File indexing completed on 2025-01-18 09:57:05
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 #ifndef EIGEN_MATRIX_LOGARITHM
0012 #define EIGEN_MATRIX_LOGARITHM
0013
0014 namespace Eigen {
0015
0016 namespace internal {
0017
0018 template <typename Scalar>
0019 struct matrix_log_min_pade_degree
0020 {
0021 static const int value = 3;
0022 };
0023
0024 template <typename Scalar>
0025 struct matrix_log_max_pade_degree
0026 {
0027 typedef typename NumTraits<Scalar>::Real RealScalar;
0028 static const int value = std::numeric_limits<RealScalar>::digits<= 24? 5:
0029 std::numeric_limits<RealScalar>::digits<= 53? 7:
0030 std::numeric_limits<RealScalar>::digits<= 64? 8:
0031 std::numeric_limits<RealScalar>::digits<=106? 10:
0032 11;
0033 };
0034
0035
0036 template <typename MatrixType>
0037 void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result)
0038 {
0039 typedef typename MatrixType::Scalar Scalar;
0040 typedef typename MatrixType::RealScalar RealScalar;
0041 using std::abs;
0042 using std::ceil;
0043 using std::imag;
0044 using std::log;
0045
0046 Scalar logA00 = log(A(0,0));
0047 Scalar logA11 = log(A(1,1));
0048
0049 result(0,0) = logA00;
0050 result(1,0) = Scalar(0);
0051 result(1,1) = logA11;
0052
0053 Scalar y = A(1,1) - A(0,0);
0054 if (y==Scalar(0))
0055 {
0056 result(0,1) = A(0,1) / A(0,0);
0057 }
0058 else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1))))
0059 {
0060 result(0,1) = A(0,1) * (logA11 - logA00) / y;
0061 }
0062 else
0063 {
0064
0065 RealScalar unwindingNumber = ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
0066 result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,RealScalar(2*EIGEN_PI)*unwindingNumber)) / y;
0067 }
0068 }
0069
0070
0071 inline int matrix_log_get_pade_degree(float normTminusI)
0072 {
0073 const float maxNormForPade[] = { 2.5111573934555054e-1 , 4.0535837411880493e-1,
0074 5.3149729967117310e-1 };
0075 const int minPadeDegree = matrix_log_min_pade_degree<float>::value;
0076 const int maxPadeDegree = matrix_log_max_pade_degree<float>::value;
0077 int degree = minPadeDegree;
0078 for (; degree <= maxPadeDegree; ++degree)
0079 if (normTminusI <= maxNormForPade[degree - minPadeDegree])
0080 break;
0081 return degree;
0082 }
0083
0084
0085 inline int matrix_log_get_pade_degree(double normTminusI)
0086 {
0087 const double maxNormForPade[] = { 1.6206284795015624e-2 , 5.3873532631381171e-2,
0088 1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
0089 const int minPadeDegree = matrix_log_min_pade_degree<double>::value;
0090 const int maxPadeDegree = matrix_log_max_pade_degree<double>::value;
0091 int degree = minPadeDegree;
0092 for (; degree <= maxPadeDegree; ++degree)
0093 if (normTminusI <= maxNormForPade[degree - minPadeDegree])
0094 break;
0095 return degree;
0096 }
0097
0098
0099 inline int matrix_log_get_pade_degree(long double normTminusI)
0100 {
0101 #if LDBL_MANT_DIG == 53
0102 const long double maxNormForPade[] = { 1.6206284795015624e-2L , 5.3873532631381171e-2L,
0103 1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
0104 #elif LDBL_MANT_DIG <= 64
0105 const long double maxNormForPade[] = { 5.48256690357782863103e-3L , 2.34559162387971167321e-2L,
0106 5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
0107 2.32777776523703892094e-1L };
0108 #elif LDBL_MANT_DIG <= 106
0109 const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L ,
0110 9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
0111 1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
0112 4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
0113 1.05026503471351080481093652651105e-1L };
0114 #else
0115 const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L ,
0116 5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
0117 8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
0118 3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
0119 8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
0120 #endif
0121 const int minPadeDegree = matrix_log_min_pade_degree<long double>::value;
0122 const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value;
0123 int degree = minPadeDegree;
0124 for (; degree <= maxPadeDegree; ++degree)
0125 if (normTminusI <= maxNormForPade[degree - minPadeDegree])
0126 break;
0127 return degree;
0128 }
0129
0130
0131 template <typename MatrixType>
0132 void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree)
0133 {
0134 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
0135 const int minPadeDegree = 3;
0136 const int maxPadeDegree = 11;
0137 assert(degree >= minPadeDegree && degree <= maxPadeDegree);
0138
0139
0140 const RealScalar nodes[][maxPadeDegree] = {
0141 { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,
0142 0.8872983346207416885179265399782400L },
0143 { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,
0144 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L },
0145 { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,
0146 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
0147 0.9530899229693319963988134391496965L },
0148 { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,
0149 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
0150 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L },
0151 { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,
0152 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
0153 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
0154 0.9745539561713792622630948420239256L },
0155 { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,
0156 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
0157 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
0158 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L },
0159 { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,
0160 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
0161 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
0162 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
0163 0.9840801197538130449177881014518364L },
0164 { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,
0165 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
0166 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
0167 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
0168 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L },
0169 { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,
0170 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
0171 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
0172 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
0173 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
0174 0.9891143290730284964019690005614287L } };
0175
0176 const RealScalar weights[][maxPadeDegree] = {
0177 { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,
0178 0.2777777777777777777777777777777778L },
0179 { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,
0180 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L },
0181 { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,
0182 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
0183 0.1184634425280945437571320203599587L },
0184 { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,
0185 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
0186 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L },
0187 { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,
0188 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
0189 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
0190 0.0647424830844348466353057163395410L },
0191 { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,
0192 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
0193 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
0194 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L },
0195 { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,
0196 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
0197 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
0198 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
0199 0.0406371941807872059859460790552618L },
0200 { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,
0201 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
0202 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
0203 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
0204 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L },
0205 { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,
0206 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
0207 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
0208 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
0209 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
0210 0.0278342835580868332413768602212743L } };
0211
0212 MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
0213 result.setZero(T.rows(), T.rows());
0214 for (int k = 0; k < degree; ++k) {
0215 RealScalar weight = weights[degree-minPadeDegree][k];
0216 RealScalar node = nodes[degree-minPadeDegree][k];
0217 result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI)
0218 .template triangularView<Upper>().solve(TminusI);
0219 }
0220 }
0221
0222
0223
0224 template <typename MatrixType>
0225 void matrix_log_compute_big(const MatrixType& A, MatrixType& result)
0226 {
0227 typedef typename MatrixType::Scalar Scalar;
0228 typedef typename NumTraits<Scalar>::Real RealScalar;
0229 using std::pow;
0230
0231 int numberOfSquareRoots = 0;
0232 int numberOfExtraSquareRoots = 0;
0233 int degree;
0234 MatrixType T = A, sqrtT;
0235
0236 const int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
0237 const RealScalar maxNormForPade = RealScalar(
0238 maxPadeDegree<= 5? 5.3149729967117310e-1L:
0239 maxPadeDegree<= 7? 2.6429608311114350e-1L:
0240 maxPadeDegree<= 8? 2.32777776523703892094e-1L:
0241 maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L:
0242 1.1880960220216759245467951592883642e-1L);
0243
0244 while (true) {
0245 RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
0246 if (normTminusI < maxNormForPade) {
0247 degree = matrix_log_get_pade_degree(normTminusI);
0248 int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2));
0249 if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
0250 break;
0251 ++numberOfExtraSquareRoots;
0252 }
0253 matrix_sqrt_triangular(T, sqrtT);
0254 T = sqrtT.template triangularView<Upper>();
0255 ++numberOfSquareRoots;
0256 }
0257
0258 matrix_log_compute_pade(result, T, degree);
0259 result *= pow(RealScalar(2), RealScalar(numberOfSquareRoots));
0260 }
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270 template <typename MatrixType>
0271 class MatrixLogarithmAtomic
0272 {
0273 public:
0274
0275
0276
0277
0278 MatrixType compute(const MatrixType& A);
0279 };
0280
0281 template <typename MatrixType>
0282 MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
0283 {
0284 using std::log;
0285 MatrixType result(A.rows(), A.rows());
0286 if (A.rows() == 1)
0287 result(0,0) = log(A(0,0));
0288 else if (A.rows() == 2)
0289 matrix_log_compute_2x2(A, result);
0290 else
0291 matrix_log_compute_big(A, result);
0292 return result;
0293 }
0294
0295 }
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309 template<typename Derived> class MatrixLogarithmReturnValue
0310 : public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
0311 {
0312 public:
0313 typedef typename Derived::Scalar Scalar;
0314 typedef typename Derived::Index Index;
0315
0316 protected:
0317 typedef typename internal::ref_selector<Derived>::type DerivedNested;
0318
0319 public:
0320
0321
0322
0323
0324
0325 explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
0326
0327
0328
0329
0330
0331 template <typename ResultType>
0332 inline void evalTo(ResultType& result) const
0333 {
0334 typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
0335 typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
0336 typedef internal::traits<DerivedEvalTypeClean> Traits;
0337 typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
0338 typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType;
0339 typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType;
0340 AtomicType atomic;
0341
0342 internal::matrix_function_compute<typename DerivedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
0343 }
0344
0345 Index rows() const { return m_A.rows(); }
0346 Index cols() const { return m_A.cols(); }
0347
0348 private:
0349 const DerivedNested m_A;
0350 };
0351
0352 namespace internal {
0353 template<typename Derived>
0354 struct traits<MatrixLogarithmReturnValue<Derived> >
0355 {
0356 typedef typename Derived::PlainObject ReturnType;
0357 };
0358 }
0359
0360
0361
0362
0363
0364 template <typename Derived>
0365 const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
0366 {
0367 eigen_assert(rows() == cols());
0368 return MatrixLogarithmReturnValue<Derived>(derived());
0369 }
0370
0371 }
0372
0373 #endif