![]() |
|
|||
File indexing completed on 2025-02-21 10:03:53
0001 /* specfunc/gsl_sf_zeta.h 0002 * 0003 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman 0004 * 0005 * This program is free software; you can redistribute it and/or modify 0006 * it under the terms of the GNU General Public License as published by 0007 * the Free Software Foundation; either version 3 of the License, or (at 0008 * your option) any later version. 0009 * 0010 * This program is distributed in the hope that it will be useful, but 0011 * WITHOUT ANY WARRANTY; without even the implied warranty of 0012 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 0013 * General Public License for more details. 0014 * 0015 * You should have received a copy of the GNU General Public License 0016 * along with this program; if not, write to the Free Software 0017 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 0018 */ 0019 0020 /* Author: G. Jungman */ 0021 0022 #ifndef __GSL_SF_ZETA_H__ 0023 #define __GSL_SF_ZETA_H__ 0024 0025 #include <gsl/gsl_sf_result.h> 0026 0027 #undef __BEGIN_DECLS 0028 #undef __END_DECLS 0029 #ifdef __cplusplus 0030 # define __BEGIN_DECLS extern "C" { 0031 # define __END_DECLS } 0032 #else 0033 # define __BEGIN_DECLS /* empty */ 0034 # define __END_DECLS /* empty */ 0035 #endif 0036 0037 __BEGIN_DECLS 0038 0039 0040 /* Riemann Zeta Function 0041 * zeta(n) = Sum[ k^(-n), {k,1,Infinity} ] 0042 * 0043 * n=integer, n != 1 0044 * exceptions: GSL_EDOM, GSL_EOVRFLW 0045 */ 0046 int gsl_sf_zeta_int_e(const int n, gsl_sf_result * result); 0047 double gsl_sf_zeta_int(const int n); 0048 0049 0050 /* Riemann Zeta Function 0051 * zeta(x) = Sum[ k^(-s), {k,1,Infinity} ], s != 1.0 0052 * 0053 * s != 1.0 0054 * exceptions: GSL_EDOM, GSL_EOVRFLW 0055 */ 0056 int gsl_sf_zeta_e(const double s, gsl_sf_result * result); 0057 double gsl_sf_zeta(const double s); 0058 0059 0060 /* Riemann Zeta Function minus 1 0061 * useful for evaluating the fractional part 0062 * of Riemann zeta for large argument 0063 * 0064 * s != 1.0 0065 * exceptions: GSL_EDOM, GSL_EOVRFLW 0066 */ 0067 int gsl_sf_zetam1_e(const double s, gsl_sf_result * result); 0068 double gsl_sf_zetam1(const double s); 0069 0070 0071 /* Riemann Zeta Function minus 1 for integer arg 0072 * useful for evaluating the fractional part 0073 * of Riemann zeta for large argument 0074 * 0075 * s != 1.0 0076 * exceptions: GSL_EDOM, GSL_EOVRFLW 0077 */ 0078 int gsl_sf_zetam1_int_e(const int s, gsl_sf_result * result); 0079 double gsl_sf_zetam1_int(const int s); 0080 0081 0082 /* Hurwitz Zeta Function 0083 * zeta(s,q) = Sum[ (k+q)^(-s), {k,0,Infinity} ] 0084 * 0085 * s > 1.0, q > 0.0 0086 * exceptions: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW 0087 */ 0088 int gsl_sf_hzeta_e(const double s, const double q, gsl_sf_result * result); 0089 double gsl_sf_hzeta(const double s, const double q); 0090 0091 0092 /* Eta Function 0093 * eta(n) = (1-2^(1-n)) zeta(n) 0094 * 0095 * exceptions: GSL_EUNDRFLW, GSL_EOVRFLW 0096 */ 0097 int gsl_sf_eta_int_e(int n, gsl_sf_result * result); 0098 double gsl_sf_eta_int(const int n); 0099 0100 0101 /* Eta Function 0102 * eta(s) = (1-2^(1-s)) zeta(s) 0103 * 0104 * exceptions: GSL_EUNDRFLW, GSL_EOVRFLW 0105 */ 0106 int gsl_sf_eta_e(const double s, gsl_sf_result * result); 0107 double gsl_sf_eta(const double s); 0108 0109 0110 __END_DECLS 0111 0112 #endif /* __GSL_SF_ZETA_H__ */
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |
![]() ![]() |