File indexing completed on 2025-01-18 09:57:02
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #ifndef EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
0011 #define EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
0012
0013 #include "../../../../Eigen/Dense"
0014
0015 namespace Eigen {
0016
0017 namespace internal {
0018 template<typename Scalar, typename RealScalar> struct arpack_wrapper;
0019 template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD> struct OP;
0020 }
0021
0022
0023
0024 template<typename MatrixType, typename MatrixSolver=SimplicialLLT<MatrixType>, bool BisSPD=false>
0025 class ArpackGeneralizedSelfAdjointEigenSolver
0026 {
0027 public:
0028
0029
0030
0031 typedef typename MatrixType::Scalar Scalar;
0032 typedef typename MatrixType::Index Index;
0033
0034
0035
0036
0037
0038
0039
0040 typedef typename NumTraits<Scalar>::Real RealScalar;
0041
0042
0043
0044
0045
0046
0047 typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
0048
0049
0050
0051
0052
0053
0054
0055 ArpackGeneralizedSelfAdjointEigenSolver()
0056 : m_eivec(),
0057 m_eivalues(),
0058 m_isInitialized(false),
0059 m_eigenvectorsOk(false),
0060 m_nbrConverged(0),
0061 m_nbrIterations(0)
0062 { }
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086 ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A, const MatrixType& B,
0087 Index nbrEigenvalues, std::string eigs_sigma="LM",
0088 int options=ComputeEigenvectors, RealScalar tol=0.0)
0089 : m_eivec(),
0090 m_eivalues(),
0091 m_isInitialized(false),
0092 m_eigenvectorsOk(false),
0093 m_nbrConverged(0),
0094 m_nbrIterations(0)
0095 {
0096 compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
0097 }
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121 ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A,
0122 Index nbrEigenvalues, std::string eigs_sigma="LM",
0123 int options=ComputeEigenvectors, RealScalar tol=0.0)
0124 : m_eivec(),
0125 m_eivalues(),
0126 m_isInitialized(false),
0127 m_eigenvectorsOk(false),
0128 m_nbrConverged(0),
0129 m_nbrIterations(0)
0130 {
0131 compute(A, nbrEigenvalues, eigs_sigma, options, tol);
0132 }
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158 ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A, const MatrixType& B,
0159 Index nbrEigenvalues, std::string eigs_sigma="LM",
0160 int options=ComputeEigenvectors, RealScalar tol=0.0);
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184 ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A,
0185 Index nbrEigenvalues, std::string eigs_sigma="LM",
0186 int options=ComputeEigenvectors, RealScalar tol=0.0);
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208 const Matrix<Scalar, Dynamic, Dynamic>& eigenvectors() const
0209 {
0210 eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
0211 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
0212 return m_eivec;
0213 }
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230 const Matrix<Scalar, Dynamic, 1>& eigenvalues() const
0231 {
0232 eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
0233 return m_eivalues;
0234 }
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254 Matrix<Scalar, Dynamic, Dynamic> operatorSqrt() const
0255 {
0256 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
0257 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
0258 return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
0259 }
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279 Matrix<Scalar, Dynamic, Dynamic> operatorInverseSqrt() const
0280 {
0281 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
0282 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
0283 return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
0284 }
0285
0286
0287
0288
0289
0290 ComputationInfo info() const
0291 {
0292 eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
0293 return m_info;
0294 }
0295
0296 size_t getNbrConvergedEigenValues() const
0297 { return m_nbrConverged; }
0298
0299 size_t getNbrIterations() const
0300 { return m_nbrIterations; }
0301
0302 protected:
0303 Matrix<Scalar, Dynamic, Dynamic> m_eivec;
0304 Matrix<Scalar, Dynamic, 1> m_eivalues;
0305 ComputationInfo m_info;
0306 bool m_isInitialized;
0307 bool m_eigenvectorsOk;
0308
0309 size_t m_nbrConverged;
0310 size_t m_nbrIterations;
0311 };
0312
0313
0314
0315
0316
0317 template<typename MatrixType, typename MatrixSolver, bool BisSPD>
0318 ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
0319 ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
0320 ::compute(const MatrixType& A, Index nbrEigenvalues,
0321 std::string eigs_sigma, int options, RealScalar tol)
0322 {
0323 MatrixType B(0,0);
0324 compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
0325
0326 return *this;
0327 }
0328
0329
0330 template<typename MatrixType, typename MatrixSolver, bool BisSPD>
0331 ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
0332 ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
0333 ::compute(const MatrixType& A, const MatrixType& B, Index nbrEigenvalues,
0334 std::string eigs_sigma, int options, RealScalar tol)
0335 {
0336 eigen_assert(A.cols() == A.rows());
0337 eigen_assert(B.cols() == B.rows());
0338 eigen_assert(B.rows() == 0 || A.cols() == B.rows());
0339 eigen_assert((options &~ (EigVecMask | GenEigMask)) == 0
0340 && (options & EigVecMask) != EigVecMask
0341 && "invalid option parameter");
0342
0343 bool isBempty = (B.rows() == 0) || (B.cols() == 0);
0344
0345
0346
0347
0348
0349 int ido = 0;
0350
0351 int n = (int)A.cols();
0352
0353
0354
0355 char whch[3] = "LM";
0356
0357
0358
0359 RealScalar sigma = 0.0;
0360
0361 if (eigs_sigma.length() >= 2 && isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1]))
0362 {
0363 eigs_sigma[0] = toupper(eigs_sigma[0]);
0364 eigs_sigma[1] = toupper(eigs_sigma[1]);
0365
0366
0367
0368
0369
0370 if (eigs_sigma.substr(0,2) != "SM")
0371 {
0372 whch[0] = eigs_sigma[0];
0373 whch[1] = eigs_sigma[1];
0374 }
0375 }
0376 else
0377 {
0378 eigen_assert(false && "Specifying clustered eigenvalues is not yet supported!");
0379
0380
0381
0382
0383 sigma = atof(eigs_sigma.c_str());
0384
0385
0386
0387 }
0388
0389
0390
0391 char bmat[2] = "I";
0392 if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])) || (!isBempty && !BisSPD))
0393 bmat[0] = 'G';
0394
0395
0396
0397 int mode = (bmat[0] == 'G') + 1;
0398 if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])))
0399 {
0400
0401
0402
0403 mode = 3;
0404 }
0405
0406
0407
0408 int nev = (int)nbrEigenvalues;
0409
0410
0411
0412 Scalar *resid = new Scalar[n];
0413
0414
0415
0416
0417
0418 int ncv = std::min(std::max(2*nev, 20), n);
0419
0420
0421
0422 Scalar *v = new Scalar[n*ncv];
0423 int ldv = n;
0424
0425
0426
0427 Scalar *workd = new Scalar[3*n];
0428 int lworkl = ncv*ncv+8*ncv;
0429 Scalar *workl = new Scalar[lworkl];
0430
0431 int *iparam= new int[11];
0432 iparam[0] = 1;
0433 iparam[2] = std::max(300, (int)std::ceil(2*n/std::max(ncv,1)));
0434 iparam[6] = mode;
0435
0436
0437
0438 int *ipntr = new int[11];
0439
0440
0441
0442
0443
0444 int info = 0;
0445
0446 Scalar scale = 1.0;
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457 MatrixSolver OP;
0458 if (mode == 1 || mode == 2)
0459 {
0460 if (!isBempty)
0461 OP.compute(B);
0462 }
0463 else if (mode == 3)
0464 {
0465 if (sigma == 0.0)
0466 {
0467 OP.compute(A);
0468 }
0469 else
0470 {
0471
0472
0473 if (isBempty)
0474 {
0475 MatrixType AminusSigmaB(A);
0476 for (Index i=0; i<A.rows(); ++i)
0477 AminusSigmaB.coeffRef(i,i) -= sigma;
0478
0479 OP.compute(AminusSigmaB);
0480 }
0481 else
0482 {
0483 MatrixType AminusSigmaB = A - sigma * B;
0484 OP.compute(AminusSigmaB);
0485 }
0486 }
0487 }
0488
0489 if (!(mode == 1 && isBempty) && !(mode == 2 && isBempty) && OP.info() != Success)
0490 std::cout << "Error factoring matrix" << std::endl;
0491
0492 do
0493 {
0494 internal::arpack_wrapper<Scalar, RealScalar>::saupd(&ido, bmat, &n, whch, &nev, &tol, resid,
0495 &ncv, v, &ldv, iparam, ipntr, workd, workl,
0496 &lworkl, &info);
0497
0498 if (ido == -1 || ido == 1)
0499 {
0500 Scalar *in = workd + ipntr[0] - 1;
0501 Scalar *out = workd + ipntr[1] - 1;
0502
0503 if (ido == 1 && mode != 2)
0504 {
0505 Scalar *out2 = workd + ipntr[2] - 1;
0506 if (isBempty || mode == 1)
0507 Matrix<Scalar, Dynamic, 1>::Map(out2, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
0508 else
0509 Matrix<Scalar, Dynamic, 1>::Map(out2, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
0510
0511 in = workd + ipntr[2] - 1;
0512 }
0513
0514 if (mode == 1)
0515 {
0516 if (isBempty)
0517 {
0518
0519
0520 Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
0521 }
0522 else
0523 {
0524
0525
0526 internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::applyOP(OP, A, n, in, out);
0527 }
0528 }
0529 else if (mode == 2)
0530 {
0531 if (ido == 1)
0532 Matrix<Scalar, Dynamic, 1>::Map(in, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
0533
0534
0535
0536 Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
0537 }
0538 else if (mode == 3)
0539 {
0540
0541
0542
0543 if (ido == 1 || isBempty)
0544 Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
0545 else
0546 Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(B * Matrix<Scalar, Dynamic, 1>::Map(in, n));
0547 }
0548 }
0549 else if (ido == 2)
0550 {
0551 Scalar *in = workd + ipntr[0] - 1;
0552 Scalar *out = workd + ipntr[1] - 1;
0553
0554 if (isBempty || mode == 1)
0555 Matrix<Scalar, Dynamic, 1>::Map(out, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
0556 else
0557 Matrix<Scalar, Dynamic, 1>::Map(out, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
0558 }
0559 } while (ido != 99);
0560
0561 if (info == 1)
0562 m_info = NoConvergence;
0563 else if (info == 3)
0564 m_info = NumericalIssue;
0565 else if (info < 0)
0566 m_info = InvalidInput;
0567 else if (info != 0)
0568 eigen_assert(false && "Unknown ARPACK return value!");
0569 else
0570 {
0571
0572
0573 int rvec = (options & ComputeEigenvectors) == ComputeEigenvectors;
0574
0575
0576
0577 char howmny[2] = "A";
0578
0579
0580
0581 int *select = new int[ncv];
0582
0583
0584
0585 m_eivalues.resize(nev, 1);
0586
0587 internal::arpack_wrapper<Scalar, RealScalar>::seupd(&rvec, howmny, select, m_eivalues.data(), v, &ldv,
0588 &sigma, bmat, &n, whch, &nev, &tol, resid, &ncv,
0589 v, &ldv, iparam, ipntr, workd, workl, &lworkl, &info);
0590
0591 if (info == -14)
0592 m_info = NoConvergence;
0593 else if (info != 0)
0594 m_info = InvalidInput;
0595 else
0596 {
0597 if (rvec)
0598 {
0599 m_eivec.resize(A.rows(), nev);
0600 for (int i=0; i<nev; i++)
0601 for (int j=0; j<n; j++)
0602 m_eivec(j,i) = v[i*n+j] / scale;
0603
0604 if (mode == 1 && !isBempty && BisSPD)
0605 internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::project(OP, n, nev, m_eivec.data());
0606
0607 m_eigenvectorsOk = true;
0608 }
0609
0610 m_nbrIterations = iparam[2];
0611 m_nbrConverged = iparam[4];
0612
0613 m_info = Success;
0614 }
0615
0616 delete[] select;
0617 }
0618
0619 delete[] v;
0620 delete[] iparam;
0621 delete[] ipntr;
0622 delete[] workd;
0623 delete[] workl;
0624 delete[] resid;
0625
0626 m_isInitialized = true;
0627
0628 return *this;
0629 }
0630
0631
0632
0633
0634 extern "C" void ssaupd_(int *ido, char *bmat, int *n, char *which,
0635 int *nev, float *tol, float *resid, int *ncv,
0636 float *v, int *ldv, int *iparam, int *ipntr,
0637 float *workd, float *workl, int *lworkl,
0638 int *info);
0639
0640 extern "C" void sseupd_(int *rvec, char *All, int *select, float *d,
0641 float *z, int *ldz, float *sigma,
0642 char *bmat, int *n, char *which, int *nev,
0643 float *tol, float *resid, int *ncv, float *v,
0644 int *ldv, int *iparam, int *ipntr, float *workd,
0645 float *workl, int *lworkl, int *ierr);
0646
0647
0648
0649 extern "C" void dsaupd_(int *ido, char *bmat, int *n, char *which,
0650 int *nev, double *tol, double *resid, int *ncv,
0651 double *v, int *ldv, int *iparam, int *ipntr,
0652 double *workd, double *workl, int *lworkl,
0653 int *info);
0654
0655 extern "C" void dseupd_(int *rvec, char *All, int *select, double *d,
0656 double *z, int *ldz, double *sigma,
0657 char *bmat, int *n, char *which, int *nev,
0658 double *tol, double *resid, int *ncv, double *v,
0659 int *ldv, int *iparam, int *ipntr, double *workd,
0660 double *workl, int *lworkl, int *ierr);
0661
0662
0663 namespace internal {
0664
0665 template<typename Scalar, typename RealScalar> struct arpack_wrapper
0666 {
0667 static inline void saupd(int *ido, char *bmat, int *n, char *which,
0668 int *nev, RealScalar *tol, Scalar *resid, int *ncv,
0669 Scalar *v, int *ldv, int *iparam, int *ipntr,
0670 Scalar *workd, Scalar *workl, int *lworkl, int *info)
0671 {
0672 EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
0673 }
0674
0675 static inline void seupd(int *rvec, char *All, int *select, Scalar *d,
0676 Scalar *z, int *ldz, RealScalar *sigma,
0677 char *bmat, int *n, char *which, int *nev,
0678 RealScalar *tol, Scalar *resid, int *ncv, Scalar *v,
0679 int *ldv, int *iparam, int *ipntr, Scalar *workd,
0680 Scalar *workl, int *lworkl, int *ierr)
0681 {
0682 EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
0683 }
0684 };
0685
0686 template <> struct arpack_wrapper<float, float>
0687 {
0688 static inline void saupd(int *ido, char *bmat, int *n, char *which,
0689 int *nev, float *tol, float *resid, int *ncv,
0690 float *v, int *ldv, int *iparam, int *ipntr,
0691 float *workd, float *workl, int *lworkl, int *info)
0692 {
0693 ssaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
0694 }
0695
0696 static inline void seupd(int *rvec, char *All, int *select, float *d,
0697 float *z, int *ldz, float *sigma,
0698 char *bmat, int *n, char *which, int *nev,
0699 float *tol, float *resid, int *ncv, float *v,
0700 int *ldv, int *iparam, int *ipntr, float *workd,
0701 float *workl, int *lworkl, int *ierr)
0702 {
0703 sseupd_(rvec, All, select, d, z, ldz, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
0704 workd, workl, lworkl, ierr);
0705 }
0706 };
0707
0708 template <> struct arpack_wrapper<double, double>
0709 {
0710 static inline void saupd(int *ido, char *bmat, int *n, char *which,
0711 int *nev, double *tol, double *resid, int *ncv,
0712 double *v, int *ldv, int *iparam, int *ipntr,
0713 double *workd, double *workl, int *lworkl, int *info)
0714 {
0715 dsaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
0716 }
0717
0718 static inline void seupd(int *rvec, char *All, int *select, double *d,
0719 double *z, int *ldz, double *sigma,
0720 char *bmat, int *n, char *which, int *nev,
0721 double *tol, double *resid, int *ncv, double *v,
0722 int *ldv, int *iparam, int *ipntr, double *workd,
0723 double *workl, int *lworkl, int *ierr)
0724 {
0725 dseupd_(rvec, All, select, d, v, ldv, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
0726 workd, workl, lworkl, ierr);
0727 }
0728 };
0729
0730
0731 template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD>
0732 struct OP
0733 {
0734 static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out);
0735 static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs);
0736 };
0737
0738 template<typename MatrixSolver, typename MatrixType, typename Scalar>
0739 struct OP<MatrixSolver, MatrixType, Scalar, true>
0740 {
0741 static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
0742 {
0743
0744
0745
0746
0747 Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixU().solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
0748 Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationPinv() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
0749
0750
0751
0752 Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(out, n);
0753
0754
0755
0756 Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationP() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
0757 Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixL().solve(Matrix<Scalar, Dynamic, 1>::Map(out, n));
0758 }
0759
0760 static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
0761 {
0762
0763
0764 Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.matrixU().solve(Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k));
0765 Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.permutationPinv() * Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k);
0766 }
0767
0768 };
0769
0770 template<typename MatrixSolver, typename MatrixType, typename Scalar>
0771 struct OP<MatrixSolver, MatrixType, Scalar, false>
0772 {
0773 static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
0774 {
0775 eigen_assert(false && "Should never be in here...");
0776 }
0777
0778 static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
0779 {
0780 eigen_assert(false && "Should never be in here...");
0781 }
0782
0783 };
0784
0785 }
0786
0787 }
0788
0789 #endif
0790