Warning, file /include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h was not indexed
or was modified since last indexation (in which case cross-reference links may be missing, inaccurate or erroneous).
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #ifndef EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
0011 #define EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
0012
0013 namespace Eigen {
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029 namespace internal {
0030
0031 template<DenseIndex Rows, DenseIndex Cols, typename XprType>
0032 struct traits<TensorImagePatchOp<Rows, Cols, XprType> > : public traits<XprType>
0033 {
0034 typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
0035 typedef traits<XprType> XprTraits;
0036 typedef typename XprTraits::StorageKind StorageKind;
0037 typedef typename XprTraits::Index Index;
0038 typedef typename XprType::Nested Nested;
0039 typedef typename remove_reference<Nested>::type _Nested;
0040 static const int NumDimensions = XprTraits::NumDimensions + 1;
0041 static const int Layout = XprTraits::Layout;
0042 typedef typename XprTraits::PointerType PointerType;
0043 };
0044
0045 template<DenseIndex Rows, DenseIndex Cols, typename XprType>
0046 struct eval<TensorImagePatchOp<Rows, Cols, XprType>, Eigen::Dense>
0047 {
0048 typedef const TensorImagePatchOp<Rows, Cols, XprType>& type;
0049 };
0050
0051 template<DenseIndex Rows, DenseIndex Cols, typename XprType>
0052 struct nested<TensorImagePatchOp<Rows, Cols, XprType>, 1, typename eval<TensorImagePatchOp<Rows, Cols, XprType> >::type>
0053 {
0054 typedef TensorImagePatchOp<Rows, Cols, XprType> type;
0055 };
0056
0057 template <typename Self, bool Vectorizable>
0058 struct ImagePatchCopyOp {
0059 typedef typename Self::Index Index;
0060 typedef typename Self::Scalar Scalar;
0061 typedef typename Self::Impl Impl;
0062 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
0063 const Self& self, const Index num_coeff_to_copy, const Index dst_index,
0064 Scalar* dst_data, const Index src_index) {
0065 const Impl& impl = self.impl();
0066 for (Index i = 0; i < num_coeff_to_copy; ++i) {
0067 dst_data[dst_index + i] = impl.coeff(src_index + i);
0068 }
0069 }
0070 };
0071
0072 template <typename Self>
0073 struct ImagePatchCopyOp<Self, true> {
0074 typedef typename Self::Index Index;
0075 typedef typename Self::Scalar Scalar;
0076 typedef typename Self::Impl Impl;
0077 typedef typename packet_traits<Scalar>::type Packet;
0078 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
0079 const Self& self, const Index num_coeff_to_copy, const Index dst_index,
0080 Scalar* dst_data, const Index src_index) {
0081 const Impl& impl = self.impl();
0082 const Index packet_size = internal::unpacket_traits<Packet>::size;
0083 const Index vectorized_size =
0084 (num_coeff_to_copy / packet_size) * packet_size;
0085 for (Index i = 0; i < vectorized_size; i += packet_size) {
0086 Packet p = impl.template packet<Unaligned>(src_index + i);
0087 internal::pstoret<Scalar, Packet, Unaligned>(dst_data + dst_index + i, p);
0088 }
0089 for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
0090 dst_data[dst_index + i] = impl.coeff(src_index + i);
0091 }
0092 }
0093 };
0094
0095 template <typename Self>
0096 struct ImagePatchPaddingOp {
0097 typedef typename Self::Index Index;
0098 typedef typename Self::Scalar Scalar;
0099 typedef typename packet_traits<Scalar>::type Packet;
0100 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
0101 const Index num_coeff_to_pad, const Scalar padding_value,
0102 const Index dst_index, Scalar* dst_data) {
0103 const Index packet_size = internal::unpacket_traits<Packet>::size;
0104 const Packet padded_packet = internal::pset1<Packet>(padding_value);
0105 const Index vectorized_size =
0106 (num_coeff_to_pad / packet_size) * packet_size;
0107 for (Index i = 0; i < vectorized_size; i += packet_size) {
0108 internal::pstoret<Scalar, Packet, Unaligned>(dst_data + dst_index + i,
0109 padded_packet);
0110 }
0111 for (Index i = vectorized_size; i < num_coeff_to_pad; ++i) {
0112 dst_data[dst_index + i] = padding_value;
0113 }
0114 }
0115 };
0116
0117 }
0118
0119 template<DenseIndex Rows, DenseIndex Cols, typename XprType>
0120 class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprType>, ReadOnlyAccessors>
0121 {
0122 public:
0123 typedef typename Eigen::internal::traits<TensorImagePatchOp>::Scalar Scalar;
0124 typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
0125 typedef typename XprType::CoeffReturnType CoeffReturnType;
0126 typedef typename Eigen::internal::nested<TensorImagePatchOp>::type Nested;
0127 typedef typename Eigen::internal::traits<TensorImagePatchOp>::StorageKind StorageKind;
0128 typedef typename Eigen::internal::traits<TensorImagePatchOp>::Index Index;
0129
0130 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
0131 DenseIndex row_strides, DenseIndex col_strides,
0132 DenseIndex in_row_strides, DenseIndex in_col_strides,
0133 DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
0134 PaddingType padding_type, Scalar padding_value)
0135 : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
0136 m_row_strides(row_strides), m_col_strides(col_strides),
0137 m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
0138 m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
0139 m_padding_explicit(false), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
0140 m_padding_type(padding_type), m_padding_value(padding_value) {}
0141
0142 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
0143 DenseIndex row_strides, DenseIndex col_strides,
0144 DenseIndex in_row_strides, DenseIndex in_col_strides,
0145 DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
0146 DenseIndex padding_top, DenseIndex padding_bottom,
0147 DenseIndex padding_left, DenseIndex padding_right,
0148 Scalar padding_value)
0149 : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
0150 m_row_strides(row_strides), m_col_strides(col_strides),
0151 m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
0152 m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
0153 m_padding_explicit(true), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
0154 m_padding_left(padding_left), m_padding_right(padding_right),
0155 m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
0156
0157
0158 EIGEN_DEVICE_FUNC
0159 DenseIndex patch_rows() const { return m_patch_rows; }
0160 EIGEN_DEVICE_FUNC
0161 DenseIndex patch_cols() const { return m_patch_cols; }
0162 EIGEN_DEVICE_FUNC
0163 DenseIndex row_strides() const { return m_row_strides; }
0164 EIGEN_DEVICE_FUNC
0165 DenseIndex col_strides() const { return m_col_strides; }
0166 EIGEN_DEVICE_FUNC
0167 DenseIndex in_row_strides() const { return m_in_row_strides; }
0168 EIGEN_DEVICE_FUNC
0169 DenseIndex in_col_strides() const { return m_in_col_strides; }
0170 EIGEN_DEVICE_FUNC
0171 DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
0172 EIGEN_DEVICE_FUNC
0173 DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
0174 EIGEN_DEVICE_FUNC
0175 bool padding_explicit() const { return m_padding_explicit; }
0176 EIGEN_DEVICE_FUNC
0177 DenseIndex padding_top() const { return m_padding_top; }
0178 EIGEN_DEVICE_FUNC
0179 DenseIndex padding_bottom() const { return m_padding_bottom; }
0180 EIGEN_DEVICE_FUNC
0181 DenseIndex padding_left() const { return m_padding_left; }
0182 EIGEN_DEVICE_FUNC
0183 DenseIndex padding_right() const { return m_padding_right; }
0184 EIGEN_DEVICE_FUNC
0185 PaddingType padding_type() const { return m_padding_type; }
0186 EIGEN_DEVICE_FUNC
0187 Scalar padding_value() const { return m_padding_value; }
0188
0189 EIGEN_DEVICE_FUNC
0190 const typename internal::remove_all<typename XprType::Nested>::type&
0191 expression() const { return m_xpr; }
0192
0193 protected:
0194 typename XprType::Nested m_xpr;
0195 const DenseIndex m_patch_rows;
0196 const DenseIndex m_patch_cols;
0197 const DenseIndex m_row_strides;
0198 const DenseIndex m_col_strides;
0199 const DenseIndex m_in_row_strides;
0200 const DenseIndex m_in_col_strides;
0201 const DenseIndex m_row_inflate_strides;
0202 const DenseIndex m_col_inflate_strides;
0203 const bool m_padding_explicit;
0204 const DenseIndex m_padding_top;
0205 const DenseIndex m_padding_bottom;
0206 const DenseIndex m_padding_left;
0207 const DenseIndex m_padding_right;
0208 const PaddingType m_padding_type;
0209 const Scalar m_padding_value;
0210 };
0211
0212
0213 template<DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
0214 struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
0215 {
0216 typedef TensorImagePatchOp<Rows, Cols, ArgType> XprType;
0217 typedef typename XprType::Index Index;
0218 static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
0219 static const int NumDims = NumInputDims + 1;
0220 typedef DSizes<Index, NumDims> Dimensions;
0221 typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
0222 typedef TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>,
0223 Device> Self;
0224 typedef TensorEvaluator<ArgType, Device> Impl;
0225 typedef typename XprType::CoeffReturnType CoeffReturnType;
0226 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
0227 static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
0228 typedef StorageMemory<CoeffReturnType, Device> Storage;
0229 typedef typename Storage::Type EvaluatorPointerType;
0230
0231 enum {
0232 IsAligned = false,
0233 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
0234 BlockAccess = false,
0235 PreferBlockAccess = true,
0236 Layout = TensorEvaluator<ArgType, Device>::Layout,
0237 CoordAccess = false,
0238 RawAccess = false
0239 };
0240
0241
0242 typedef internal::TensorBlockNotImplemented TensorBlock;
0243
0244
0245 EIGEN_STRONG_INLINE TensorEvaluator( const XprType& op, const Device& device)
0246 : m_device(device), m_impl(op.expression(), device)
0247 {
0248 EIGEN_STATIC_ASSERT((NumDims >= 4), YOU_MADE_A_PROGRAMMING_MISTAKE);
0249
0250 m_paddingValue = op.padding_value();
0251
0252 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
0253
0254
0255 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
0256 m_inputDepth = input_dims[0];
0257 m_inputRows = input_dims[1];
0258 m_inputCols = input_dims[2];
0259 } else {
0260 m_inputDepth = input_dims[NumInputDims-1];
0261 m_inputRows = input_dims[NumInputDims-2];
0262 m_inputCols = input_dims[NumInputDims-3];
0263 }
0264
0265 m_row_strides = op.row_strides();
0266 m_col_strides = op.col_strides();
0267
0268
0269 m_in_row_strides = op.in_row_strides();
0270 m_in_col_strides = op.in_col_strides();
0271 m_row_inflate_strides = op.row_inflate_strides();
0272 m_col_inflate_strides = op.col_inflate_strides();
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286 m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
0287 m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
0288 m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
0289 m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
0290
0291 if (op.padding_explicit()) {
0292 m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
0293 m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
0294 m_rowPaddingTop = op.padding_top();
0295 m_colPaddingLeft = op.padding_left();
0296 } else {
0297
0298 switch (op.padding_type()) {
0299 case PADDING_VALID:
0300 m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
0301 m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
0302
0303 m_rowPaddingTop = numext::maxi<Index>(0, ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2);
0304 m_colPaddingLeft = numext::maxi<Index>(0, ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2);
0305 break;
0306 case PADDING_SAME:
0307 m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
0308 m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
0309
0310 m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2;
0311 m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2;
0312
0313
0314 m_rowPaddingTop = numext::maxi<Index>(0, m_rowPaddingTop);
0315 m_colPaddingLeft = numext::maxi<Index>(0, m_colPaddingLeft);
0316 break;
0317 default:
0318 eigen_assert(false && "unexpected padding");
0319 m_outputCols=0;
0320 m_outputRows=0;
0321 }
0322 }
0323 eigen_assert(m_outputRows > 0);
0324 eigen_assert(m_outputCols > 0);
0325
0326
0327 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
0328
0329
0330
0331
0332
0333
0334 m_dimensions[0] = input_dims[0];
0335 m_dimensions[1] = op.patch_rows();
0336 m_dimensions[2] = op.patch_cols();
0337 m_dimensions[3] = m_outputRows * m_outputCols;
0338 for (int i = 4; i < NumDims; ++i) {
0339 m_dimensions[i] = input_dims[i-1];
0340 }
0341 } else {
0342
0343
0344
0345
0346
0347
0348 m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
0349 m_dimensions[NumDims-2] = op.patch_rows();
0350 m_dimensions[NumDims-3] = op.patch_cols();
0351 m_dimensions[NumDims-4] = m_outputRows * m_outputCols;
0352 for (int i = NumDims-5; i >= 0; --i) {
0353 m_dimensions[i] = input_dims[i];
0354 }
0355 }
0356
0357
0358 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
0359 m_colStride = m_dimensions[1];
0360 m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0];
0361 m_otherStride = m_patchStride * m_dimensions[3];
0362 } else {
0363 m_colStride = m_dimensions[NumDims-2];
0364 m_patchStride = m_colStride * m_dimensions[NumDims-3] * m_dimensions[NumDims-1];
0365 m_otherStride = m_patchStride * m_dimensions[NumDims-4];
0366 }
0367
0368
0369 m_rowInputStride = m_inputDepth;
0370 m_colInputStride = m_inputDepth * m_inputRows;
0371 m_patchInputStride = m_inputDepth * m_inputRows * m_inputCols;
0372
0373
0374 m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
0375 m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
0376 m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
0377 m_fastInflateRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
0378 m_fastInflateColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
0379 m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
0380
0381
0382 m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows);
0383 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
0384 m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
0385 } else {
0386 m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
0387 }
0388 }
0389
0390 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
0391
0392 EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType ) {
0393 m_impl.evalSubExprsIfNeeded(NULL);
0394 return true;
0395 }
0396
0397 #ifdef EIGEN_USE_THREADS
0398 template <typename EvalSubExprsCallback>
0399 EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
0400 EvaluatorPointerType, EvalSubExprsCallback done) {
0401 m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
0402 }
0403 #endif
0404
0405 EIGEN_STRONG_INLINE void cleanup() {
0406 m_impl.cleanup();
0407 }
0408
0409 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
0410 {
0411
0412 const Index patchIndex = index / m_fastPatchStride;
0413
0414 const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
0415
0416
0417 const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride;
0418 const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
0419
0420
0421 const Index colIndex = patch2DIndex / m_fastOutputRows;
0422 const Index colOffset = patchOffset / m_fastColStride;
0423 const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
0424 const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInflateColStride) : 0);
0425 if (inputCol < 0 || inputCol >= m_input_cols_eff ||
0426 ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
0427 return Scalar(m_paddingValue);
0428 }
0429
0430
0431 const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
0432 const Index rowOffset = patchOffset - colOffset * m_colStride;
0433 const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
0434 const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInflateRowStride) : 0);
0435 if (inputRow < 0 || inputRow >= m_input_rows_eff ||
0436 ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
0437 return Scalar(m_paddingValue);
0438 }
0439
0440 const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
0441 const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
0442
0443 const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex * m_patchInputStride;
0444 return m_impl.coeff(inputIndex);
0445 }
0446
0447 template<int LoadMode>
0448 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
0449 {
0450 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
0451 eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
0452
0453 if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1) {
0454 return packetWithPossibleZero(index);
0455 }
0456
0457 const Index indices[2] = {index, index + PacketSize - 1};
0458 const Index patchIndex = indices[0] / m_fastPatchStride;
0459 if (patchIndex != indices[1] / m_fastPatchStride) {
0460 return packetWithPossibleZero(index);
0461 }
0462 const Index otherIndex = (NumDims == 4) ? 0 : indices[0] / m_fastOtherStride;
0463 eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
0464
0465
0466 const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
0467 (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
0468
0469 const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
0470 eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
0471
0472 const Index colIndex = patch2DIndex / m_fastOutputRows;
0473 const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride};
0474
0475
0476 const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] -
0477 m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
0478 if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
0479 return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
0480 }
0481
0482 if (inputCols[0] == inputCols[1]) {
0483 const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
0484 const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride};
0485 eigen_assert(rowOffsets[0] <= rowOffsets[1]);
0486
0487 const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] -
0488 m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
0489
0490 if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
0491 return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
0492 }
0493
0494 if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) {
0495
0496 const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
0497 const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
0498 const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride;
0499 return m_impl.template packet<Unaligned>(inputIndex);
0500 }
0501 }
0502
0503 return packetWithPossibleZero(index);
0504 }
0505
0506 EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
0507
0508 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
0509
0510 #ifdef EIGEN_USE_SYCL
0511
0512 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
0513 m_impl.bind(cgh);
0514 }
0515 #endif
0516
0517 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowPaddingTop() const { return m_rowPaddingTop; }
0518 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colPaddingLeft() const { return m_colPaddingLeft; }
0519 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputRows() const { return m_outputRows; }
0520 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputCols() const { return m_outputCols; }
0521 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userRowStride() const { return m_row_strides; }
0522 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userColStride() const { return m_col_strides; }
0523 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInRowStride() const { return m_in_row_strides; }
0524 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInColStride() const { return m_in_col_strides; }
0525 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowInflateStride() const { return m_row_inflate_strides; }
0526 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colInflateStride() const { return m_col_inflate_strides; }
0527
0528 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
0529 costPerCoeff(bool vectorized) const {
0530
0531
0532
0533 const double compute_cost = 3 * TensorOpCost::DivCost<Index>() +
0534 6 * TensorOpCost::MulCost<Index>() +
0535 8 * TensorOpCost::MulCost<Index>();
0536 return m_impl.costPerCoeff(vectorized) +
0537 TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
0538 }
0539
0540 protected:
0541 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
0542 {
0543 EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
0544 EIGEN_UNROLL_LOOP
0545 for (int i = 0; i < PacketSize; ++i) {
0546 values[i] = coeff(index+i);
0547 }
0548 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
0549 return rslt;
0550 }
0551
0552 Dimensions m_dimensions;
0553
0554 Index m_otherStride;
0555 Index m_patchStride;
0556 Index m_colStride;
0557 Index m_row_strides;
0558 Index m_col_strides;
0559
0560 Index m_in_row_strides;
0561 Index m_in_col_strides;
0562 Index m_row_inflate_strides;
0563 Index m_col_inflate_strides;
0564
0565 Index m_input_rows_eff;
0566 Index m_input_cols_eff;
0567 Index m_patch_rows_eff;
0568 Index m_patch_cols_eff;
0569
0570 internal::TensorIntDivisor<Index> m_fastOtherStride;
0571 internal::TensorIntDivisor<Index> m_fastPatchStride;
0572 internal::TensorIntDivisor<Index> m_fastColStride;
0573 internal::TensorIntDivisor<Index> m_fastInflateRowStride;
0574 internal::TensorIntDivisor<Index> m_fastInflateColStride;
0575 internal::TensorIntDivisor<Index> m_fastInputColsEff;
0576
0577 Index m_rowInputStride;
0578 Index m_colInputStride;
0579 Index m_patchInputStride;
0580
0581 Index m_inputDepth;
0582 Index m_inputRows;
0583 Index m_inputCols;
0584
0585 Index m_outputRows;
0586 Index m_outputCols;
0587
0588 Index m_rowPaddingTop;
0589 Index m_colPaddingLeft;
0590
0591 internal::TensorIntDivisor<Index> m_fastOutputRows;
0592 internal::TensorIntDivisor<Index> m_fastOutputDepth;
0593
0594 Scalar m_paddingValue;
0595
0596 const Device EIGEN_DEVICE_REF m_device;
0597 TensorEvaluator<ArgType, Device> m_impl;
0598 };
0599
0600
0601 }
0602
0603 #endif