Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-18 10:01:49

0001 /*
0002  * Copyright 2011 Intel Corporation
0003  *
0004  * Permission is hereby granted, free of charge, to any person obtaining a
0005  * copy of this software and associated documentation files (the "Software"),
0006  * to deal in the Software without restriction, including without limitation
0007  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
0008  * and/or sell copies of the Software, and to permit persons to whom the
0009  * Software is furnished to do so, subject to the following conditions:
0010  *
0011  * The above copyright notice and this permission notice (including the next
0012  * paragraph) shall be included in all copies or substantial portions of the
0013  * Software.
0014  *
0015  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
0016  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
0017  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
0018  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
0019  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
0020  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
0021  * OTHER DEALINGS IN THE SOFTWARE.
0022  */
0023 
0024 #ifndef DRM_FOURCC_H
0025 #define DRM_FOURCC_H
0026 
0027 #include "drm.h"
0028 
0029 #if defined(__cplusplus)
0030 extern "C" {
0031 #endif
0032 
0033 /**
0034  * DOC: overview
0035  *
0036  * In the DRM subsystem, framebuffer pixel formats are described using the
0037  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
0038  * fourcc code, a Format Modifier may optionally be provided, in order to
0039  * further describe the buffer's format - for example tiling or compression.
0040  *
0041  * Format Modifiers
0042  * ----------------
0043  *
0044  * Format modifiers are used in conjunction with a fourcc code, forming a
0045  * unique fourcc:modifier pair. This format:modifier pair must fully define the
0046  * format and data layout of the buffer, and should be the only way to describe
0047  * that particular buffer.
0048  *
0049  * Having multiple fourcc:modifier pairs which describe the same layout should
0050  * be avoided, as such aliases run the risk of different drivers exposing
0051  * different names for the same data format, forcing userspace to understand
0052  * that they are aliases.
0053  *
0054  * Format modifiers may change any property of the buffer, including the number
0055  * of planes and/or the required allocation size. Format modifiers are
0056  * vendor-namespaced, and as such the relationship between a fourcc code and a
0057  * modifier is specific to the modifier being used. For example, some modifiers
0058  * may preserve meaning - such as number of planes - from the fourcc code,
0059  * whereas others may not.
0060  *
0061  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
0062  * match only a single modifier. A modifier must not be a subset of layouts of
0063  * another modifier. For instance, it's incorrect to encode pitch alignment in
0064  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
0065  * aligned modifier. That said, modifiers can have implicit minimal
0066  * requirements.
0067  *
0068  * For modifiers where the combination of fourcc code and modifier can alias,
0069  * a canonical pair needs to be defined and used by all drivers. Preferred
0070  * combinations are also encouraged where all combinations might lead to
0071  * confusion and unnecessarily reduced interoperability. An example for the
0072  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
0073  *
0074  * There are two kinds of modifier users:
0075  *
0076  * - Kernel and user-space drivers: for drivers it's important that modifiers
0077  *   don't alias, otherwise two drivers might support the same format but use
0078  *   different aliases, preventing them from sharing buffers in an efficient
0079  *   format.
0080  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
0081  *   see modifiers as opaque tokens they can check for equality and intersect.
0082  *   These users mustn't need to know to reason about the modifier value
0083  *   (i.e. they are not expected to extract information out of the modifier).
0084  *
0085  * Vendors should document their modifier usage in as much detail as
0086  * possible, to ensure maximum compatibility across devices, drivers and
0087  * applications.
0088  *
0089  * The authoritative list of format modifier codes is found in
0090  * `include/uapi/drm/drm_fourcc.h`
0091  *
0092  * Open Source User Waiver
0093  * -----------------------
0094  *
0095  * Because this is the authoritative source for pixel formats and modifiers
0096  * referenced by GL, Vulkan extensions and other standards and hence used both
0097  * by open source and closed source driver stacks, the usual requirement for an
0098  * upstream in-kernel or open source userspace user does not apply.
0099  *
0100  * To ensure, as much as feasible, compatibility across stacks and avoid
0101  * confusion with incompatible enumerations stakeholders for all relevant driver
0102  * stacks should approve additions.
0103  */
0104 
0105 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
0106                  ((__u32)(c) << 16) | ((__u32)(d) << 24))
0107 
0108 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
0109 
0110 /* Reserve 0 for the invalid format specifier */
0111 #define DRM_FORMAT_INVALID  0
0112 
0113 /* color index */
0114 #define DRM_FORMAT_C1       fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
0115 #define DRM_FORMAT_C2       fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
0116 #define DRM_FORMAT_C4       fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
0117 #define DRM_FORMAT_C8       fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
0118 
0119 /* 1 bpp Darkness (inverse relationship between channel value and brightness) */
0120 #define DRM_FORMAT_D1       fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
0121 
0122 /* 2 bpp Darkness (inverse relationship between channel value and brightness) */
0123 #define DRM_FORMAT_D2       fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
0124 
0125 /* 4 bpp Darkness (inverse relationship between channel value and brightness) */
0126 #define DRM_FORMAT_D4       fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
0127 
0128 /* 8 bpp Darkness (inverse relationship between channel value and brightness) */
0129 #define DRM_FORMAT_D8       fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
0130 
0131 /* 1 bpp Red (direct relationship between channel value and brightness) */
0132 #define DRM_FORMAT_R1       fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
0133 
0134 /* 2 bpp Red (direct relationship between channel value and brightness) */
0135 #define DRM_FORMAT_R2       fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
0136 
0137 /* 4 bpp Red (direct relationship between channel value and brightness) */
0138 #define DRM_FORMAT_R4       fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
0139 
0140 /* 8 bpp Red (direct relationship between channel value and brightness) */
0141 #define DRM_FORMAT_R8       fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
0142 
0143 /* 10 bpp Red (direct relationship between channel value and brightness) */
0144 #define DRM_FORMAT_R10      fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
0145 
0146 /* 12 bpp Red (direct relationship between channel value and brightness) */
0147 #define DRM_FORMAT_R12      fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
0148 
0149 /* 16 bpp Red (direct relationship between channel value and brightness) */
0150 #define DRM_FORMAT_R16      fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
0151 
0152 /* 16 bpp RG */
0153 #define DRM_FORMAT_RG88     fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
0154 #define DRM_FORMAT_GR88     fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
0155 
0156 /* 32 bpp RG */
0157 #define DRM_FORMAT_RG1616   fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
0158 #define DRM_FORMAT_GR1616   fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
0159 
0160 /* 8 bpp RGB */
0161 #define DRM_FORMAT_RGB332   fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
0162 #define DRM_FORMAT_BGR233   fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
0163 
0164 /* 16 bpp RGB */
0165 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
0166 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
0167 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
0168 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
0169 
0170 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
0171 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
0172 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
0173 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
0174 
0175 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
0176 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
0177 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
0178 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
0179 
0180 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
0181 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
0182 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
0183 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
0184 
0185 #define DRM_FORMAT_RGB565   fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
0186 #define DRM_FORMAT_BGR565   fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
0187 
0188 /* 24 bpp RGB */
0189 #define DRM_FORMAT_RGB888   fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
0190 #define DRM_FORMAT_BGR888   fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
0191 
0192 /* 32 bpp RGB */
0193 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
0194 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
0195 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
0196 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
0197 
0198 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
0199 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
0200 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
0201 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
0202 
0203 #define DRM_FORMAT_XRGB2101010  fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
0204 #define DRM_FORMAT_XBGR2101010  fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
0205 #define DRM_FORMAT_RGBX1010102  fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
0206 #define DRM_FORMAT_BGRX1010102  fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
0207 
0208 #define DRM_FORMAT_ARGB2101010  fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
0209 #define DRM_FORMAT_ABGR2101010  fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
0210 #define DRM_FORMAT_RGBA1010102  fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
0211 #define DRM_FORMAT_BGRA1010102  fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
0212 
0213 /* 64 bpp RGB */
0214 #define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
0215 #define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
0216 
0217 #define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
0218 #define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
0219 
0220 /*
0221  * Floating point 64bpp RGB
0222  * IEEE 754-2008 binary16 half-precision float
0223  * [15:0] sign:exponent:mantissa 1:5:10
0224  */
0225 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
0226 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
0227 
0228 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
0229 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
0230 
0231 /*
0232  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
0233  * of unused padding per component:
0234  */
0235 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
0236 
0237 /* packed YCbCr */
0238 #define DRM_FORMAT_YUYV     fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
0239 #define DRM_FORMAT_YVYU     fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
0240 #define DRM_FORMAT_UYVY     fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
0241 #define DRM_FORMAT_VYUY     fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
0242 
0243 #define DRM_FORMAT_AYUV     fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
0244 #define DRM_FORMAT_AVUY8888 fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
0245 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
0246 #define DRM_FORMAT_XVUY8888 fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
0247 #define DRM_FORMAT_VUY888   fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
0248 #define DRM_FORMAT_VUY101010    fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
0249 
0250 /*
0251  * packed Y2xx indicate for each component, xx valid data occupy msb
0252  * 16-xx padding occupy lsb
0253  */
0254 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
0255 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
0256 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
0257 
0258 /*
0259  * packed Y4xx indicate for each component, xx valid data occupy msb
0260  * 16-xx padding occupy lsb except Y410
0261  */
0262 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
0263 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
0264 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
0265 
0266 #define DRM_FORMAT_XVYU2101010  fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
0267 #define DRM_FORMAT_XVYU12_16161616  fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
0268 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
0269 
0270 /*
0271  * packed YCbCr420 2x2 tiled formats
0272  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
0273  */
0274 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
0275 #define DRM_FORMAT_Y0L0     fourcc_code('Y', '0', 'L', '0')
0276 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
0277 #define DRM_FORMAT_X0L0     fourcc_code('X', '0', 'L', '0')
0278 
0279 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
0280 #define DRM_FORMAT_Y0L2     fourcc_code('Y', '0', 'L', '2')
0281 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
0282 #define DRM_FORMAT_X0L2     fourcc_code('X', '0', 'L', '2')
0283 
0284 /*
0285  * 1-plane YUV 4:2:0
0286  * In these formats, the component ordering is specified (Y, followed by U
0287  * then V), but the exact Linear layout is undefined.
0288  * These formats can only be used with a non-Linear modifier.
0289  */
0290 #define DRM_FORMAT_YUV420_8BIT  fourcc_code('Y', 'U', '0', '8')
0291 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
0292 
0293 /*
0294  * 2 plane RGB + A
0295  * index 0 = RGB plane, same format as the corresponding non _A8 format has
0296  * index 1 = A plane, [7:0] A
0297  */
0298 #define DRM_FORMAT_XRGB8888_A8  fourcc_code('X', 'R', 'A', '8')
0299 #define DRM_FORMAT_XBGR8888_A8  fourcc_code('X', 'B', 'A', '8')
0300 #define DRM_FORMAT_RGBX8888_A8  fourcc_code('R', 'X', 'A', '8')
0301 #define DRM_FORMAT_BGRX8888_A8  fourcc_code('B', 'X', 'A', '8')
0302 #define DRM_FORMAT_RGB888_A8    fourcc_code('R', '8', 'A', '8')
0303 #define DRM_FORMAT_BGR888_A8    fourcc_code('B', '8', 'A', '8')
0304 #define DRM_FORMAT_RGB565_A8    fourcc_code('R', '5', 'A', '8')
0305 #define DRM_FORMAT_BGR565_A8    fourcc_code('B', '5', 'A', '8')
0306 
0307 /*
0308  * 2 plane YCbCr
0309  * index 0 = Y plane, [7:0] Y
0310  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
0311  * or
0312  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
0313  */
0314 #define DRM_FORMAT_NV12     fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
0315 #define DRM_FORMAT_NV21     fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
0316 #define DRM_FORMAT_NV16     fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
0317 #define DRM_FORMAT_NV61     fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
0318 #define DRM_FORMAT_NV24     fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
0319 #define DRM_FORMAT_NV42     fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
0320 /*
0321  * 2 plane YCbCr
0322  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
0323  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
0324  */
0325 #define DRM_FORMAT_NV15     fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
0326 #define DRM_FORMAT_NV20     fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */
0327 #define DRM_FORMAT_NV30     fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */
0328 
0329 /*
0330  * 2 plane YCbCr MSB aligned
0331  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
0332  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
0333  */
0334 #define DRM_FORMAT_P210     fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
0335 
0336 /*
0337  * 2 plane YCbCr MSB aligned
0338  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
0339  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
0340  */
0341 #define DRM_FORMAT_P010     fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
0342 
0343 /*
0344  * 2 plane YCbCr MSB aligned
0345  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
0346  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
0347  */
0348 #define DRM_FORMAT_P012     fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
0349 
0350 /*
0351  * 2 plane YCbCr MSB aligned
0352  * index 0 = Y plane, [15:0] Y little endian
0353  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
0354  */
0355 #define DRM_FORMAT_P016     fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
0356 
0357 /* 2 plane YCbCr420.
0358  * 3 10 bit components and 2 padding bits packed into 4 bytes.
0359  * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
0360  * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
0361  */
0362 #define DRM_FORMAT_P030     fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
0363 
0364 /* 3 plane non-subsampled (444) YCbCr
0365  * 16 bits per component, but only 10 bits are used and 6 bits are padded
0366  * index 0: Y plane, [15:0] Y:x [10:6] little endian
0367  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
0368  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
0369  */
0370 #define DRM_FORMAT_Q410     fourcc_code('Q', '4', '1', '0')
0371 
0372 /* 3 plane non-subsampled (444) YCrCb
0373  * 16 bits per component, but only 10 bits are used and 6 bits are padded
0374  * index 0: Y plane, [15:0] Y:x [10:6] little endian
0375  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
0376  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
0377  */
0378 #define DRM_FORMAT_Q401     fourcc_code('Q', '4', '0', '1')
0379 
0380 /*
0381  * 3 plane YCbCr
0382  * index 0: Y plane, [7:0] Y
0383  * index 1: Cb plane, [7:0] Cb
0384  * index 2: Cr plane, [7:0] Cr
0385  * or
0386  * index 1: Cr plane, [7:0] Cr
0387  * index 2: Cb plane, [7:0] Cb
0388  */
0389 #define DRM_FORMAT_YUV410   fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
0390 #define DRM_FORMAT_YVU410   fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
0391 #define DRM_FORMAT_YUV411   fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
0392 #define DRM_FORMAT_YVU411   fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
0393 #define DRM_FORMAT_YUV420   fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
0394 #define DRM_FORMAT_YVU420   fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
0395 #define DRM_FORMAT_YUV422   fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
0396 #define DRM_FORMAT_YVU422   fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
0397 #define DRM_FORMAT_YUV444   fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
0398 #define DRM_FORMAT_YVU444   fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
0399 
0400 
0401 /*
0402  * Format Modifiers:
0403  *
0404  * Format modifiers describe, typically, a re-ordering or modification
0405  * of the data in a plane of an FB.  This can be used to express tiled/
0406  * swizzled formats, or compression, or a combination of the two.
0407  *
0408  * The upper 8 bits of the format modifier are a vendor-id as assigned
0409  * below.  The lower 56 bits are assigned as vendor sees fit.
0410  */
0411 
0412 /* Vendor Ids: */
0413 #define DRM_FORMAT_MOD_VENDOR_NONE    0
0414 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
0415 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
0416 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
0417 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
0418 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
0419 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
0420 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
0421 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
0422 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
0423 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
0424 
0425 /* add more to the end as needed */
0426 
0427 #define DRM_FORMAT_RESERVED       ((1ULL << 56) - 1)
0428 
0429 #define fourcc_mod_get_vendor(modifier) \
0430     (((modifier) >> 56) & 0xff)
0431 
0432 #define fourcc_mod_is_vendor(modifier, vendor) \
0433     (fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
0434 
0435 #define fourcc_mod_code(vendor, val) \
0436     ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
0437 
0438 /*
0439  * Format Modifier tokens:
0440  *
0441  * When adding a new token please document the layout with a code comment,
0442  * similar to the fourcc codes above. drm_fourcc.h is considered the
0443  * authoritative source for all of these.
0444  *
0445  * Generic modifier names:
0446  *
0447  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
0448  * for layouts which are common across multiple vendors. To preserve
0449  * compatibility, in cases where a vendor-specific definition already exists and
0450  * a generic name for it is desired, the common name is a purely symbolic alias
0451  * and must use the same numerical value as the original definition.
0452  *
0453  * Note that generic names should only be used for modifiers which describe
0454  * generic layouts (such as pixel re-ordering), which may have
0455  * independently-developed support across multiple vendors.
0456  *
0457  * In future cases where a generic layout is identified before merging with a
0458  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
0459  * 'NONE' could be considered. This should only be for obvious, exceptional
0460  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
0461  * apply to a single vendor.
0462  *
0463  * Generic names should not be used for cases where multiple hardware vendors
0464  * have implementations of the same standardised compression scheme (such as
0465  * AFBC). In those cases, all implementations should use the same format
0466  * modifier(s), reflecting the vendor of the standard.
0467  */
0468 
0469 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
0470 
0471 /*
0472  * Invalid Modifier
0473  *
0474  * This modifier can be used as a sentinel to terminate the format modifiers
0475  * list, or to initialize a variable with an invalid modifier. It might also be
0476  * used to report an error back to userspace for certain APIs.
0477  */
0478 #define DRM_FORMAT_MOD_INVALID  fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
0479 
0480 /*
0481  * Linear Layout
0482  *
0483  * Just plain linear layout. Note that this is different from no specifying any
0484  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
0485  * which tells the driver to also take driver-internal information into account
0486  * and so might actually result in a tiled framebuffer.
0487  */
0488 #define DRM_FORMAT_MOD_LINEAR   fourcc_mod_code(NONE, 0)
0489 
0490 /*
0491  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
0492  *
0493  * The "none" format modifier doesn't actually mean that the modifier is
0494  * implicit, instead it means that the layout is linear. Whether modifiers are
0495  * used is out-of-band information carried in an API-specific way (e.g. in a
0496  * flag for drm_mode_fb_cmd2).
0497  */
0498 #define DRM_FORMAT_MOD_NONE 0
0499 
0500 /* Intel framebuffer modifiers */
0501 
0502 /*
0503  * Intel X-tiling layout
0504  *
0505  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
0506  * in row-major layout. Within the tile bytes are laid out row-major, with
0507  * a platform-dependent stride. On top of that the memory can apply
0508  * platform-depending swizzling of some higher address bits into bit6.
0509  *
0510  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
0511  * On earlier platforms the is highly platforms specific and not useful for
0512  * cross-driver sharing. It exists since on a given platform it does uniquely
0513  * identify the layout in a simple way for i915-specific userspace, which
0514  * facilitated conversion of userspace to modifiers. Additionally the exact
0515  * format on some really old platforms is not known.
0516  */
0517 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
0518 
0519 /*
0520  * Intel Y-tiling layout
0521  *
0522  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
0523  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
0524  * chunks column-major, with a platform-dependent height. On top of that the
0525  * memory can apply platform-depending swizzling of some higher address bits
0526  * into bit6.
0527  *
0528  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
0529  * On earlier platforms the is highly platforms specific and not useful for
0530  * cross-driver sharing. It exists since on a given platform it does uniquely
0531  * identify the layout in a simple way for i915-specific userspace, which
0532  * facilitated conversion of userspace to modifiers. Additionally the exact
0533  * format on some really old platforms is not known.
0534  */
0535 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
0536 
0537 /*
0538  * Intel Yf-tiling layout
0539  *
0540  * This is a tiled layout using 4Kb tiles in row-major layout.
0541  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
0542  * are arranged in four groups (two wide, two high) with column-major layout.
0543  * Each group therefore consists out of four 256 byte units, which are also laid
0544  * out as 2x2 column-major.
0545  * 256 byte units are made out of four 64 byte blocks of pixels, producing
0546  * either a square block or a 2:1 unit.
0547  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
0548  * in pixel depends on the pixel depth.
0549  */
0550 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
0551 
0552 /*
0553  * Intel color control surface (CCS) for render compression
0554  *
0555  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
0556  * The main surface will be plane index 0 and must be Y/Yf-tiled,
0557  * the CCS will be plane index 1.
0558  *
0559  * Each CCS tile matches a 1024x512 pixel area of the main surface.
0560  * To match certain aspects of the 3D hardware the CCS is
0561  * considered to be made up of normal 128Bx32 Y tiles, Thus
0562  * the CCS pitch must be specified in multiples of 128 bytes.
0563  *
0564  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
0565  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
0566  * But that fact is not relevant unless the memory is accessed
0567  * directly.
0568  */
0569 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
0570 #define I915_FORMAT_MOD_Yf_TILED_CCS    fourcc_mod_code(INTEL, 5)
0571 
0572 /*
0573  * Intel color control surfaces (CCS) for Gen-12 render compression.
0574  *
0575  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
0576  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
0577  * main surface. In other words, 4 bits in CCS map to a main surface cache
0578  * line pair. The main surface pitch is required to be a multiple of four
0579  * Y-tile widths.
0580  */
0581 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
0582 
0583 /*
0584  * Intel color control surfaces (CCS) for Gen-12 media compression
0585  *
0586  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
0587  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
0588  * main surface. In other words, 4 bits in CCS map to a main surface cache
0589  * line pair. The main surface pitch is required to be a multiple of four
0590  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
0591  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
0592  * planes 2 and 3 for the respective CCS.
0593  */
0594 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
0595 
0596 /*
0597  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
0598  * compression.
0599  *
0600  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
0601  * and at index 1. The clear color is stored at index 2, and the pitch should
0602  * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
0603  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
0604  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
0605  * the converted clear color of size 64 bits. The first 32 bits store the Lower
0606  * Converted Clear Color value and the next 32 bits store the Higher Converted
0607  * Clear Color value when applicable. The Converted Clear Color values are
0608  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
0609  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
0610  * corresponds to an area of 4x1 tiles in the main surface. The main surface
0611  * pitch is required to be a multiple of 4 tile widths.
0612  */
0613 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
0614 
0615 /*
0616  * Intel Tile 4 layout
0617  *
0618  * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
0619  * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
0620  * only differs from Tile Y at the 256B granularity in between. At this
0621  * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
0622  * of 64B x 8 rows.
0623  */
0624 #define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
0625 
0626 /*
0627  * Intel color control surfaces (CCS) for DG2 render compression.
0628  *
0629  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
0630  * outside of the GEM object in a reserved memory area dedicated for the
0631  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
0632  * main surface pitch is required to be a multiple of four Tile 4 widths.
0633  */
0634 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
0635 
0636 /*
0637  * Intel color control surfaces (CCS) for DG2 media compression.
0638  *
0639  * The main surface is Tile 4 and at plane index 0. For semi-planar formats
0640  * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
0641  * 0 and 1, respectively. The CCS for all planes are stored outside of the
0642  * GEM object in a reserved memory area dedicated for the storage of the
0643  * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
0644  * pitch is required to be a multiple of four Tile 4 widths.
0645  */
0646 #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
0647 
0648 /*
0649  * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
0650  *
0651  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
0652  * outside of the GEM object in a reserved memory area dedicated for the
0653  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
0654  * main surface pitch is required to be a multiple of four Tile 4 widths. The
0655  * clear color is stored at plane index 1 and the pitch should be 64 bytes
0656  * aligned. The format of the 256 bits of clear color data matches the one used
0657  * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
0658  * for details.
0659  */
0660 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
0661 
0662 /*
0663  * Intel Color Control Surfaces (CCS) for display ver. 14 render compression.
0664  *
0665  * The main surface is tile4 and at plane index 0, the CCS is linear and
0666  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
0667  * main surface. In other words, 4 bits in CCS map to a main surface cache
0668  * line pair. The main surface pitch is required to be a multiple of four
0669  * tile4 widths.
0670  */
0671 #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13)
0672 
0673 /*
0674  * Intel Color Control Surfaces (CCS) for display ver. 14 media compression
0675  *
0676  * The main surface is tile4 and at plane index 0, the CCS is linear and
0677  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
0678  * main surface. In other words, 4 bits in CCS map to a main surface cache
0679  * line pair. The main surface pitch is required to be a multiple of four
0680  * tile4 widths. For semi-planar formats like NV12, CCS planes follow the
0681  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
0682  * planes 2 and 3 for the respective CCS.
0683  */
0684 #define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14)
0685 
0686 /*
0687  * Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render
0688  * compression.
0689  *
0690  * The main surface is tile4 and is at plane index 0 whereas CCS is linear
0691  * and at index 1. The clear color is stored at index 2, and the pitch should
0692  * be ignored. The clear color structure is 256 bits. The first 128 bits
0693  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
0694  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
0695  * the converted clear color of size 64 bits. The first 32 bits store the Lower
0696  * Converted Clear Color value and the next 32 bits store the Higher Converted
0697  * Clear Color value when applicable. The Converted Clear Color values are
0698  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
0699  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
0700  * corresponds to an area of 4x1 tiles in the main surface. The main surface
0701  * pitch is required to be a multiple of 4 tile widths.
0702  */
0703 #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15)
0704 
0705 /*
0706  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
0707  *
0708  * Macroblocks are laid in a Z-shape, and each pixel data is following the
0709  * standard NV12 style.
0710  * As for NV12, an image is the result of two frame buffers: one for Y,
0711  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
0712  * Alignment requirements are (for each buffer):
0713  * - multiple of 128 pixels for the width
0714  * - multiple of  32 pixels for the height
0715  *
0716  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
0717  */
0718 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE   fourcc_mod_code(SAMSUNG, 1)
0719 
0720 /*
0721  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
0722  *
0723  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
0724  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
0725  * they correspond to their 16x16 luma block.
0726  */
0727 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE   fourcc_mod_code(SAMSUNG, 2)
0728 
0729 /*
0730  * Qualcomm Compressed Format
0731  *
0732  * Refers to a compressed variant of the base format that is compressed.
0733  * Implementation may be platform and base-format specific.
0734  *
0735  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
0736  * Pixel data pitch/stride is aligned with macrotile width.
0737  * Pixel data height is aligned with macrotile height.
0738  * Entire pixel data buffer is aligned with 4k(bytes).
0739  */
0740 #define DRM_FORMAT_MOD_QCOM_COMPRESSED  fourcc_mod_code(QCOM, 1)
0741 
0742 /*
0743  * Qualcomm Tiled Format
0744  *
0745  * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
0746  * Implementation may be platform and base-format specific.
0747  *
0748  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
0749  * Pixel data pitch/stride is aligned with macrotile width.
0750  * Pixel data height is aligned with macrotile height.
0751  * Entire pixel data buffer is aligned with 4k(bytes).
0752  */
0753 #define DRM_FORMAT_MOD_QCOM_TILED3  fourcc_mod_code(QCOM, 3)
0754 
0755 /*
0756  * Qualcomm Alternate Tiled Format
0757  *
0758  * Alternate tiled format typically only used within GMEM.
0759  * Implementation may be platform and base-format specific.
0760  */
0761 #define DRM_FORMAT_MOD_QCOM_TILED2  fourcc_mod_code(QCOM, 2)
0762 
0763 
0764 /* Vivante framebuffer modifiers */
0765 
0766 /*
0767  * Vivante 4x4 tiling layout
0768  *
0769  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
0770  * layout.
0771  */
0772 #define DRM_FORMAT_MOD_VIVANTE_TILED        fourcc_mod_code(VIVANTE, 1)
0773 
0774 /*
0775  * Vivante 64x64 super-tiling layout
0776  *
0777  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
0778  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
0779  * major layout.
0780  *
0781  * For more information: see
0782  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
0783  */
0784 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED  fourcc_mod_code(VIVANTE, 2)
0785 
0786 /*
0787  * Vivante 4x4 tiling layout for dual-pipe
0788  *
0789  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
0790  * different base address. Offsets from the base addresses are therefore halved
0791  * compared to the non-split tiled layout.
0792  */
0793 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED  fourcc_mod_code(VIVANTE, 3)
0794 
0795 /*
0796  * Vivante 64x64 super-tiling layout for dual-pipe
0797  *
0798  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
0799  * starts at a different base address. Offsets from the base addresses are
0800  * therefore halved compared to the non-split super-tiled layout.
0801  */
0802 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
0803 
0804 /*
0805  * Vivante TS (tile-status) buffer modifiers. They can be combined with all of
0806  * the color buffer tiling modifiers defined above. When TS is present it's a
0807  * separate buffer containing the clear/compression status of each tile. The
0808  * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer
0809  * tile size in bytes covered by one entry in the status buffer and s is the
0810  * number of status bits per entry.
0811  * We reserve the top 8 bits of the Vivante modifier space for tile status
0812  * clear/compression modifiers, as future cores might add some more TS layout
0813  * variations.
0814  */
0815 #define VIVANTE_MOD_TS_64_4               (1ULL << 48)
0816 #define VIVANTE_MOD_TS_64_2               (2ULL << 48)
0817 #define VIVANTE_MOD_TS_128_4              (3ULL << 48)
0818 #define VIVANTE_MOD_TS_256_4              (4ULL << 48)
0819 #define VIVANTE_MOD_TS_MASK               (0xfULL << 48)
0820 
0821 /*
0822  * Vivante compression modifiers. Those depend on a TS modifier being present
0823  * as the TS bits get reinterpreted as compression tags instead of simple
0824  * clear markers when compression is enabled.
0825  */
0826 #define VIVANTE_MOD_COMP_DEC400           (1ULL << 52)
0827 #define VIVANTE_MOD_COMP_MASK             (0xfULL << 52)
0828 
0829 /* Masking out the extension bits will yield the base modifier. */
0830 #define VIVANTE_MOD_EXT_MASK              (VIVANTE_MOD_TS_MASK | \
0831                                            VIVANTE_MOD_COMP_MASK)
0832 
0833 /* NVIDIA frame buffer modifiers */
0834 
0835 /*
0836  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
0837  *
0838  * Pixels are arranged in simple tiles of 16 x 16 bytes.
0839  */
0840 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
0841 
0842 /*
0843  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
0844  * and Tegra GPUs starting with Tegra K1.
0845  *
0846  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
0847  * based on the architecture generation.  GOBs themselves are then arranged in
0848  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
0849  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
0850  * a block depth or height of "4").
0851  *
0852  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
0853  * in full detail.
0854  *
0855  *       Macro
0856  * Bits  Param Description
0857  * ----  ----- -----------------------------------------------------------------
0858  *
0859  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
0860  *             compatibility with the existing
0861  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
0862  *
0863  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
0864  *             compatibility with the existing
0865  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
0866  *
0867  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
0868  *             size).  Must be zero.
0869  *
0870  *             Note there is no log2(width) parameter.  Some portions of the
0871  *             hardware support a block width of two gobs, but it is impractical
0872  *             to use due to lack of support elsewhere, and has no known
0873  *             benefits.
0874  *
0875  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
0876  *             in blocks, specified via log2(tile width in blocks)).  Must be
0877  *             zero.
0878  *
0879  * 19:12 k     Page Kind.  This value directly maps to a field in the page
0880  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
0881  *             in memory and can be derived from the tuple
0882  *
0883  *               (format, GPU model, compression type, samples per pixel)
0884  *
0885  *             Where compression type is defined below.  If GPU model were
0886  *             implied by the format modifier, format, or memory buffer, page
0887  *             kind would not need to be included in the modifier itself, but
0888  *             since the modifier should define the layout of the associated
0889  *             memory buffer independent from any device or other context, it
0890  *             must be included here.
0891  *
0892  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
0893  *             starting with Fermi GPUs.  Additionally, the mapping between page
0894  *             kind and bit layout has changed at various points.
0895  *
0896  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
0897  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
0898  *               2 = Gob Height 8, Turing+ Page Kind mapping
0899  *               3 = Reserved for future use.
0900  *
0901  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
0902  *             bit remapping step that occurs at an even lower level than the
0903  *             page kind and block linear swizzles.  This causes the layout of
0904  *             surfaces mapped in those SOC's GPUs to be incompatible with the
0905  *             equivalent mapping on other GPUs in the same system.
0906  *
0907  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
0908  *               1 = Desktop GPU and Tegra Xavier+ Layout
0909  *
0910  * 25:23 c     Lossless Framebuffer Compression type.
0911  *
0912  *               0 = none
0913  *               1 = ROP/3D, layout 1, exact compression format implied by Page
0914  *                   Kind field
0915  *               2 = ROP/3D, layout 2, exact compression format implied by Page
0916  *                   Kind field
0917  *               3 = CDE horizontal
0918  *               4 = CDE vertical
0919  *               5 = Reserved for future use
0920  *               6 = Reserved for future use
0921  *               7 = Reserved for future use
0922  *
0923  * 55:25 -     Reserved for future use.  Must be zero.
0924  */
0925 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
0926     fourcc_mod_code(NVIDIA, (0x10 | \
0927                  ((h) & 0xf) | \
0928                  (((k) & 0xff) << 12) | \
0929                  (((g) & 0x3) << 20) | \
0930                  (((s) & 0x1) << 22) | \
0931                  (((c) & 0x7) << 23)))
0932 
0933 /* To grandfather in prior block linear format modifiers to the above layout,
0934  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
0935  * with block-linear layouts, is remapped within drivers to the value 0xfe,
0936  * which corresponds to the "generic" kind used for simple single-sample
0937  * uncompressed color formats on Fermi - Volta GPUs.
0938  */
0939 static __inline__ __u64
0940 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
0941 {
0942     if (!(modifier & 0x10) || (modifier & (0xff << 12)))
0943         return modifier;
0944     else
0945         return modifier | (0xfe << 12);
0946 }
0947 
0948 /*
0949  * 16Bx2 Block Linear layout, used by Tegra K1 and later
0950  *
0951  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
0952  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
0953  *
0954  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
0955  *
0956  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
0957  * Valid values are:
0958  *
0959  * 0 == ONE_GOB
0960  * 1 == TWO_GOBS
0961  * 2 == FOUR_GOBS
0962  * 3 == EIGHT_GOBS
0963  * 4 == SIXTEEN_GOBS
0964  * 5 == THIRTYTWO_GOBS
0965  *
0966  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
0967  * in full detail.
0968  */
0969 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
0970     DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
0971 
0972 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
0973     DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
0974 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
0975     DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
0976 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
0977     DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
0978 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
0979     DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
0980 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
0981     DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
0982 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
0983     DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
0984 
0985 /*
0986  * Some Broadcom modifiers take parameters, for example the number of
0987  * vertical lines in the image. Reserve the lower 32 bits for modifier
0988  * type, and the next 24 bits for parameters. Top 8 bits are the
0989  * vendor code.
0990  */
0991 #define __fourcc_mod_broadcom_param_shift 8
0992 #define __fourcc_mod_broadcom_param_bits 48
0993 #define fourcc_mod_broadcom_code(val, params) \
0994     fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
0995 #define fourcc_mod_broadcom_param(m) \
0996     ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \
0997            ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
0998 #define fourcc_mod_broadcom_mod(m) \
0999     ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<    \
1000          __fourcc_mod_broadcom_param_shift))
1001 
1002 /*
1003  * Broadcom VC4 "T" format
1004  *
1005  * This is the primary layout that the V3D GPU can texture from (it
1006  * can't do linear).  The T format has:
1007  *
1008  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
1009  *   pixels at 32 bit depth.
1010  *
1011  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
1012  *   16x16 pixels).
1013  *
1014  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
1015  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
1016  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
1017  *
1018  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
1019  *   tiles) or right-to-left (odd rows of 4k tiles).
1020  */
1021 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
1022 
1023 /*
1024  * Broadcom SAND format
1025  *
1026  * This is the native format that the H.264 codec block uses.  For VC4
1027  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
1028  *
1029  * The image can be considered to be split into columns, and the
1030  * columns are placed consecutively into memory.  The width of those
1031  * columns can be either 32, 64, 128, or 256 pixels, but in practice
1032  * only 128 pixel columns are used.
1033  *
1034  * The pitch between the start of each column is set to optimally
1035  * switch between SDRAM banks. This is passed as the number of lines
1036  * of column width in the modifier (we can't use the stride value due
1037  * to various core checks that look at it , so you should set the
1038  * stride to width*cpp).
1039  *
1040  * Note that the column height for this format modifier is the same
1041  * for all of the planes, assuming that each column contains both Y
1042  * and UV.  Some SAND-using hardware stores UV in a separate tiled
1043  * image from Y to reduce the column height, which is not supported
1044  * with these modifiers.
1045  *
1046  * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
1047  * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
1048  * wide, but as this is a 10 bpp format that translates to 96 pixels.
1049  */
1050 
1051 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
1052     fourcc_mod_broadcom_code(2, v)
1053 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
1054     fourcc_mod_broadcom_code(3, v)
1055 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
1056     fourcc_mod_broadcom_code(4, v)
1057 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
1058     fourcc_mod_broadcom_code(5, v)
1059 
1060 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
1061     DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
1062 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
1063     DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
1064 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
1065     DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
1066 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
1067     DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
1068 
1069 /* Broadcom UIF format
1070  *
1071  * This is the common format for the current Broadcom multimedia
1072  * blocks, including V3D 3.x and newer, newer video codecs, and
1073  * displays.
1074  *
1075  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
1076  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
1077  * stored in columns, with padding between the columns to ensure that
1078  * moving from one column to the next doesn't hit the same SDRAM page
1079  * bank.
1080  *
1081  * To calculate the padding, it is assumed that each hardware block
1082  * and the software driving it knows the platform's SDRAM page size,
1083  * number of banks, and XOR address, and that it's identical between
1084  * all blocks using the format.  This tiling modifier will use XOR as
1085  * necessary to reduce the padding.  If a hardware block can't do XOR,
1086  * the assumption is that a no-XOR tiling modifier will be created.
1087  */
1088 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
1089 
1090 /*
1091  * Arm Framebuffer Compression (AFBC) modifiers
1092  *
1093  * AFBC is a proprietary lossless image compression protocol and format.
1094  * It provides fine-grained random access and minimizes the amount of data
1095  * transferred between IP blocks.
1096  *
1097  * AFBC has several features which may be supported and/or used, which are
1098  * represented using bits in the modifier. Not all combinations are valid,
1099  * and different devices or use-cases may support different combinations.
1100  *
1101  * Further information on the use of AFBC modifiers can be found in
1102  * Documentation/gpu/afbc.rst
1103  */
1104 
1105 /*
1106  * The top 4 bits (out of the 56 bits allotted for specifying vendor specific
1107  * modifiers) denote the category for modifiers. Currently we have three
1108  * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1109  * sixteen different categories.
1110  */
1111 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1112     fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1113 
1114 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1115 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1116 
1117 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1118     DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1119 
1120 /*
1121  * AFBC superblock size
1122  *
1123  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1124  * size (in pixels) must be aligned to a multiple of the superblock size.
1125  * Four lowest significant bits(LSBs) are reserved for block size.
1126  *
1127  * Where one superblock size is specified, it applies to all planes of the
1128  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1129  * the first applies to the Luma plane and the second applies to the Chroma
1130  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1131  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1132  */
1133 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
1134 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
1135 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
1136 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
1137 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1138 
1139 /*
1140  * AFBC lossless colorspace transform
1141  *
1142  * Indicates that the buffer makes use of the AFBC lossless colorspace
1143  * transform.
1144  */
1145 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
1146 
1147 /*
1148  * AFBC block-split
1149  *
1150  * Indicates that the payload of each superblock is split. The second
1151  * half of the payload is positioned at a predefined offset from the start
1152  * of the superblock payload.
1153  */
1154 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
1155 
1156 /*
1157  * AFBC sparse layout
1158  *
1159  * This flag indicates that the payload of each superblock must be stored at a
1160  * predefined position relative to the other superblocks in the same AFBC
1161  * buffer. This order is the same order used by the header buffer. In this mode
1162  * each superblock is given the same amount of space as an uncompressed
1163  * superblock of the particular format would require, rounding up to the next
1164  * multiple of 128 bytes in size.
1165  */
1166 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
1167 
1168 /*
1169  * AFBC copy-block restrict
1170  *
1171  * Buffers with this flag must obey the copy-block restriction. The restriction
1172  * is such that there are no copy-blocks referring across the border of 8x8
1173  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1174  */
1175 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
1176 
1177 /*
1178  * AFBC tiled layout
1179  *
1180  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1181  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1182  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1183  * larger bpp formats. The order between the tiles is scan line.
1184  * When the tiled layout is used, the buffer size (in pixels) must be aligned
1185  * to the tile size.
1186  */
1187 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1188 
1189 /*
1190  * AFBC solid color blocks
1191  *
1192  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1193  * can be reduced if a whole superblock is a single color.
1194  */
1195 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1196 
1197 /*
1198  * AFBC double-buffer
1199  *
1200  * Indicates that the buffer is allocated in a layout safe for front-buffer
1201  * rendering.
1202  */
1203 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1204 
1205 /*
1206  * AFBC buffer content hints
1207  *
1208  * Indicates that the buffer includes per-superblock content hints.
1209  */
1210 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1211 
1212 /* AFBC uncompressed storage mode
1213  *
1214  * Indicates that the buffer is using AFBC uncompressed storage mode.
1215  * In this mode all superblock payloads in the buffer use the uncompressed
1216  * storage mode, which is usually only used for data which cannot be compressed.
1217  * The buffer layout is the same as for AFBC buffers without USM set, this only
1218  * affects the storage mode of the individual superblocks. Note that even a
1219  * buffer without USM set may use uncompressed storage mode for some or all
1220  * superblocks, USM just guarantees it for all.
1221  */
1222 #define AFBC_FORMAT_MOD_USM (1ULL << 12)
1223 
1224 /*
1225  * Arm Fixed-Rate Compression (AFRC) modifiers
1226  *
1227  * AFRC is a proprietary fixed rate image compression protocol and format,
1228  * designed to provide guaranteed bandwidth and memory footprint
1229  * reductions in graphics and media use-cases.
1230  *
1231  * AFRC buffers consist of one or more planes, with the same components
1232  * and meaning as an uncompressed buffer using the same pixel format.
1233  *
1234  * Within each plane, the pixel/luma/chroma values are grouped into
1235  * "coding unit" blocks which are individually compressed to a
1236  * fixed size (in bytes). All coding units within a given plane of a buffer
1237  * store the same number of values, and have the same compressed size.
1238  *
1239  * The coding unit size is configurable, allowing different rates of compression.
1240  *
1241  * The start of each AFRC buffer plane must be aligned to an alignment granule which
1242  * depends on the coding unit size.
1243  *
1244  * Coding Unit Size   Plane Alignment
1245  * ----------------   ---------------
1246  * 16 bytes           1024 bytes
1247  * 24 bytes           512  bytes
1248  * 32 bytes           2048 bytes
1249  *
1250  * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1251  * to a multiple of the paging tile dimensions.
1252  * The dimensions of each paging tile depend on whether the buffer is optimised for
1253  * scanline (SCAN layout) or rotated (ROT layout) access.
1254  *
1255  * Layout   Paging Tile Width   Paging Tile Height
1256  * ------   -----------------   ------------------
1257  * SCAN     16 coding units     4 coding units
1258  * ROT      8  coding units     8 coding units
1259  *
1260  * The dimensions of each coding unit depend on the number of components
1261  * in the compressed plane and whether the buffer is optimised for
1262  * scanline (SCAN layout) or rotated (ROT layout) access.
1263  *
1264  * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1265  * -----------------------------   ---------   -----------------   ------------------
1266  * 1                               SCAN        16 samples          4 samples
1267  * Example: 16x4 luma samples in a 'Y' plane
1268  *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1269  * -----------------------------   ---------   -----------------   ------------------
1270  * 1                               ROT         8 samples           8 samples
1271  * Example: 8x8 luma samples in a 'Y' plane
1272  *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1273  * -----------------------------   ---------   -----------------   ------------------
1274  * 2                               DONT CARE   8 samples           4 samples
1275  * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1276  * -----------------------------   ---------   -----------------   ------------------
1277  * 3                               DONT CARE   4 samples           4 samples
1278  * Example: 4x4 pixels in an RGB buffer without alpha
1279  * -----------------------------   ---------   -----------------   ------------------
1280  * 4                               DONT CARE   4 samples           4 samples
1281  * Example: 4x4 pixels in an RGB buffer with alpha
1282  */
1283 
1284 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1285 
1286 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1287     DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1288 
1289 /*
1290  * AFRC coding unit size modifier.
1291  *
1292  * Indicates the number of bytes used to store each compressed coding unit for
1293  * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1294  * is the same for both Cb and Cr, which may be stored in separate planes.
1295  *
1296  * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1297  * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1298  * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1299  * this corresponds to the luma plane.
1300  *
1301  * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1302  * each compressed coding unit in the second and third planes in the buffer.
1303  * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1304  *
1305  * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1306  * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1307  * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1308  * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1309  */
1310 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1311 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1312 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1313 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1314 
1315 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1316 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1317 
1318 /*
1319  * AFRC scanline memory layout.
1320  *
1321  * Indicates if the buffer uses the scanline-optimised layout
1322  * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1323  * The memory layout is the same for all planes.
1324  */
1325 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1326 
1327 /*
1328  * Arm 16x16 Block U-Interleaved modifier
1329  *
1330  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1331  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1332  * in the block are reordered.
1333  */
1334 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1335     DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1336 
1337 /*
1338  * Allwinner tiled modifier
1339  *
1340  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1341  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1342  * planes.
1343  *
1344  * With this tiling, the luminance samples are disposed in tiles representing
1345  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1346  * The pixel order in each tile is linear and the tiles are disposed linearly,
1347  * both in row-major order.
1348  */
1349 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1350 
1351 /*
1352  * Amlogic Video Framebuffer Compression modifiers
1353  *
1354  * Amlogic uses a proprietary lossless image compression protocol and format
1355  * for their hardware video codec accelerators, either video decoders or
1356  * video input encoders.
1357  *
1358  * It considerably reduces memory bandwidth while writing and reading
1359  * frames in memory.
1360  *
1361  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1362  * per component YCbCr 420, single plane :
1363  * - DRM_FORMAT_YUV420_8BIT
1364  * - DRM_FORMAT_YUV420_10BIT
1365  *
1366  * The first 8 bits of the mode defines the layout, then the following 8 bits
1367  * defines the options changing the layout.
1368  *
1369  * Not all combinations are valid, and different SoCs may support different
1370  * combinations of layout and options.
1371  */
1372 #define __fourcc_mod_amlogic_layout_mask 0xff
1373 #define __fourcc_mod_amlogic_options_shift 8
1374 #define __fourcc_mod_amlogic_options_mask 0xff
1375 
1376 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1377     fourcc_mod_code(AMLOGIC, \
1378             ((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1379             (((__options) & __fourcc_mod_amlogic_options_mask) \
1380              << __fourcc_mod_amlogic_options_shift))
1381 
1382 /* Amlogic FBC Layouts */
1383 
1384 /*
1385  * Amlogic FBC Basic Layout
1386  *
1387  * The basic layout is composed of:
1388  * - a body content organized in 64x32 superblocks with 4096 bytes per
1389  *   superblock in default mode.
1390  * - a 32 bytes per 128x64 header block
1391  *
1392  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1393  */
1394 #define AMLOGIC_FBC_LAYOUT_BASIC        (1ULL)
1395 
1396 /*
1397  * Amlogic FBC Scatter Memory layout
1398  *
1399  * Indicates the header contains IOMMU references to the compressed
1400  * frames content to optimize memory access and layout.
1401  *
1402  * In this mode, only the header memory address is needed, thus the
1403  * content memory organization is tied to the current producer
1404  * execution and cannot be saved/dumped neither transferrable between
1405  * Amlogic SoCs supporting this modifier.
1406  *
1407  * Due to the nature of the layout, these buffers are not expected to
1408  * be accessible by the user-space clients, but only accessible by the
1409  * hardware producers and consumers.
1410  *
1411  * The user-space clients should expect a failure while trying to mmap
1412  * the DMA-BUF handle returned by the producer.
1413  */
1414 #define AMLOGIC_FBC_LAYOUT_SCATTER      (2ULL)
1415 
1416 /* Amlogic FBC Layout Options Bit Mask */
1417 
1418 /*
1419  * Amlogic FBC Memory Saving mode
1420  *
1421  * Indicates the storage is packed when pixel size is multiple of word
1422  * boundaries, i.e. 8bit should be stored in this mode to save allocation
1423  * memory.
1424  *
1425  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1426  * the basic layout and 3200 bytes per 64x32 superblock combined with
1427  * the scatter layout.
1428  */
1429 #define AMLOGIC_FBC_OPTION_MEM_SAVING       (1ULL << 0)
1430 
1431 /*
1432  * AMD modifiers
1433  *
1434  * Memory layout:
1435  *
1436  * without DCC:
1437  *   - main surface
1438  *
1439  * with DCC & without DCC_RETILE:
1440  *   - main surface in plane 0
1441  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1442  *
1443  * with DCC & DCC_RETILE:
1444  *   - main surface in plane 0
1445  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1446  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1447  *
1448  * For multi-plane formats the above surfaces get merged into one plane for
1449  * each format plane, based on the required alignment only.
1450  *
1451  * Bits  Parameter                Notes
1452  * ----- ------------------------ ---------------------------------------------
1453  *
1454  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1455  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1456  *    13 DCC
1457  *    14 DCC_RETILE
1458  *    15 DCC_PIPE_ALIGN
1459  *    16 DCC_INDEPENDENT_64B
1460  *    17 DCC_INDEPENDENT_128B
1461  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1462  *    20 DCC_CONSTANT_ENCODE
1463  * 23:21 PIPE_XOR_BITS            Only for some chips
1464  * 26:24 BANK_XOR_BITS            Only for some chips
1465  * 29:27 PACKERS                  Only for some chips
1466  * 32:30 RB                       Only for some chips
1467  * 35:33 PIPE                     Only for some chips
1468  * 55:36 -                        Reserved for future use, must be zero
1469  */
1470 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1471 
1472 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1473 
1474 /* Reserve 0 for GFX8 and older */
1475 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1476 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1477 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1478 #define AMD_FMT_MOD_TILE_VER_GFX11 4
1479 #define AMD_FMT_MOD_TILE_VER_GFX12 5
1480 
1481 /*
1482  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1483  * version.
1484  */
1485 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1486 
1487 /*
1488  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1489  * GFX9 as canonical version.
1490  *
1491  * 64K_D_2D on GFX12 is identical to 64K_D on GFX11.
1492  */
1493 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1494 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1495 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1496 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1497 #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1498 
1499 /* Gfx12 swizzle modes:
1500  *    0 - LINEAR
1501  *    1 - 256B_2D  - 2D block dimensions
1502  *    2 - 4KB_2D
1503  *    3 - 64KB_2D
1504  *    4 - 256KB_2D
1505  *    5 - 4KB_3D   - 3D block dimensions
1506  *    6 - 64KB_3D
1507  *    7 - 256KB_3D
1508  */
1509 #define AMD_FMT_MOD_TILE_GFX12_64K_2D 3
1510 #define AMD_FMT_MOD_TILE_GFX12_256K_2D 4
1511 
1512 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1513 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1514 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1515 
1516 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1517 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1518 #define AMD_FMT_MOD_TILE_SHIFT 8
1519 #define AMD_FMT_MOD_TILE_MASK 0x1F
1520 
1521 /* Whether DCC compression is enabled. */
1522 #define AMD_FMT_MOD_DCC_SHIFT 13
1523 #define AMD_FMT_MOD_DCC_MASK 0x1
1524 
1525 /*
1526  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1527  * one which is not-aligned.
1528  */
1529 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1530 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1531 
1532 /* Only set if DCC_RETILE = false */
1533 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1534 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1535 
1536 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1537 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1538 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1539 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1540 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1541 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1542 
1543 #define AMD_FMT_MOD_GFX12_DCC_MAX_COMPRESSED_BLOCK_SHIFT     3
1544 #define AMD_FMT_MOD_GFX12_DCC_MAX_COMPRESSED_BLOCK_MASK      0x3 /* 0:64B, 1:128B, 2:256B */
1545 
1546 /*
1547  * DCC supports embedding some clear colors directly in the DCC surface.
1548  * However, on older GPUs the rendering HW ignores the embedded clear color
1549  * and prefers the driver provided color. This necessitates doing a fastclear
1550  * eliminate operation before a process transfers control.
1551  *
1552  * If this bit is set that means the fastclear eliminate is not needed for these
1553  * embeddable colors.
1554  */
1555 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1556 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1557 
1558 /*
1559  * The below fields are for accounting for per GPU differences. These are only
1560  * relevant for GFX9 and later and if the tile field is *_X/_T.
1561  *
1562  * PIPE_XOR_BITS = always needed
1563  * BANK_XOR_BITS = only for TILE_VER_GFX9
1564  * PACKERS = only for TILE_VER_GFX10_RBPLUS
1565  * RB = only for TILE_VER_GFX9 & DCC
1566  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1567  */
1568 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1569 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1570 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1571 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1572 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1573 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1574 #define AMD_FMT_MOD_RB_SHIFT 30
1575 #define AMD_FMT_MOD_RB_MASK 0x7
1576 #define AMD_FMT_MOD_PIPE_SHIFT 33
1577 #define AMD_FMT_MOD_PIPE_MASK 0x7
1578 
1579 #define AMD_FMT_MOD_SET(field, value) \
1580     ((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
1581 #define AMD_FMT_MOD_GET(field, value) \
1582     (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1583 #define AMD_FMT_MOD_CLEAR(field) \
1584     (~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1585 
1586 #if defined(__cplusplus)
1587 }
1588 #endif
1589 
1590 #endif /* DRM_FOURCC_H */