Back to home page

EIC code displayed by LXR

 
 

    


Warning, /include/eigen3/unsupported/Eigen/AlignedVector3 is written in an unsupported language. File is not indexed.

0001 // This file is part of Eigen, a lightweight C++ template library
0002 // for linear algebra.
0003 //
0004 // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
0005 //
0006 // This Source Code Form is subject to the terms of the Mozilla
0007 // Public License v. 2.0. If a copy of the MPL was not distributed
0008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
0009 
0010 #ifndef EIGEN_ALIGNED_VECTOR3
0011 #define EIGEN_ALIGNED_VECTOR3
0012 
0013 #include "../../Eigen/Geometry"
0014 
0015 #include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
0016 
0017 namespace Eigen {
0018 
0019 /**
0020   * \defgroup AlignedVector3_Module Aligned vector3 module
0021   *
0022   * \code
0023   * #include <unsupported/Eigen/AlignedVector3>
0024   * \endcode
0025   */
0026   //@{
0027 
0028 
0029 /** \class AlignedVector3
0030   *
0031   * \brief A vectorization friendly 3D vector
0032   *
0033   * This class represents a 3D vector internally using a 4D vector
0034   * such that vectorization can be seamlessly enabled. Of course,
0035   * the same result can be achieved by directly using a 4D vector.
0036   * This class makes this process simpler.
0037   *
0038   */
0039 // TODO specialize Cwise
0040 template<typename _Scalar> class AlignedVector3;
0041 
0042 namespace internal {
0043 template<typename _Scalar> struct traits<AlignedVector3<_Scalar> >
0044   : traits<Matrix<_Scalar,3,1,0,4,1> >
0045 {
0046 };
0047 }
0048 
0049 template<typename _Scalar> class AlignedVector3
0050   : public MatrixBase<AlignedVector3<_Scalar> >
0051 {
0052     typedef Matrix<_Scalar,4,1> CoeffType;
0053     CoeffType m_coeffs;
0054   public:
0055 
0056     typedef MatrixBase<AlignedVector3<_Scalar> > Base;  
0057     EIGEN_DENSE_PUBLIC_INTERFACE(AlignedVector3)
0058     using Base::operator*;
0059 
0060     inline Index rows() const { return 3; }
0061     inline Index cols() const { return 1; }
0062     
0063     Scalar* data() { return m_coeffs.data(); }
0064     const Scalar* data() const { return m_coeffs.data(); }
0065     Index innerStride() const { return 1; }
0066     Index outerStride() const { return 3; }
0067 
0068     inline const Scalar& coeff(Index row, Index col) const
0069     { return m_coeffs.coeff(row, col); }
0070 
0071     inline Scalar& coeffRef(Index row, Index col)
0072     { return m_coeffs.coeffRef(row, col); }
0073 
0074     inline const Scalar& coeff(Index index) const
0075     { return m_coeffs.coeff(index); }
0076 
0077     inline Scalar& coeffRef(Index index)
0078     { return m_coeffs.coeffRef(index);}
0079 
0080 
0081     inline AlignedVector3()
0082     {}
0083 
0084     inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z)
0085       : m_coeffs(x, y, z, Scalar(0))
0086     {}
0087 
0088     inline AlignedVector3(const AlignedVector3& other)
0089       : Base(), m_coeffs(other.m_coeffs)
0090     {}
0091 
0092     template<typename XprType, int Size=XprType::SizeAtCompileTime>
0093     struct generic_assign_selector {};
0094 
0095     template<typename XprType> struct generic_assign_selector<XprType,4>
0096     {
0097       inline static void run(AlignedVector3& dest, const XprType& src)
0098       {
0099         dest.m_coeffs = src;
0100       }
0101     };
0102 
0103     template<typename XprType> struct generic_assign_selector<XprType,3>
0104     {
0105       inline static void run(AlignedVector3& dest, const XprType& src)
0106       {
0107         dest.m_coeffs.template head<3>() = src;
0108         dest.m_coeffs.w() = Scalar(0);
0109       }
0110     };
0111 
0112     template<typename Derived>
0113     inline AlignedVector3(const MatrixBase<Derived>& other)
0114     {
0115       generic_assign_selector<Derived>::run(*this,other.derived());
0116     }
0117 
0118     inline AlignedVector3& operator=(const AlignedVector3& other)
0119     { m_coeffs = other.m_coeffs; return *this; }
0120 
0121     template <typename Derived>
0122     inline AlignedVector3& operator=(const MatrixBase<Derived>& other)
0123     {
0124       generic_assign_selector<Derived>::run(*this,other.derived());
0125       return *this;
0126     }
0127 
0128     inline AlignedVector3 operator+(const AlignedVector3& other) const
0129     { return AlignedVector3(m_coeffs + other.m_coeffs); }
0130 
0131     inline AlignedVector3& operator+=(const AlignedVector3& other)
0132     { m_coeffs += other.m_coeffs; return *this; }
0133 
0134     inline AlignedVector3 operator-(const AlignedVector3& other) const
0135     { return AlignedVector3(m_coeffs - other.m_coeffs); }
0136 
0137     inline AlignedVector3 operator-() const
0138     { return AlignedVector3(-m_coeffs); }
0139 
0140     inline AlignedVector3 operator-=(const AlignedVector3& other)
0141     { m_coeffs -= other.m_coeffs; return *this; }
0142 
0143     inline AlignedVector3 operator*(const Scalar& s) const
0144     { return AlignedVector3(m_coeffs * s); }
0145 
0146     inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec)
0147     { return AlignedVector3(s * vec.m_coeffs); }
0148 
0149     inline AlignedVector3& operator*=(const Scalar& s)
0150     { m_coeffs *= s; return *this; }
0151 
0152     inline AlignedVector3 operator/(const Scalar& s) const
0153     { return AlignedVector3(m_coeffs / s); }
0154 
0155     inline AlignedVector3& operator/=(const Scalar& s)
0156     { m_coeffs /= s; return *this; }
0157 
0158     inline Scalar dot(const AlignedVector3& other) const
0159     {
0160       eigen_assert(m_coeffs.w()==Scalar(0));
0161       eigen_assert(other.m_coeffs.w()==Scalar(0));
0162       return m_coeffs.dot(other.m_coeffs);
0163     }
0164 
0165     inline void normalize()
0166     {
0167       m_coeffs /= norm();
0168     }
0169 
0170     inline AlignedVector3 normalized() const
0171     {
0172       return AlignedVector3(m_coeffs / norm());
0173     }
0174 
0175     inline Scalar sum() const
0176     {
0177       eigen_assert(m_coeffs.w()==Scalar(0));
0178       return m_coeffs.sum();
0179     }
0180 
0181     inline Scalar squaredNorm() const
0182     {
0183       eigen_assert(m_coeffs.w()==Scalar(0));
0184       return m_coeffs.squaredNorm();
0185     }
0186 
0187     inline Scalar norm() const
0188     {
0189       using std::sqrt;
0190       return sqrt(squaredNorm());
0191     }
0192 
0193     inline AlignedVector3 cross(const AlignedVector3& other) const
0194     {
0195       return AlignedVector3(m_coeffs.cross3(other.m_coeffs));
0196     }
0197 
0198     template<typename Derived>
0199     inline bool isApprox(const MatrixBase<Derived>& other, const RealScalar& eps=NumTraits<Scalar>::dummy_precision()) const
0200     {
0201       return m_coeffs.template head<3>().isApprox(other,eps);
0202     }
0203     
0204     CoeffType& coeffs() { return m_coeffs; }
0205     const CoeffType& coeffs() const { return m_coeffs; }
0206 };
0207 
0208 namespace internal {
0209 
0210 template<typename _Scalar>
0211 struct eval<AlignedVector3<_Scalar>, Dense>
0212 {
0213  typedef const AlignedVector3<_Scalar>& type;
0214 };
0215 
0216 template<typename Scalar>
0217 struct evaluator<AlignedVector3<Scalar> >
0218   : evaluator<Matrix<Scalar,4,1> >
0219 {
0220   typedef AlignedVector3<Scalar> XprType;
0221   typedef evaluator<Matrix<Scalar,4,1> > Base;
0222   
0223   evaluator(const XprType &m) : Base(m.coeffs()) {}  
0224 };
0225 
0226 }
0227 
0228 //@}
0229 
0230 }
0231 
0232 #include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
0233 
0234 #endif // EIGEN_ALIGNED_VECTOR3