|
||||
File indexing completed on 2025-01-18 09:57:02
0001 // This file is part of Eigen, a lightweight C++ template library 0002 // for linear algebra. 0003 // 0004 // Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com> 0005 // 0006 // This Source Code Form is subject to the terms of the Mozilla 0007 // Public License v. 2.0. If a copy of the MPL was not distributed 0008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 0009 0010 #ifndef EIGEN_EULERANGLESCLASS_H// TODO: Fix previous "EIGEN_EULERANGLES_H" definition? 0011 #define EIGEN_EULERANGLESCLASS_H 0012 0013 namespace Eigen 0014 { 0015 /** \class EulerAngles 0016 * 0017 * \ingroup EulerAngles_Module 0018 * 0019 * \brief Represents a rotation in a 3 dimensional space as three Euler angles. 0020 * 0021 * Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as a template parameter. 0022 * 0023 * Here is how intrinsic Euler angles works: 0024 * - first, rotate the axes system over the alpha axis in angle alpha 0025 * - then, rotate the axes system over the beta axis(which was rotated in the first stage) in angle beta 0026 * - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma 0027 * 0028 * \note This class support only intrinsic Euler angles for simplicity, 0029 * see EulerSystem how to easily overcome this for extrinsic systems. 0030 * 0031 * ### Rotation representation and conversions ### 0032 * 0033 * It has been proved(see Wikipedia link below) that every rotation can be represented 0034 * by Euler angles, but there is no single representation (e.g. unlike rotation matrices). 0035 * Therefore, you can convert from Eigen rotation and to them 0036 * (including rotation matrices, which is not called "rotations" by Eigen design). 0037 * 0038 * Euler angles usually used for: 0039 * - convenient human representation of rotation, especially in interactive GUI. 0040 * - gimbal systems and robotics 0041 * - efficient encoding(i.e. 3 floats only) of rotation for network protocols. 0042 * 0043 * However, Euler angles are slow comparing to quaternion or matrices, 0044 * because their unnatural math definition, although it's simple for human. 0045 * To overcome this, this class provide easy movement from the math friendly representation 0046 * to the human friendly representation, and vise-versa. 0047 * 0048 * All the user need to do is a safe simple C++ type conversion, 0049 * and this class take care for the math. 0050 * Additionally, some axes related computation is done in compile time. 0051 * 0052 * #### Euler angles ranges in conversions #### 0053 * Rotations representation as EulerAngles are not single (unlike matrices), 0054 * and even have infinite EulerAngles representations.<BR> 0055 * For example, add or subtract 2*PI from either angle of EulerAngles 0056 * and you'll get the same rotation. 0057 * This is the general reason for infinite representation, 0058 * but it's not the only general reason for not having a single representation. 0059 * 0060 * When converting rotation to EulerAngles, this class convert it to specific ranges 0061 * When converting some rotation to EulerAngles, the rules for ranges are as follow: 0062 * - If the rotation we converting from is an EulerAngles 0063 * (even when it represented as RotationBase explicitly), angles ranges are __undefined__. 0064 * - otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR> 0065 * As for Beta angle: 0066 * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2]. 0067 * - otherwise: 0068 * - If the beta axis is positive, the beta angle will be in the range [0, PI] 0069 * - If the beta axis is negative, the beta angle will be in the range [-PI, 0] 0070 * 0071 * \sa EulerAngles(const MatrixBase<Derived>&) 0072 * \sa EulerAngles(const RotationBase<Derived, 3>&) 0073 * 0074 * ### Convenient user typedefs ### 0075 * 0076 * Convenient typedefs for EulerAngles exist for float and double scalar, 0077 * in a form of EulerAngles{A}{B}{C}{scalar}, 0078 * e.g. \ref EulerAnglesXYZd, \ref EulerAnglesZYZf. 0079 * 0080 * Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef. 0081 * If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with 0082 * a word that represent what you need. 0083 * 0084 * ### Example ### 0085 * 0086 * \include EulerAngles.cpp 0087 * Output: \verbinclude EulerAngles.out 0088 * 0089 * ### Additional reading ### 0090 * 0091 * If you're want to get more idea about how Euler system work in Eigen see EulerSystem. 0092 * 0093 * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles 0094 * 0095 * \tparam _Scalar the scalar type, i.e. the type of the angles. 0096 * 0097 * \tparam _System the EulerSystem to use, which represents the axes of rotation. 0098 */ 0099 template <typename _Scalar, class _System> 0100 class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3> 0101 { 0102 public: 0103 typedef RotationBase<EulerAngles<_Scalar, _System>, 3> Base; 0104 0105 /** the scalar type of the angles */ 0106 typedef _Scalar Scalar; 0107 typedef typename NumTraits<Scalar>::Real RealScalar; 0108 0109 /** the EulerSystem to use, which represents the axes of rotation. */ 0110 typedef _System System; 0111 0112 typedef Matrix<Scalar,3,3> Matrix3; /*!< the equivalent rotation matrix type */ 0113 typedef Matrix<Scalar,3,1> Vector3; /*!< the equivalent 3 dimension vector type */ 0114 typedef Quaternion<Scalar> QuaternionType; /*!< the equivalent quaternion type */ 0115 typedef AngleAxis<Scalar> AngleAxisType; /*!< the equivalent angle-axis type */ 0116 0117 /** \returns the axis vector of the first (alpha) rotation */ 0118 static Vector3 AlphaAxisVector() { 0119 const Vector3& u = Vector3::Unit(System::AlphaAxisAbs - 1); 0120 return System::IsAlphaOpposite ? -u : u; 0121 } 0122 0123 /** \returns the axis vector of the second (beta) rotation */ 0124 static Vector3 BetaAxisVector() { 0125 const Vector3& u = Vector3::Unit(System::BetaAxisAbs - 1); 0126 return System::IsBetaOpposite ? -u : u; 0127 } 0128 0129 /** \returns the axis vector of the third (gamma) rotation */ 0130 static Vector3 GammaAxisVector() { 0131 const Vector3& u = Vector3::Unit(System::GammaAxisAbs - 1); 0132 return System::IsGammaOpposite ? -u : u; 0133 } 0134 0135 private: 0136 Vector3 m_angles; 0137 0138 public: 0139 /** Default constructor without initialization. */ 0140 EulerAngles() {} 0141 /** Constructs and initialize an EulerAngles (\p alpha, \p beta, \p gamma). */ 0142 EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) : 0143 m_angles(alpha, beta, gamma) {} 0144 0145 // TODO: Test this constructor 0146 /** Constructs and initialize an EulerAngles from the array data {alpha, beta, gamma} */ 0147 explicit EulerAngles(const Scalar* data) : m_angles(data) {} 0148 0149 /** Constructs and initializes an EulerAngles from either: 0150 * - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1), 0151 * - a 3D vector expression representing Euler angles. 0152 * 0153 * \note If \p other is a 3x3 rotation matrix, the angles range rules will be as follow:<BR> 0154 * Alpha and gamma angles will be in the range [-PI, PI].<BR> 0155 * As for Beta angle: 0156 * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2]. 0157 * - otherwise: 0158 * - If the beta axis is positive, the beta angle will be in the range [0, PI] 0159 * - If the beta axis is negative, the beta angle will be in the range [-PI, 0] 0160 */ 0161 template<typename Derived> 0162 explicit EulerAngles(const MatrixBase<Derived>& other) { *this = other; } 0163 0164 /** Constructs and initialize Euler angles from a rotation \p rot. 0165 * 0166 * \note If \p rot is an EulerAngles (even when it represented as RotationBase explicitly), 0167 * angles ranges are __undefined__. 0168 * Otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR> 0169 * As for Beta angle: 0170 * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2]. 0171 * - otherwise: 0172 * - If the beta axis is positive, the beta angle will be in the range [0, PI] 0173 * - If the beta axis is negative, the beta angle will be in the range [-PI, 0] 0174 */ 0175 template<typename Derived> 0176 EulerAngles(const RotationBase<Derived, 3>& rot) { System::CalcEulerAngles(*this, rot.toRotationMatrix()); } 0177 0178 /*EulerAngles(const QuaternionType& q) 0179 { 0180 // TODO: Implement it in a faster way for quaternions 0181 // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/ 0182 // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below) 0183 // Currently we compute all matrix cells from quaternion. 0184 0185 // Special case only for ZYX 0186 //Scalar y2 = q.y() * q.y(); 0187 //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z()))); 0188 //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x())); 0189 //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2))); 0190 }*/ 0191 0192 /** \returns The angle values stored in a vector (alpha, beta, gamma). */ 0193 const Vector3& angles() const { return m_angles; } 0194 /** \returns A read-write reference to the angle values stored in a vector (alpha, beta, gamma). */ 0195 Vector3& angles() { return m_angles; } 0196 0197 /** \returns The value of the first angle. */ 0198 Scalar alpha() const { return m_angles[0]; } 0199 /** \returns A read-write reference to the angle of the first angle. */ 0200 Scalar& alpha() { return m_angles[0]; } 0201 0202 /** \returns The value of the second angle. */ 0203 Scalar beta() const { return m_angles[1]; } 0204 /** \returns A read-write reference to the angle of the second angle. */ 0205 Scalar& beta() { return m_angles[1]; } 0206 0207 /** \returns The value of the third angle. */ 0208 Scalar gamma() const { return m_angles[2]; } 0209 /** \returns A read-write reference to the angle of the third angle. */ 0210 Scalar& gamma() { return m_angles[2]; } 0211 0212 /** \returns The Euler angles rotation inverse (which is as same as the negative), 0213 * (-alpha, -beta, -gamma). 0214 */ 0215 EulerAngles inverse() const 0216 { 0217 EulerAngles res; 0218 res.m_angles = -m_angles; 0219 return res; 0220 } 0221 0222 /** \returns The Euler angles rotation negative (which is as same as the inverse), 0223 * (-alpha, -beta, -gamma). 0224 */ 0225 EulerAngles operator -() const 0226 { 0227 return inverse(); 0228 } 0229 0230 /** Set \c *this from either: 0231 * - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1), 0232 * - a 3D vector expression representing Euler angles. 0233 * 0234 * See EulerAngles(const MatrixBase<Derived, 3>&) for more information about 0235 * angles ranges output. 0236 */ 0237 template<class Derived> 0238 EulerAngles& operator=(const MatrixBase<Derived>& other) 0239 { 0240 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename Derived::Scalar>::value), 0241 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) 0242 0243 internal::eulerangles_assign_impl<System, Derived>::run(*this, other.derived()); 0244 return *this; 0245 } 0246 0247 // TODO: Assign and construct from another EulerAngles (with different system) 0248 0249 /** Set \c *this from a rotation. 0250 * 0251 * See EulerAngles(const RotationBase<Derived, 3>&) for more information about 0252 * angles ranges output. 0253 */ 0254 template<typename Derived> 0255 EulerAngles& operator=(const RotationBase<Derived, 3>& rot) { 0256 System::CalcEulerAngles(*this, rot.toRotationMatrix()); 0257 return *this; 0258 } 0259 0260 /** \returns \c true if \c *this is approximately equal to \a other, within the precision 0261 * determined by \a prec. 0262 * 0263 * \sa MatrixBase::isApprox() */ 0264 bool isApprox(const EulerAngles& other, 0265 const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const 0266 { return angles().isApprox(other.angles(), prec); } 0267 0268 /** \returns an equivalent 3x3 rotation matrix. */ 0269 Matrix3 toRotationMatrix() const 0270 { 0271 // TODO: Calc it faster 0272 return static_cast<QuaternionType>(*this).toRotationMatrix(); 0273 } 0274 0275 /** Convert the Euler angles to quaternion. */ 0276 operator QuaternionType() const 0277 { 0278 return 0279 AngleAxisType(alpha(), AlphaAxisVector()) * 0280 AngleAxisType(beta(), BetaAxisVector()) * 0281 AngleAxisType(gamma(), GammaAxisVector()); 0282 } 0283 0284 friend std::ostream& operator<<(std::ostream& s, const EulerAngles<Scalar, System>& eulerAngles) 0285 { 0286 s << eulerAngles.angles().transpose(); 0287 return s; 0288 } 0289 0290 /** \returns \c *this with scalar type casted to \a NewScalarType */ 0291 template <typename NewScalarType> 0292 EulerAngles<NewScalarType, System> cast() const 0293 { 0294 EulerAngles<NewScalarType, System> e; 0295 e.angles() = angles().template cast<NewScalarType>(); 0296 return e; 0297 } 0298 }; 0299 0300 #define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \ 0301 /** \ingroup EulerAngles_Module */ \ 0302 typedef EulerAngles<SCALAR_TYPE, EulerSystem##AXES> EulerAngles##AXES##SCALAR_POSTFIX; 0303 0304 #define EIGEN_EULER_ANGLES_TYPEDEFS(SCALAR_TYPE, SCALAR_POSTFIX) \ 0305 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYZ, SCALAR_TYPE, SCALAR_POSTFIX) \ 0306 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYX, SCALAR_TYPE, SCALAR_POSTFIX) \ 0307 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZY, SCALAR_TYPE, SCALAR_POSTFIX) \ 0308 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZX, SCALAR_TYPE, SCALAR_POSTFIX) \ 0309 \ 0310 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZX, SCALAR_TYPE, SCALAR_POSTFIX) \ 0311 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZY, SCALAR_TYPE, SCALAR_POSTFIX) \ 0312 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXZ, SCALAR_TYPE, SCALAR_POSTFIX) \ 0313 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXY, SCALAR_TYPE, SCALAR_POSTFIX) \ 0314 \ 0315 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXY, SCALAR_TYPE, SCALAR_POSTFIX) \ 0316 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXZ, SCALAR_TYPE, SCALAR_POSTFIX) \ 0317 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYX, SCALAR_TYPE, SCALAR_POSTFIX) \ 0318 EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYZ, SCALAR_TYPE, SCALAR_POSTFIX) 0319 0320 EIGEN_EULER_ANGLES_TYPEDEFS(float, f) 0321 EIGEN_EULER_ANGLES_TYPEDEFS(double, d) 0322 0323 namespace internal 0324 { 0325 template<typename _Scalar, class _System> 0326 struct traits<EulerAngles<_Scalar, _System> > 0327 { 0328 typedef _Scalar Scalar; 0329 }; 0330 0331 // set from a rotation matrix 0332 template<class System, class Other> 0333 struct eulerangles_assign_impl<System,Other,3,3> 0334 { 0335 typedef typename Other::Scalar Scalar; 0336 static void run(EulerAngles<Scalar, System>& e, const Other& m) 0337 { 0338 System::CalcEulerAngles(e, m); 0339 } 0340 }; 0341 0342 // set from a vector of Euler angles 0343 template<class System, class Other> 0344 struct eulerangles_assign_impl<System,Other,3,1> 0345 { 0346 typedef typename Other::Scalar Scalar; 0347 static void run(EulerAngles<Scalar, System>& e, const Other& vec) 0348 { 0349 e.angles() = vec; 0350 } 0351 }; 0352 } 0353 } 0354 0355 #endif // EIGEN_EULERANGLESCLASS_H
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |