|
||||
File indexing completed on 2024-11-16 09:38:44
0001 // This file is part of Eigen, a lightweight C++ template library 0002 // for linear algebra. 0003 // 0004 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> 0005 // 0006 // This Source Code Form is subject to the terms of the Mozilla 0007 // Public License v. 2.0. If a copy of the MPL was not distributed 0008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 0009 0010 /* 0011 * NOTE: This file comes from a partly modified version of files slu_[s,d,c,z]defs.h 0012 * -- SuperLU routine (version 4.1) -- 0013 * Univ. of California Berkeley, Xerox Palo Alto Research Center, 0014 * and Lawrence Berkeley National Lab. 0015 * November, 2010 0016 * 0017 * Global data structures used in LU factorization - 0018 * 0019 * nsuper: #supernodes = nsuper + 1, numbered [0, nsuper]. 0020 * (xsup,supno): supno[i] is the supernode no to which i belongs; 0021 * xsup(s) points to the beginning of the s-th supernode. 0022 * e.g. supno 0 1 2 2 3 3 3 4 4 4 4 4 (n=12) 0023 * xsup 0 1 2 4 7 12 0024 * Note: dfs will be performed on supernode rep. relative to the new 0025 * row pivoting ordering 0026 * 0027 * (xlsub,lsub): lsub[*] contains the compressed subscript of 0028 * rectangular supernodes; xlsub[j] points to the starting 0029 * location of the j-th column in lsub[*]. Note that xlsub 0030 * is indexed by column. 0031 * Storage: original row subscripts 0032 * 0033 * During the course of sparse LU factorization, we also use 0034 * (xlsub,lsub) for the purpose of symmetric pruning. For each 0035 * supernode {s,s+1,...,t=s+r} with first column s and last 0036 * column t, the subscript set 0037 * lsub[j], j=xlsub[s], .., xlsub[s+1]-1 0038 * is the structure of column s (i.e. structure of this supernode). 0039 * It is used for the storage of numerical values. 0040 * Furthermore, 0041 * lsub[j], j=xlsub[t], .., xlsub[t+1]-1 0042 * is the structure of the last column t of this supernode. 0043 * It is for the purpose of symmetric pruning. Therefore, the 0044 * structural subscripts can be rearranged without making physical 0045 * interchanges among the numerical values. 0046 * 0047 * However, if the supernode has only one column, then we 0048 * only keep one set of subscripts. For any subscript interchange 0049 * performed, similar interchange must be done on the numerical 0050 * values. 0051 * 0052 * The last column structures (for pruning) will be removed 0053 * after the numercial LU factorization phase. 0054 * 0055 * (xlusup,lusup): lusup[*] contains the numerical values of the 0056 * rectangular supernodes; xlusup[j] points to the starting 0057 * location of the j-th column in storage vector lusup[*] 0058 * Note: xlusup is indexed by column. 0059 * Each rectangular supernode is stored by column-major 0060 * scheme, consistent with Fortran 2-dim array storage. 0061 * 0062 * (xusub,ucol,usub): ucol[*] stores the numerical values of 0063 * U-columns outside the rectangular supernodes. The row 0064 * subscript of nonzero ucol[k] is stored in usub[k]. 0065 * xusub[i] points to the starting location of column i in ucol. 0066 * Storage: new row subscripts; that is subscripts of PA. 0067 */ 0068 0069 #ifndef EIGEN_LU_STRUCTS 0070 #define EIGEN_LU_STRUCTS 0071 namespace Eigen { 0072 namespace internal { 0073 0074 typedef enum {LUSUP, UCOL, LSUB, USUB, LLVL, ULVL} MemType; 0075 0076 template <typename IndexVector, typename ScalarVector> 0077 struct LU_GlobalLU_t { 0078 typedef typename IndexVector::Scalar StorageIndex; 0079 IndexVector xsup; //First supernode column ... xsup(s) points to the beginning of the s-th supernode 0080 IndexVector supno; // Supernode number corresponding to this column (column to supernode mapping) 0081 ScalarVector lusup; // nonzero values of L ordered by columns 0082 IndexVector lsub; // Compressed row indices of L rectangular supernodes. 0083 IndexVector xlusup; // pointers to the beginning of each column in lusup 0084 IndexVector xlsub; // pointers to the beginning of each column in lsub 0085 Index nzlmax; // Current max size of lsub 0086 Index nzlumax; // Current max size of lusup 0087 ScalarVector ucol; // nonzero values of U ordered by columns 0088 IndexVector usub; // row indices of U columns in ucol 0089 IndexVector xusub; // Pointers to the beginning of each column of U in ucol 0090 Index nzumax; // Current max size of ucol 0091 Index n; // Number of columns in the matrix 0092 Index num_expansions; 0093 }; 0094 0095 // Values to set for performance 0096 struct perfvalues { 0097 Index panel_size; // a panel consists of at most <panel_size> consecutive columns 0098 Index relax; // To control degree of relaxing supernodes. If the number of nodes (columns) 0099 // in a subtree of the elimination tree is less than relax, this subtree is considered 0100 // as one supernode regardless of the row structures of those columns 0101 Index maxsuper; // The maximum size for a supernode in complete LU 0102 Index rowblk; // The minimum row dimension for 2-D blocking to be used; 0103 Index colblk; // The minimum column dimension for 2-D blocking to be used; 0104 Index fillfactor; // The estimated fills factors for L and U, compared with A 0105 }; 0106 0107 } // end namespace internal 0108 0109 } // end namespace Eigen 0110 #endif // EIGEN_LU_STRUCTS
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |