Warning, file /include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h was not indexed
or was modified since last indexation (in which case cross-reference links may be missing, inaccurate or erroneous).
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #ifndef EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
0011 #define EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
0012
0013 namespace Eigen {
0014
0015
0016
0017
0018
0019
0020
0021
0022 namespace internal {
0023 template<typename PaddingDimensions, typename XprType>
0024 struct traits<TensorPaddingOp<PaddingDimensions, XprType> > : public traits<XprType>
0025 {
0026 typedef typename XprType::Scalar Scalar;
0027 typedef traits<XprType> XprTraits;
0028 typedef typename XprTraits::StorageKind StorageKind;
0029 typedef typename XprTraits::Index Index;
0030 typedef typename XprType::Nested Nested;
0031 typedef typename remove_reference<Nested>::type _Nested;
0032 static const int NumDimensions = XprTraits::NumDimensions;
0033 static const int Layout = XprTraits::Layout;
0034 typedef typename XprTraits::PointerType PointerType;
0035 };
0036
0037 template<typename PaddingDimensions, typename XprType>
0038 struct eval<TensorPaddingOp<PaddingDimensions, XprType>, Eigen::Dense>
0039 {
0040 typedef const TensorPaddingOp<PaddingDimensions, XprType>& type;
0041 };
0042
0043 template<typename PaddingDimensions, typename XprType>
0044 struct nested<TensorPaddingOp<PaddingDimensions, XprType>, 1, typename eval<TensorPaddingOp<PaddingDimensions, XprType> >::type>
0045 {
0046 typedef TensorPaddingOp<PaddingDimensions, XprType> type;
0047 };
0048
0049 }
0050
0051
0052
0053 template<typename PaddingDimensions, typename XprType>
0054 class TensorPaddingOp : public TensorBase<TensorPaddingOp<PaddingDimensions, XprType>, ReadOnlyAccessors>
0055 {
0056 public:
0057 typedef typename Eigen::internal::traits<TensorPaddingOp>::Scalar Scalar;
0058 typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
0059 typedef typename XprType::CoeffReturnType CoeffReturnType;
0060 typedef typename Eigen::internal::nested<TensorPaddingOp>::type Nested;
0061 typedef typename Eigen::internal::traits<TensorPaddingOp>::StorageKind StorageKind;
0062 typedef typename Eigen::internal::traits<TensorPaddingOp>::Index Index;
0063
0064 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPaddingOp(const XprType& expr, const PaddingDimensions& padding_dims, const Scalar padding_value)
0065 : m_xpr(expr), m_padding_dims(padding_dims), m_padding_value(padding_value) {}
0066
0067 EIGEN_DEVICE_FUNC
0068 const PaddingDimensions& padding() const { return m_padding_dims; }
0069 EIGEN_DEVICE_FUNC
0070 Scalar padding_value() const { return m_padding_value; }
0071
0072 EIGEN_DEVICE_FUNC
0073 const typename internal::remove_all<typename XprType::Nested>::type&
0074 expression() const { return m_xpr; }
0075
0076 protected:
0077 typename XprType::Nested m_xpr;
0078 const PaddingDimensions m_padding_dims;
0079 const Scalar m_padding_value;
0080 };
0081
0082
0083
0084 template<typename PaddingDimensions, typename ArgType, typename Device>
0085 struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device>
0086 {
0087 typedef TensorPaddingOp<PaddingDimensions, ArgType> XprType;
0088 typedef typename XprType::Index Index;
0089 static const int NumDims = internal::array_size<PaddingDimensions>::value;
0090 typedef DSizes<Index, NumDims> Dimensions;
0091 typedef typename XprType::Scalar Scalar;
0092 typedef typename XprType::CoeffReturnType CoeffReturnType;
0093 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
0094 static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
0095 typedef StorageMemory<CoeffReturnType, Device> Storage;
0096 typedef typename Storage::Type EvaluatorPointerType;
0097
0098 enum {
0099 IsAligned = true,
0100 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
0101 BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess,
0102 PreferBlockAccess = true,
0103 Layout = TensorEvaluator<ArgType, Device>::Layout,
0104 CoordAccess = true,
0105 RawAccess = false
0106 };
0107
0108 typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
0109
0110
0111 typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
0112 typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
0113
0114 typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumDims,
0115 Layout, Index>
0116 TensorBlock;
0117
0118
0119 EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
0120 : m_impl(op.expression(), device), m_padding(op.padding()), m_paddingValue(op.padding_value()), m_device(device)
0121 {
0122
0123
0124
0125 EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
0126
0127
0128 m_dimensions = m_impl.dimensions();
0129 for (int i = 0; i < NumDims; ++i) {
0130 m_dimensions[i] += m_padding[i].first + m_padding[i].second;
0131 }
0132 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
0133 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
0134 m_inputStrides[0] = 1;
0135 m_outputStrides[0] = 1;
0136 for (int i = 1; i < NumDims; ++i) {
0137 m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
0138 m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
0139 }
0140 m_outputStrides[NumDims] = m_outputStrides[NumDims-1] * m_dimensions[NumDims-1];
0141 } else {
0142 m_inputStrides[NumDims - 1] = 1;
0143 m_outputStrides[NumDims] = 1;
0144 for (int i = NumDims - 2; i >= 0; --i) {
0145 m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
0146 m_outputStrides[i+1] = m_outputStrides[i+2] * m_dimensions[i+1];
0147 }
0148 m_outputStrides[0] = m_outputStrides[1] * m_dimensions[0];
0149 }
0150 }
0151
0152 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
0153
0154 EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
0155 m_impl.evalSubExprsIfNeeded(NULL);
0156 return true;
0157 }
0158
0159 #ifdef EIGEN_USE_THREADS
0160 template <typename EvalSubExprsCallback>
0161 EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
0162 EvaluatorPointerType, EvalSubExprsCallback done) {
0163 m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
0164 }
0165 #endif
0166
0167 EIGEN_STRONG_INLINE void cleanup() {
0168 m_impl.cleanup();
0169 }
0170
0171 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
0172 {
0173 eigen_assert(index < dimensions().TotalSize());
0174 Index inputIndex = 0;
0175 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
0176 EIGEN_UNROLL_LOOP
0177 for (int i = NumDims - 1; i > 0; --i) {
0178 const Index idx = index / m_outputStrides[i];
0179 if (isPaddingAtIndexForDim(idx, i)) {
0180 return m_paddingValue;
0181 }
0182 inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
0183 index -= idx * m_outputStrides[i];
0184 }
0185 if (isPaddingAtIndexForDim(index, 0)) {
0186 return m_paddingValue;
0187 }
0188 inputIndex += (index - m_padding[0].first);
0189 } else {
0190 EIGEN_UNROLL_LOOP
0191 for (int i = 0; i < NumDims - 1; ++i) {
0192 const Index idx = index / m_outputStrides[i+1];
0193 if (isPaddingAtIndexForDim(idx, i)) {
0194 return m_paddingValue;
0195 }
0196 inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
0197 index -= idx * m_outputStrides[i+1];
0198 }
0199 if (isPaddingAtIndexForDim(index, NumDims-1)) {
0200 return m_paddingValue;
0201 }
0202 inputIndex += (index - m_padding[NumDims-1].first);
0203 }
0204 return m_impl.coeff(inputIndex);
0205 }
0206
0207 template<int LoadMode>
0208 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
0209 {
0210 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
0211 return packetColMajor(index);
0212 }
0213 return packetRowMajor(index);
0214 }
0215
0216 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
0217 TensorOpCost cost = m_impl.costPerCoeff(vectorized);
0218 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
0219 EIGEN_UNROLL_LOOP
0220 for (int i = 0; i < NumDims; ++i)
0221 updateCostPerDimension(cost, i, i == 0);
0222 } else {
0223 EIGEN_UNROLL_LOOP
0224 for (int i = NumDims - 1; i >= 0; --i)
0225 updateCostPerDimension(cost, i, i == NumDims - 1);
0226 }
0227 return cost;
0228 }
0229
0230 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
0231 internal::TensorBlockResourceRequirements getResourceRequirements() const {
0232 const size_t target_size = m_device.lastLevelCacheSize();
0233 return internal::TensorBlockResourceRequirements::merge(
0234 internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size),
0235 m_impl.getResourceRequirements());
0236 }
0237
0238 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
0239 block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
0240 bool = false) const {
0241
0242 if (desc.size() == 0) {
0243 return TensorBlock(internal::TensorBlockKind::kView, NULL,
0244 desc.dimensions());
0245 }
0246
0247 static const bool IsColMajor = Layout == static_cast<int>(ColMajor);
0248 const int inner_dim_idx = IsColMajor ? 0 : NumDims - 1;
0249
0250 Index offset = desc.offset();
0251
0252
0253 DSizes<Index, NumDims> output_offsets;
0254 for (int i = NumDims - 1; i > 0; --i) {
0255 const int dim = IsColMajor ? i : NumDims - i - 1;
0256 const int stride_dim = IsColMajor ? dim : dim + 1;
0257 output_offsets[dim] = offset / m_outputStrides[stride_dim];
0258 offset -= output_offsets[dim] * m_outputStrides[stride_dim];
0259 }
0260 output_offsets[inner_dim_idx] = offset;
0261
0262
0263 DSizes<Index, NumDims> input_offsets = output_offsets;
0264 for (int i = 0; i < NumDims; ++i) {
0265 const int dim = IsColMajor ? i : NumDims - i - 1;
0266 input_offsets[dim] = input_offsets[dim] - m_padding[dim].first;
0267 }
0268
0269
0270
0271
0272 Index input_offset = 0;
0273 for (int i = 0; i < NumDims; ++i) {
0274 const int dim = IsColMajor ? i : NumDims - i - 1;
0275 input_offset += input_offsets[dim] * m_inputStrides[dim];
0276 }
0277
0278
0279
0280
0281 Index output_offset = 0;
0282 const DSizes<Index, NumDims> output_strides =
0283 internal::strides<Layout>(desc.dimensions());
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293 array<BlockIteratorState, NumDims - 1> it;
0294 for (int i = 0; i < NumDims - 1; ++i) {
0295 const int dim = IsColMajor ? i + 1 : NumDims - i - 2;
0296 it[i].count = 0;
0297 it[i].size = desc.dimension(dim);
0298
0299 it[i].input_stride = m_inputStrides[dim];
0300 it[i].input_span = it[i].input_stride * (it[i].size - 1);
0301
0302 it[i].output_stride = output_strides[dim];
0303 it[i].output_span = it[i].output_stride * (it[i].size - 1);
0304 }
0305
0306 const Index input_inner_dim_size =
0307 static_cast<Index>(m_impl.dimensions()[inner_dim_idx]);
0308
0309
0310 const Index output_size = desc.size();
0311
0312
0313
0314
0315 const Index output_inner_dim_size = desc.dimension(inner_dim_idx);
0316
0317
0318
0319 const Index output_inner_pad_before_size =
0320 input_offsets[inner_dim_idx] < 0
0321 ? numext::mini(numext::abs(input_offsets[inner_dim_idx]),
0322 output_inner_dim_size)
0323 : 0;
0324
0325
0326 const Index output_inner_copy_size = numext::mini(
0327
0328 (output_inner_dim_size - output_inner_pad_before_size),
0329
0330 numext::maxi(input_inner_dim_size - (input_offsets[inner_dim_idx] +
0331 output_inner_pad_before_size),
0332 Index(0)));
0333
0334 eigen_assert(output_inner_copy_size >= 0);
0335
0336
0337
0338 const Index output_inner_pad_after_size =
0339 (output_inner_dim_size - output_inner_copy_size -
0340 output_inner_pad_before_size);
0341
0342
0343 eigen_assert(output_inner_dim_size ==
0344 (output_inner_pad_before_size + output_inner_copy_size +
0345 output_inner_pad_after_size));
0346
0347
0348 DSizes<Index, NumDims> output_coord = output_offsets;
0349 DSizes<Index, NumDims> output_padded;
0350 for (int i = 0; i < NumDims; ++i) {
0351 const int dim = IsColMajor ? i : NumDims - i - 1;
0352 output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim);
0353 }
0354
0355 typedef internal::StridedLinearBufferCopy<ScalarNoConst, Index> LinCopy;
0356
0357
0358 const typename TensorBlock::Storage block_storage =
0359 TensorBlock::prepareStorage(desc, scratch);
0360
0361
0362
0363
0364
0365
0366
0367 const bool squeeze_writes =
0368 NumDims > 1 &&
0369
0370 (input_inner_dim_size == m_dimensions[inner_dim_idx]) &&
0371
0372 (input_inner_dim_size == output_inner_dim_size);
0373
0374 const int squeeze_dim = IsColMajor ? inner_dim_idx + 1 : inner_dim_idx - 1;
0375
0376
0377 const Index squeeze_max_coord =
0378 squeeze_writes ? numext::mini(
0379
0380 static_cast<Index>(m_dimensions[squeeze_dim] -
0381 m_padding[squeeze_dim].second),
0382
0383 static_cast<Index>(output_offsets[squeeze_dim] +
0384 desc.dimension(squeeze_dim)))
0385 : static_cast<Index>(0);
0386
0387
0388 for (Index size = 0; size < output_size;) {
0389
0390 bool is_padded = false;
0391 for (int j = 1; j < NumDims; ++j) {
0392 const int dim = IsColMajor ? j : NumDims - j - 1;
0393 is_padded = output_padded[dim];
0394 if (is_padded) break;
0395 }
0396
0397 if (is_padded) {
0398
0399 size += output_inner_dim_size;
0400
0401 LinCopy::template Run<LinCopy::Kind::FillLinear>(
0402 typename LinCopy::Dst(output_offset, 1, block_storage.data()),
0403 typename LinCopy::Src(0, 0, &m_paddingValue),
0404 output_inner_dim_size);
0405
0406
0407 } else if (squeeze_writes) {
0408
0409 const Index squeeze_num = squeeze_max_coord - output_coord[squeeze_dim];
0410 size += output_inner_dim_size * squeeze_num;
0411
0412
0413 LinCopy::template Run<LinCopy::Kind::Linear>(
0414 typename LinCopy::Dst(output_offset, 1, block_storage.data()),
0415 typename LinCopy::Src(input_offset, 1, m_impl.data()),
0416 output_inner_dim_size * squeeze_num);
0417
0418
0419
0420
0421
0422 it[0].count += (squeeze_num - 1);
0423 input_offset += it[0].input_stride * (squeeze_num - 1);
0424 output_offset += it[0].output_stride * (squeeze_num - 1);
0425 output_coord[squeeze_dim] += (squeeze_num - 1);
0426
0427 } else {
0428
0429 size += output_inner_dim_size;
0430
0431 {
0432 const Index out = output_offset;
0433
0434 LinCopy::template Run<LinCopy::Kind::FillLinear>(
0435 typename LinCopy::Dst(out, 1, block_storage.data()),
0436 typename LinCopy::Src(0, 0, &m_paddingValue),
0437 output_inner_pad_before_size);
0438 }
0439
0440 {
0441 const Index out = output_offset + output_inner_pad_before_size;
0442 const Index in = input_offset + output_inner_pad_before_size;
0443
0444 eigen_assert(output_inner_copy_size == 0 || m_impl.data() != NULL);
0445
0446 LinCopy::template Run<LinCopy::Kind::Linear>(
0447 typename LinCopy::Dst(out, 1, block_storage.data()),
0448 typename LinCopy::Src(in, 1, m_impl.data()),
0449 output_inner_copy_size);
0450 }
0451
0452 {
0453 const Index out = output_offset + output_inner_pad_before_size +
0454 output_inner_copy_size;
0455
0456 LinCopy::template Run<LinCopy::Kind::FillLinear>(
0457 typename LinCopy::Dst(out, 1, block_storage.data()),
0458 typename LinCopy::Src(0, 0, &m_paddingValue),
0459 output_inner_pad_after_size);
0460 }
0461 }
0462
0463 for (int j = 0; j < NumDims - 1; ++j) {
0464 const int dim = IsColMajor ? j + 1 : NumDims - j - 2;
0465
0466 if (++it[j].count < it[j].size) {
0467 input_offset += it[j].input_stride;
0468 output_offset += it[j].output_stride;
0469 output_coord[dim] += 1;
0470 output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim);
0471 break;
0472 }
0473 it[j].count = 0;
0474 input_offset -= it[j].input_span;
0475 output_offset -= it[j].output_span;
0476 output_coord[dim] -= it[j].size - 1;
0477 output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim);
0478 }
0479 }
0480
0481 return block_storage.AsTensorMaterializedBlock();
0482 }
0483
0484 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return NULL; }
0485
0486 #ifdef EIGEN_USE_SYCL
0487
0488 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
0489 m_impl.bind(cgh);
0490 }
0491 #endif
0492
0493 private:
0494 struct BlockIteratorState {
0495 BlockIteratorState()
0496 : count(0),
0497 size(0),
0498 input_stride(0),
0499 input_span(0),
0500 output_stride(0),
0501 output_span(0) {}
0502
0503 Index count;
0504 Index size;
0505 Index input_stride;
0506 Index input_span;
0507 Index output_stride;
0508 Index output_span;
0509 };
0510
0511 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isPaddingAtIndexForDim(
0512 Index index, int dim_index) const {
0513 #if defined(EIGEN_HAS_INDEX_LIST)
0514 return (!internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0) &&
0515 index < m_padding[dim_index].first) ||
0516 (!internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0) &&
0517 index >= m_dimensions[dim_index] - m_padding[dim_index].second);
0518 #else
0519 return (index < m_padding[dim_index].first) ||
0520 (index >= m_dimensions[dim_index] - m_padding[dim_index].second);
0521 #endif
0522 }
0523
0524 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isLeftPaddingCompileTimeZero(
0525 int dim_index) const {
0526 #if defined(EIGEN_HAS_INDEX_LIST)
0527 return internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0);
0528 #else
0529 EIGEN_UNUSED_VARIABLE(dim_index);
0530 return false;
0531 #endif
0532 }
0533
0534 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isRightPaddingCompileTimeZero(
0535 int dim_index) const {
0536 #if defined(EIGEN_HAS_INDEX_LIST)
0537 return internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0);
0538 #else
0539 EIGEN_UNUSED_VARIABLE(dim_index);
0540 return false;
0541 #endif
0542 }
0543
0544
0545 void updateCostPerDimension(TensorOpCost& cost, int i, bool first) const {
0546 const double in = static_cast<double>(m_impl.dimensions()[i]);
0547 const double out = in + m_padding[i].first + m_padding[i].second;
0548 if (out == 0)
0549 return;
0550 const double reduction = in / out;
0551 cost *= reduction;
0552 if (first) {
0553 cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() +
0554 reduction * (1 * TensorOpCost::AddCost<Index>()));
0555 } else {
0556 cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() +
0557 2 * TensorOpCost::MulCost<Index>() +
0558 reduction * (2 * TensorOpCost::MulCost<Index>() +
0559 1 * TensorOpCost::DivCost<Index>()));
0560 }
0561 }
0562
0563 protected:
0564
0565 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
0566 {
0567 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
0568 eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
0569
0570 const Index initialIndex = index;
0571 Index inputIndex = 0;
0572 EIGEN_UNROLL_LOOP
0573 for (int i = NumDims - 1; i > 0; --i) {
0574 const Index firstIdx = index;
0575 const Index lastIdx = index + PacketSize - 1;
0576 const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i];
0577 const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i];
0578 const Index lastPaddedRight = m_outputStrides[i+1];
0579
0580 if (!isLeftPaddingCompileTimeZero(i) && lastIdx < lastPaddedLeft) {
0581
0582 return internal::pset1<PacketReturnType>(m_paddingValue);
0583 }
0584 else if (!isRightPaddingCompileTimeZero(i) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) {
0585
0586 return internal::pset1<PacketReturnType>(m_paddingValue);
0587 }
0588 else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) {
0589
0590 const Index idx = index / m_outputStrides[i];
0591 inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
0592 index -= idx * m_outputStrides[i];
0593 }
0594 else {
0595
0596 return packetWithPossibleZero(initialIndex);
0597 }
0598 }
0599
0600 const Index lastIdx = index + PacketSize - 1;
0601 const Index firstIdx = index;
0602 const Index lastPaddedLeft = m_padding[0].first;
0603 const Index firstPaddedRight = (m_dimensions[0] - m_padding[0].second);
0604 const Index lastPaddedRight = m_outputStrides[1];
0605
0606 if (!isLeftPaddingCompileTimeZero(0) && lastIdx < lastPaddedLeft) {
0607
0608 return internal::pset1<PacketReturnType>(m_paddingValue);
0609 }
0610 else if (!isRightPaddingCompileTimeZero(0) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) {
0611
0612 return internal::pset1<PacketReturnType>(m_paddingValue);
0613 }
0614 else if ((isLeftPaddingCompileTimeZero(0) && isRightPaddingCompileTimeZero(0)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) {
0615
0616 inputIndex += (index - m_padding[0].first);
0617 return m_impl.template packet<Unaligned>(inputIndex);
0618 }
0619
0620 return packetWithPossibleZero(initialIndex);
0621 }
0622
0623 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
0624 {
0625 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
0626 eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
0627
0628 const Index initialIndex = index;
0629 Index inputIndex = 0;
0630 EIGEN_UNROLL_LOOP
0631 for (int i = 0; i < NumDims - 1; ++i) {
0632 const Index firstIdx = index;
0633 const Index lastIdx = index + PacketSize - 1;
0634 const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i+1];
0635 const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i+1];
0636 const Index lastPaddedRight = m_outputStrides[i];
0637
0638 if (!isLeftPaddingCompileTimeZero(i) && lastIdx < lastPaddedLeft) {
0639
0640 return internal::pset1<PacketReturnType>(m_paddingValue);
0641 }
0642 else if (!isRightPaddingCompileTimeZero(i) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) {
0643
0644 return internal::pset1<PacketReturnType>(m_paddingValue);
0645 }
0646 else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) {
0647
0648 const Index idx = index / m_outputStrides[i+1];
0649 inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
0650 index -= idx * m_outputStrides[i+1];
0651 }
0652 else {
0653
0654 return packetWithPossibleZero(initialIndex);
0655 }
0656 }
0657
0658 const Index lastIdx = index + PacketSize - 1;
0659 const Index firstIdx = index;
0660 const Index lastPaddedLeft = m_padding[NumDims-1].first;
0661 const Index firstPaddedRight = (m_dimensions[NumDims-1] - m_padding[NumDims-1].second);
0662 const Index lastPaddedRight = m_outputStrides[NumDims-1];
0663
0664 if (!isLeftPaddingCompileTimeZero(NumDims-1) && lastIdx < lastPaddedLeft) {
0665
0666 return internal::pset1<PacketReturnType>(m_paddingValue);
0667 }
0668 else if (!isRightPaddingCompileTimeZero(NumDims-1) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) {
0669
0670 return internal::pset1<PacketReturnType>(m_paddingValue);
0671 }
0672 else if ((isLeftPaddingCompileTimeZero(NumDims-1) && isRightPaddingCompileTimeZero(NumDims-1)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) {
0673
0674 inputIndex += (index - m_padding[NumDims-1].first);
0675 return m_impl.template packet<Unaligned>(inputIndex);
0676 }
0677
0678 return packetWithPossibleZero(initialIndex);
0679 }
0680
0681 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
0682 {
0683 EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
0684 EIGEN_UNROLL_LOOP
0685 for (int i = 0; i < PacketSize; ++i) {
0686 values[i] = coeff(index+i);
0687 }
0688 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
0689 return rslt;
0690 }
0691
0692 Dimensions m_dimensions;
0693 array<Index, NumDims+1> m_outputStrides;
0694 array<Index, NumDims> m_inputStrides;
0695 TensorEvaluator<ArgType, Device> m_impl;
0696 PaddingDimensions m_padding;
0697
0698 Scalar m_paddingValue;
0699
0700 const Device EIGEN_DEVICE_REF m_device;
0701 };
0702
0703
0704
0705
0706 }
0707
0708 #endif