions. The kernel will fill out the
3435  *  // item.length for us, which is the number of bytes we need.
3436  *  err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3437  *  if (err) ...
3438  *
3439  *  info = calloc(1, item.length);
3440  *  // Now that we allocated the required number of bytes, we call the ioctl
3441  *  // again, this time with the data_ptr pointing to our newly allocated
3442  *  // blob, which the kernel can then populate with the all the region info.
3443  *  item.data_ptr = (uintptr_t)&info,
3444  *
3445  *  err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3446  *  if (err) ...
3447  *
3448  *  // We can now access each region in the array
3449  *  for (i = 0; i < info->num_regions; i++) {
3450  *      struct drm_i915_memory_region_info mr = info->regions[i];
3451  *      u16 class = mr.region.class;
3452  *      u16 instance = mr.region.instance;
3453  *
3454  *      ....
3455  *  }
3456  *
3457  *  free(info);
3458  */
3459 struct drm_i915_query_memory_regions {
3460     /** @num_regions: Number of supported regions */
3461     __u32 num_regions;
3462 
3463     /** @rsvd: MBZ */
3464     __u32 rsvd[3];
3465 
3466     /** @regions: Info about each supported region */
3467     struct drm_i915_memory_region_info regions[];
3468 };
3469 
3470 /**
3471  * DOC: GuC HWCONFIG blob uAPI
3472  *
3473  * The GuC produces a blob with information about the current device.
3474  * i915 reads this blob from GuC and makes it available via this uAPI.
3475  *
3476  * The format and meaning of the blob content are documented in the
3477  * Programmer's Reference Manual.
3478  */
3479 
3480 /**
3481  * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
3482  * extension support using struct i915_user_extension.
3483  *
3484  * Note that new buffer flags should be added here, at least for the stuff that
3485  * is immutable. Previously we would have two ioctls, one to create the object
3486  * with gem_create, and another to apply various parameters, however this
3487  * creates some ambiguity for the params which are considered immutable. Also in
3488  * general we're phasing out the various SET/GET ioctls.
3489  */
3490 struct drm_i915_gem_create_ext {
3491     /**
3492      * @size: Requested size for the object.
3493      *
3494      * The (page-aligned) allocated size for the object will be returned.
3495      *
3496      * DG2 64K min page size implications:
3497      *
3498      * On discrete platforms, starting from DG2, we have to contend with GTT
3499      * page size restrictions when dealing with I915_MEMORY_CLASS_DEVICE
3500      * objects.  Specifically the hardware only supports 64K or larger GTT
3501      * page sizes for such memory. The kernel will already ensure that all
3502      * I915_MEMORY_CLASS_DEVICE memory is allocated using 64K or larger page
3503      * sizes underneath.
3504      *
3505      * Note that the returned size here will always reflect any required
3506      * rounding up done by the kernel, i.e 4K will now become 64K on devices
3507      * such as DG2. The kernel will always select the largest minimum
3508      * page-size for the set of possible placements as the value to use when
3509      * rounding up the @size.
3510      *
3511      * Special DG2 GTT address alignment requirement:
3512      *
3513      * The GTT alignment will also need to be at least 2M for such objects.
3514      *
3515      * Note that due to how the hardware implements 64K GTT page support, we
3516      * have some further complications:
3517      *
3518      *   1) The entire PDE (which covers a 2MB virtual address range), must
3519      *   contain only 64K PTEs, i.e mixing 4K and 64K PTEs in the same
3520      *   PDE is forbidden by the hardware.
3521      *
3522      *   2) We still need to support 4K PTEs for I915_MEMORY_CLASS_SYSTEM
3523      *   objects.
3524      *
3525      * To keep things simple for userland, we mandate that any GTT mappings
3526      * must be aligned to and rounded up to 2MB. The kernel will internally
3527      * pad them out to the next 2MB boundary. As this only wastes virtual
3528      * address space and avoids userland having to copy any needlessly
3529      * complicated PDE sharing scheme (coloring) and only affects DG2, this
3530      * is deemed to be a good compromise.
3531      */
3532     __u64 size;
3533 
3534     /**
3535      * @handle: Returned handle for the object.
3536      *
3537      * Object handles are nonzero.
3538      */
3539     __u32 handle;
3540 
3541     /**
3542      * @flags: Optional flags.
3543      *
3544      * Supported values:
3545      *
3546      * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS - Signal to the kernel that
3547      * the object will need to be accessed via the CPU.
3548      *
3549      * Only valid when placing objects in I915_MEMORY_CLASS_DEVICE, and only
3550      * strictly required on configurations where some subset of the device
3551      * memory is directly visible/mappable through the CPU (which we also
3552      * call small BAR), like on some DG2+ systems. Note that this is quite
3553      * undesirable, but due to various factors like the client CPU, BIOS etc
3554      * it's something we can expect to see in the wild. See
3555      * &drm_i915_memory_region_info.probed_cpu_visible_size for how to
3556      * determine if this system applies.
3557      *
3558      * Note that one of the placements MUST be I915_MEMORY_CLASS_SYSTEM, to
3559      * ensure the kernel can always spill the allocation to system memory,
3560      * if the object can't be allocated in the mappable part of
3561      * I915_MEMORY_CLASS_DEVICE.
3562      *
3563      * Also note that since the kernel only supports flat-CCS on objects
3564      * that can *only* be placed in I915_MEMORY_CLASS_DEVICE, we therefore
3565      * don't support I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS together with
3566      * flat-CCS.
3567      *
3568      * Without this hint, the kernel will assume that non-mappable
3569      * I915_MEMORY_CLASS_DEVICE is preferred for this object. Note that the
3570      * kernel can still migrate the object to the mappable part, as a last
3571      * resort, if userspace ever CPU faults this object, but this might be
3572      * expensive, and so ideally should be avoided.
3573      *
3574      * On older kernels which lack the relevant small-bar uAPI support (see
3575      * also &drm_i915_memory_region_info.probed_cpu_visible_size),
3576      * usage of the flag will result in an error, but it should NEVER be
3577      * possible to end up with a small BAR configuration, assuming we can
3578      * also successfully load the i915 kernel module. In such cases the
3579      * entire I915_MEMORY_CLASS_DEVICE region will be CPU accessible, and as
3580      * such there are zero restrictions on where the object can be placed.
3581      */
3582 #define I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS (1 << 0)
3583     __u32 flags;
3584 
3585     /**
3586      * @extensions: The chain of extensions to apply to this object.
3587      *
3588      * This will be useful in the future when we need to support several
3589      * different extensions, and we need to apply more than one when
3590      * creating the object. See struct i915_user_extension.
3591      *
3592      * If we don't supply any extensions then we get the same old gem_create
3593      * behaviour.
3594      *
3595      * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
3596      * struct drm_i915_gem_create_ext_memory_regions.
3597      *
3598      * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see
3599      * struct drm_i915_gem_create_ext_protected_content.
3600      */
3601 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
3602 #define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1
3603     __u64 extensions;
3604 };
3605 
3606 /**
3607  * struct drm_i915_gem_create_ext_memory_regions - The
3608  * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
3609  *
3610  * Set the object with the desired set of placements/regions in priority
3611  * order. Each entry must be unique and supported by the device.
3612  *
3613  * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
3614  * an equivalent layout of class:instance pair encodings. See struct
3615  * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
3616  * query the supported regions for a device.
3617  *
3618  * As an example, on discrete devices, if we wish to set the placement as
3619  * device local-memory we can do something like:
3620  *
3621  * .. code-block:: C
3622  *
3623  *  struct drm_i915_gem_memory_class_instance region_lmem = {
3624  *              .memory_class = I915_MEMORY_CLASS_DEVICE,
3625  *              .memory_instance = 0,
3626  *      };
3627  *      struct drm_i915_gem_create_ext_memory_regions regions = {
3628  *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
3629  *              .regions = (uintptr_t)&region_lmem,
3630  *              .num_regions = 1,
3631  *      };
3632  *      struct drm_i915_gem_create_ext create_ext = {
3633  *              .size = 16 * PAGE_SIZE,
3634  *              .extensions = (uintptr_t)&regions,
3635  *      };
3636  *
3637  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3638  *      if (err) ...
3639  *
3640  * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
3641  * along with the final object size in &drm_i915_gem_create_ext.size, which
3642  * should account for any rounding up, if required.
3643  *
3644  * Note that userspace has no means of knowing the current backing region
3645  * for objects where @num_regions is larger than one. The kernel will only
3646  * ensure that the priority order of the @regions array is honoured, either
3647  * when initially placing the object, or when moving memory around due to
3648  * memory pressure
3649  *
3650  * On Flat-CCS capable HW, compression is supported for the objects residing
3651  * in I915_MEMORY_CLASS_DEVICE. When such objects (compressed) have other
3652  * memory class in @regions and migrated (by i915, due to memory
3653  * constraints) to the non I915_MEMORY_CLASS_DEVICE region, then i915 needs to
3654  * decompress the content. But i915 doesn't have the required information to
3655  * decompress the userspace compressed objects.
3656  *
3657  * So i915 supports Flat-CCS, on the objects which can reside only on
3658  * I915_MEMORY_CLASS_DEVICE regions.
3659  */
3660 struct drm_i915_gem_create_ext_memory_regions {
3661     /** @base: Extension link. See struct i915_user_extension. */
3662     struct i915_user_extension base;
3663 
3664     /** @pad: MBZ */
3665     __u32 pad;
3666     /** @num_regions: Number of elements in the @regions array. */
3667     __u32 num_regions;
3668     /**
3669      * @regions: The regions/placements array.
3670      *
3671      * An array of struct drm_i915_gem_memory_class_instance.
3672      */
3673     __u64 regions;
3674 };
3675 
3676 /**
3677  * struct drm_i915_gem_create_ext_protected_content - The
3678  * I915_OBJECT_PARAM_PROTECTED_CONTENT extension.
3679  *
3680  * If this extension is provided, buffer contents are expected to be protected
3681  * by PXP encryption and require decryption for scan out and processing. This
3682  * is only possible on platforms that have PXP enabled, on all other scenarios
3683  * using this extension will cause the ioctl to fail and return -ENODEV. The
3684  * flags parameter is reserved for future expansion and must currently be set
3685  * to zero.
3686  *
3687  * The buffer contents are considered invalid after a PXP session teardown.
3688  *
3689  * The encryption is guaranteed to be processed correctly only if the object
3690  * is submitted with a context created using the
3691  * I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. This will also enable extra checks
3692  * at submission time on the validity of the objects involved.
3693  *
3694  * Below is an example on how to create a protected object:
3695  *
3696  * .. code-block:: C
3697  *
3698  *      struct drm_i915_gem_create_ext_protected_content protected_ext = {
3699  *              .base = { .name = I915_GEM_CREATE_EXT_PROTECTED_CONTENT },
3700  *              .flags = 0,
3701  *      };
3702  *      struct drm_i915_gem_create_ext create_ext = {
3703  *              .size = PAGE_SIZE,
3704  *              .extensions = (uintptr_t)&protected_ext,
3705  *      };
3706  *
3707  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3708  *      if (err) ...
3709  */
3710 struct drm_i915_gem_create_ext_protected_content {
3711     /** @base: Extension link. See struct i915_user_extension. */
3712     struct i915_user_extension base;
3713     /** @flags: reserved for future usage, currently MBZ */
3714     __u32 flags;
3715 };
3716 
3717 /* ID of the protected content session managed by i915 when PXP is active */
3718 #define I915_PROTECTED_CONTENT_DEFAULT_SESSION 0xf
3719 
3720 #if defined(__cplusplus)
3721 }
3722 #endif
3723 
3724 #endif /* _I915_DRM_H_ */