Warning, file /include/eigen3/Eigen/src/SVD/BDCSVD.h was not indexed
or was modified since last indexation (in which case cross-reference links may be missing, inaccurate or erroneous).
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020 #ifndef EIGEN_BDCSVD_H
0021 #define EIGEN_BDCSVD_H
0022
0023
0024
0025 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
0026 #undef eigen_internal_assert
0027 #define eigen_internal_assert(X) assert(X);
0028 #endif
0029
0030 namespace Eigen {
0031
0032 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0033 IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]");
0034 #endif
0035
0036 template<typename _MatrixType> class BDCSVD;
0037
0038 namespace internal {
0039
0040 template<typename _MatrixType>
0041 struct traits<BDCSVD<_MatrixType> >
0042 : traits<_MatrixType>
0043 {
0044 typedef _MatrixType MatrixType;
0045 };
0046
0047 }
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072 template<typename _MatrixType>
0073 class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
0074 {
0075 typedef SVDBase<BDCSVD> Base;
0076
0077 public:
0078 using Base::rows;
0079 using Base::cols;
0080 using Base::computeU;
0081 using Base::computeV;
0082
0083 typedef _MatrixType MatrixType;
0084 typedef typename MatrixType::Scalar Scalar;
0085 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
0086 typedef typename NumTraits<RealScalar>::Literal Literal;
0087 enum {
0088 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
0089 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
0090 DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
0091 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
0092 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
0093 MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime),
0094 MatrixOptions = MatrixType::Options
0095 };
0096
0097 typedef typename Base::MatrixUType MatrixUType;
0098 typedef typename Base::MatrixVType MatrixVType;
0099 typedef typename Base::SingularValuesType SingularValuesType;
0100
0101 typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> MatrixX;
0102 typedef Matrix<RealScalar, Dynamic, Dynamic, ColMajor> MatrixXr;
0103 typedef Matrix<RealScalar, Dynamic, 1> VectorType;
0104 typedef Array<RealScalar, Dynamic, 1> ArrayXr;
0105 typedef Array<Index,1,Dynamic> ArrayXi;
0106 typedef Ref<ArrayXr> ArrayRef;
0107 typedef Ref<ArrayXi> IndicesRef;
0108
0109
0110
0111
0112
0113
0114 BDCSVD() : m_algoswap(16), m_isTranspose(false), m_compU(false), m_compV(false), m_numIters(0)
0115 {}
0116
0117
0118
0119
0120
0121
0122
0123
0124 BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
0125 : m_algoswap(16), m_numIters(0)
0126 {
0127 allocate(rows, cols, computationOptions);
0128 }
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140 BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
0141 : m_algoswap(16), m_numIters(0)
0142 {
0143 compute(matrix, computationOptions);
0144 }
0145
0146 ~BDCSVD()
0147 {
0148 }
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160 BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
0161
0162
0163
0164
0165
0166
0167
0168 BDCSVD& compute(const MatrixType& matrix)
0169 {
0170 return compute(matrix, this->m_computationOptions);
0171 }
0172
0173 void setSwitchSize(int s)
0174 {
0175 eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3");
0176 m_algoswap = s;
0177 }
0178
0179 private:
0180 void allocate(Index rows, Index cols, unsigned int computationOptions);
0181 void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
0182 void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
0183 void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus);
0184 void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat);
0185 void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V);
0186 void deflation43(Index firstCol, Index shift, Index i, Index size);
0187 void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
0188 void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
0189 template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
0190 void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
0191 void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1);
0192 static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift);
0193
0194 protected:
0195 MatrixXr m_naiveU, m_naiveV;
0196 MatrixXr m_computed;
0197 Index m_nRec;
0198 ArrayXr m_workspace;
0199 ArrayXi m_workspaceI;
0200 int m_algoswap;
0201 bool m_isTranspose, m_compU, m_compV;
0202
0203 using Base::m_singularValues;
0204 using Base::m_diagSize;
0205 using Base::m_computeFullU;
0206 using Base::m_computeFullV;
0207 using Base::m_computeThinU;
0208 using Base::m_computeThinV;
0209 using Base::m_matrixU;
0210 using Base::m_matrixV;
0211 using Base::m_info;
0212 using Base::m_isInitialized;
0213 using Base::m_nonzeroSingularValues;
0214
0215 public:
0216 int m_numIters;
0217 };
0218
0219
0220
0221 template<typename MatrixType>
0222 void BDCSVD<MatrixType>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions)
0223 {
0224 m_isTranspose = (cols > rows);
0225
0226 if (Base::allocate(rows, cols, computationOptions))
0227 return;
0228
0229 m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
0230 m_compU = computeV();
0231 m_compV = computeU();
0232 if (m_isTranspose)
0233 std::swap(m_compU, m_compV);
0234
0235 if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 );
0236 else m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 );
0237
0238 if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize);
0239
0240 m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3);
0241 m_workspaceI.resize(3*m_diagSize);
0242 }
0243
0244 template<typename MatrixType>
0245 BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
0246 {
0247 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0248 std::cout << "\n\n\n======================================================================================================================\n\n\n";
0249 #endif
0250 allocate(matrix.rows(), matrix.cols(), computationOptions);
0251 using std::abs;
0252
0253 const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
0254
0255
0256 if(matrix.cols() < m_algoswap)
0257 {
0258
0259 JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
0260 m_isInitialized = true;
0261 m_info = jsvd.info();
0262 if (m_info == Success || m_info == NoConvergence) {
0263 if(computeU()) m_matrixU = jsvd.matrixU();
0264 if(computeV()) m_matrixV = jsvd.matrixV();
0265 m_singularValues = jsvd.singularValues();
0266 m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
0267 }
0268 return *this;
0269 }
0270
0271
0272 RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>();
0273 if (!(numext::isfinite)(scale)) {
0274 m_isInitialized = true;
0275 m_info = InvalidInput;
0276 return *this;
0277 }
0278
0279 if(scale==Literal(0)) scale = Literal(1);
0280 MatrixX copy;
0281 if (m_isTranspose) copy = matrix.adjoint()/scale;
0282 else copy = matrix/scale;
0283
0284
0285
0286 internal::UpperBidiagonalization<MatrixX> bid(copy);
0287
0288
0289 m_naiveU.setZero();
0290 m_naiveV.setZero();
0291
0292 m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
0293 m_computed.template bottomRows<1>().setZero();
0294 divide(0, m_diagSize - 1, 0, 0, 0);
0295 if (m_info != Success && m_info != NoConvergence) {
0296 m_isInitialized = true;
0297 return *this;
0298 }
0299
0300
0301 for (int i=0; i<m_diagSize; i++)
0302 {
0303 RealScalar a = abs(m_computed.coeff(i, i));
0304 m_singularValues.coeffRef(i) = a * scale;
0305 if (a<considerZero)
0306 {
0307 m_nonzeroSingularValues = i;
0308 m_singularValues.tail(m_diagSize - i - 1).setZero();
0309 break;
0310 }
0311 else if (i == m_diagSize - 1)
0312 {
0313 m_nonzeroSingularValues = i + 1;
0314 break;
0315 }
0316 }
0317
0318 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0319
0320
0321 #endif
0322 if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU);
0323 else copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV);
0324
0325 m_isInitialized = true;
0326 return *this;
0327 }
0328
0329
0330 template<typename MatrixType>
0331 template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
0332 void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
0333 {
0334
0335 if (computeU())
0336 {
0337 Index Ucols = m_computeThinU ? m_diagSize : householderU.cols();
0338 m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
0339 m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
0340 householderU.applyThisOnTheLeft(m_matrixU);
0341 }
0342 if (computeV())
0343 {
0344 Index Vcols = m_computeThinV ? m_diagSize : householderV.cols();
0345 m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
0346 m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
0347 householderV.applyThisOnTheLeft(m_matrixV);
0348 }
0349 }
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359 template<typename MatrixType>
0360 void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1)
0361 {
0362 Index n = A.rows();
0363 if(n>100)
0364 {
0365
0366
0367 Index n2 = n - n1;
0368 Map<MatrixXr> A1(m_workspace.data() , n1, n);
0369 Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n);
0370 Map<MatrixXr> B1(m_workspace.data()+ n*n, n, n);
0371 Map<MatrixXr> B2(m_workspace.data()+2*n*n, n, n);
0372 Index k1=0, k2=0;
0373 for(Index j=0; j<n; ++j)
0374 {
0375 if( (A.col(j).head(n1).array()!=Literal(0)).any() )
0376 {
0377 A1.col(k1) = A.col(j).head(n1);
0378 B1.row(k1) = B.row(j);
0379 ++k1;
0380 }
0381 if( (A.col(j).tail(n2).array()!=Literal(0)).any() )
0382 {
0383 A2.col(k2) = A.col(j).tail(n2);
0384 B2.row(k2) = B.row(j);
0385 ++k2;
0386 }
0387 }
0388
0389 A.topRows(n1).noalias() = A1.leftCols(k1) * B1.topRows(k1);
0390 A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2);
0391 }
0392 else
0393 {
0394 Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n);
0395 tmp.noalias() = A*B;
0396 A = tmp;
0397 }
0398 }
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410 template<typename MatrixType>
0411 void BDCSVD<MatrixType>::divide(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
0412 {
0413
0414 using std::pow;
0415 using std::sqrt;
0416 using std::abs;
0417 const Index n = lastCol - firstCol + 1;
0418 const Index k = n/2;
0419 const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
0420 RealScalar alphaK;
0421 RealScalar betaK;
0422 RealScalar r0;
0423 RealScalar lambda, phi, c0, s0;
0424 VectorType l, f;
0425
0426
0427 if (n < m_algoswap)
0428 {
0429
0430 JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
0431 m_info = b.info();
0432 if (m_info != Success && m_info != NoConvergence) return;
0433 if (m_compU)
0434 m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
0435 else
0436 {
0437 m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
0438 m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
0439 }
0440 if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
0441 m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
0442 m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
0443 return;
0444 }
0445
0446 alphaK = m_computed(firstCol + k, firstCol + k);
0447 betaK = m_computed(firstCol + k + 1, firstCol + k);
0448
0449
0450
0451 divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
0452 if (m_info != Success && m_info != NoConvergence) return;
0453 divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
0454 if (m_info != Success && m_info != NoConvergence) return;
0455
0456 if (m_compU)
0457 {
0458 lambda = m_naiveU(firstCol + k, firstCol + k);
0459 phi = m_naiveU(firstCol + k + 1, lastCol + 1);
0460 }
0461 else
0462 {
0463 lambda = m_naiveU(1, firstCol + k);
0464 phi = m_naiveU(0, lastCol + 1);
0465 }
0466 r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi));
0467 if (m_compU)
0468 {
0469 l = m_naiveU.row(firstCol + k).segment(firstCol, k);
0470 f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
0471 }
0472 else
0473 {
0474 l = m_naiveU.row(1).segment(firstCol, k);
0475 f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
0476 }
0477 if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1);
0478 if (r0<considerZero)
0479 {
0480 c0 = Literal(1);
0481 s0 = Literal(0);
0482 }
0483 else
0484 {
0485 c0 = alphaK * lambda / r0;
0486 s0 = betaK * phi / r0;
0487 }
0488
0489 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
0490 assert(m_naiveU.allFinite());
0491 assert(m_naiveV.allFinite());
0492 assert(m_computed.allFinite());
0493 #endif
0494
0495 if (m_compU)
0496 {
0497 MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
0498
0499 for (Index i = firstCol + k - 1; i >= firstCol; i--)
0500 m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1);
0501
0502 m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0);
0503
0504 m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0));
0505
0506 m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0;
0507
0508 m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
0509 }
0510 else
0511 {
0512 RealScalar q1 = m_naiveU(0, firstCol + k);
0513
0514 for (Index i = firstCol + k - 1; i >= firstCol; i--)
0515 m_naiveU(0, i + 1) = m_naiveU(0, i);
0516
0517 m_naiveU(0, firstCol) = (q1 * c0);
0518
0519 m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
0520
0521 m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
0522
0523 m_naiveU(1, lastCol + 1) *= c0;
0524 m_naiveU.row(1).segment(firstCol + 1, k).setZero();
0525 m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
0526 }
0527
0528 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
0529 assert(m_naiveU.allFinite());
0530 assert(m_naiveV.allFinite());
0531 assert(m_computed.allFinite());
0532 #endif
0533
0534 m_computed(firstCol + shift, firstCol + shift) = r0;
0535 m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real();
0536 m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real();
0537
0538 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0539 ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
0540 #endif
0541
0542 deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
0543 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0544 ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
0545 std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n";
0546 std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n";
0547 std::cout << "err: " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n";
0548 static int count = 0;
0549 std::cout << "# " << ++count << "\n\n";
0550 assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm());
0551
0552
0553 #endif
0554
0555
0556 MatrixXr UofSVD, VofSVD;
0557 VectorType singVals;
0558 computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD);
0559
0560 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
0561 assert(UofSVD.allFinite());
0562 assert(VofSVD.allFinite());
0563 #endif
0564
0565 if (m_compU)
0566 structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2);
0567 else
0568 {
0569 Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1);
0570 tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD;
0571 m_naiveU.middleCols(firstCol, n + 1) = tmp;
0572 }
0573
0574 if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2);
0575
0576 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
0577 assert(m_naiveU.allFinite());
0578 assert(m_naiveV.allFinite());
0579 assert(m_computed.allFinite());
0580 #endif
0581
0582 m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero();
0583 m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals;
0584 }
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594 template <typename MatrixType>
0595 void BDCSVD<MatrixType>::computeSVDofM(Eigen::Index firstCol, Eigen::Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
0596 {
0597 const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
0598 using std::abs;
0599 ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n);
0600 m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal();
0601 ArrayRef diag = m_workspace.head(n);
0602 diag(0) = Literal(0);
0603
0604
0605 singVals.resize(n);
0606 U.resize(n+1, n+1);
0607 if (m_compV) V.resize(n, n);
0608
0609 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0610 if (col0.hasNaN() || diag.hasNaN())
0611 std::cout << "\n\nHAS NAN\n\n";
0612 #endif
0613
0614
0615
0616
0617 Index actual_n = n;
0618 while(actual_n>1 && diag(actual_n-1)==Literal(0)) {--actual_n; eigen_internal_assert(col0(actual_n)==Literal(0)); }
0619 Index m = 0;
0620 for(Index k=0;k<actual_n;++k)
0621 if(abs(col0(k))>considerZero)
0622 m_workspaceI(m++) = k;
0623 Map<ArrayXi> perm(m_workspaceI.data(),m);
0624
0625 Map<ArrayXr> shifts(m_workspace.data()+1*n, n);
0626 Map<ArrayXr> mus(m_workspace.data()+2*n, n);
0627 Map<ArrayXr> zhat(m_workspace.data()+3*n, n);
0628
0629 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0630 std::cout << "computeSVDofM using:\n";
0631 std::cout << " z: " << col0.transpose() << "\n";
0632 std::cout << " d: " << diag.transpose() << "\n";
0633 #endif
0634
0635
0636 computeSingVals(col0, diag, perm, singVals, shifts, mus);
0637
0638 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0639 std::cout << " j: " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n";
0640 std::cout << " sing-val: " << singVals.transpose() << "\n";
0641 std::cout << " mu: " << mus.transpose() << "\n";
0642 std::cout << " shift: " << shifts.transpose() << "\n";
0643
0644 {
0645 std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n";
0646 std::cout << " check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n";
0647 assert((((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n) >= 0).all());
0648 std::cout << " check2 (>0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n";
0649 assert((((singVals.array()-diag) / singVals.array()).head(actual_n) >= 0).all());
0650 }
0651 #endif
0652
0653 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
0654 assert(singVals.allFinite());
0655 assert(mus.allFinite());
0656 assert(shifts.allFinite());
0657 #endif
0658
0659
0660 perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat);
0661 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0662 std::cout << " zhat: " << zhat.transpose() << "\n";
0663 #endif
0664
0665 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
0666 assert(zhat.allFinite());
0667 #endif
0668
0669 computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V);
0670
0671 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0672 std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n";
0673 std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n";
0674 #endif
0675
0676 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
0677 assert(m_naiveU.allFinite());
0678 assert(m_naiveV.allFinite());
0679 assert(m_computed.allFinite());
0680 assert(U.allFinite());
0681 assert(V.allFinite());
0682
0683
0684 #endif
0685
0686
0687
0688 for(Index i=0; i<actual_n-1; ++i)
0689 {
0690 if(singVals(i)>singVals(i+1))
0691 {
0692 using std::swap;
0693 swap(singVals(i),singVals(i+1));
0694 U.col(i).swap(U.col(i+1));
0695 if(m_compV) V.col(i).swap(V.col(i+1));
0696 }
0697 }
0698
0699 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
0700 {
0701 bool singular_values_sorted = (((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).array() >= 0).all();
0702 if(!singular_values_sorted)
0703 std::cout << "Singular values are not sorted: " << singVals.segment(1,actual_n).transpose() << "\n";
0704 assert(singular_values_sorted);
0705 }
0706 #endif
0707
0708
0709
0710 singVals.head(actual_n).reverseInPlace();
0711 U.leftCols(actual_n).rowwise().reverseInPlace();
0712 if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace();
0713
0714 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0715 JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) );
0716 std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n";
0717 std::cout << " * sing-val: " << singVals.transpose() << "\n";
0718
0719 #endif
0720 }
0721
0722 template <typename MatrixType>
0723 typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
0724 {
0725 Index m = perm.size();
0726 RealScalar res = Literal(1);
0727 for(Index i=0; i<m; ++i)
0728 {
0729 Index j = perm(i);
0730
0731
0732 res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu));
0733 }
0734 return res;
0735
0736 }
0737
0738 template <typename MatrixType>
0739 void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm,
0740 VectorType& singVals, ArrayRef shifts, ArrayRef mus)
0741 {
0742 using std::abs;
0743 using std::swap;
0744 using std::sqrt;
0745
0746 Index n = col0.size();
0747 Index actual_n = n;
0748
0749
0750 while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n;
0751
0752 for (Index k = 0; k < n; ++k)
0753 {
0754 if (col0(k) == Literal(0) || actual_n==1)
0755 {
0756
0757
0758 singVals(k) = k==0 ? col0(0) : diag(k);
0759 mus(k) = Literal(0);
0760 shifts(k) = k==0 ? col0(0) : diag(k);
0761 continue;
0762 }
0763
0764
0765 RealScalar left = diag(k);
0766 RealScalar right;
0767 if(k==actual_n-1)
0768 right = (diag(actual_n-1) + col0.matrix().norm());
0769 else
0770 {
0771
0772
0773
0774 Index l = k+1;
0775 while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); }
0776 right = diag(l);
0777 }
0778
0779
0780 RealScalar mid = left + (right-left) / Literal(2);
0781 RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0));
0782 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0783 std::cout << "right-left = " << right-left << "\n";
0784
0785
0786 std::cout << " = " << secularEq(left+RealScalar(0.000001)*(right-left), col0, diag, perm, diag, 0)
0787 << " " << secularEq(left+RealScalar(0.1) *(right-left), col0, diag, perm, diag, 0)
0788 << " " << secularEq(left+RealScalar(0.2) *(right-left), col0, diag, perm, diag, 0)
0789 << " " << secularEq(left+RealScalar(0.3) *(right-left), col0, diag, perm, diag, 0)
0790 << " " << secularEq(left+RealScalar(0.4) *(right-left), col0, diag, perm, diag, 0)
0791 << " " << secularEq(left+RealScalar(0.49) *(right-left), col0, diag, perm, diag, 0)
0792 << " " << secularEq(left+RealScalar(0.5) *(right-left), col0, diag, perm, diag, 0)
0793 << " " << secularEq(left+RealScalar(0.51) *(right-left), col0, diag, perm, diag, 0)
0794 << " " << secularEq(left+RealScalar(0.6) *(right-left), col0, diag, perm, diag, 0)
0795 << " " << secularEq(left+RealScalar(0.7) *(right-left), col0, diag, perm, diag, 0)
0796 << " " << secularEq(left+RealScalar(0.8) *(right-left), col0, diag, perm, diag, 0)
0797 << " " << secularEq(left+RealScalar(0.9) *(right-left), col0, diag, perm, diag, 0)
0798 << " " << secularEq(left+RealScalar(0.999999)*(right-left), col0, diag, perm, diag, 0) << "\n";
0799 #endif
0800 RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right;
0801
0802
0803 Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n);
0804 diagShifted = diag - shift;
0805
0806 if(k!=actual_n-1)
0807 {
0808
0809 RealScalar midShifted = (right - left) / RealScalar(2);
0810 if(shift==right)
0811 midShifted = -midShifted;
0812 RealScalar fMidShifted = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
0813 if(fMidShifted>0)
0814 {
0815
0816 shift = fMidShifted > Literal(0) ? left : right;
0817 diagShifted = diag - shift;
0818 }
0819 }
0820
0821
0822 RealScalar muPrev, muCur;
0823 if (shift == left)
0824 {
0825 muPrev = (right - left) * RealScalar(0.1);
0826 if (k == actual_n-1) muCur = right - left;
0827 else muCur = (right - left) * RealScalar(0.5);
0828 }
0829 else
0830 {
0831 muPrev = -(right - left) * RealScalar(0.1);
0832 muCur = -(right - left) * RealScalar(0.5);
0833 }
0834
0835 RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift);
0836 RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift);
0837 if (abs(fPrev) < abs(fCur))
0838 {
0839 swap(fPrev, fCur);
0840 swap(muPrev, muCur);
0841 }
0842
0843
0844
0845 bool useBisection = fPrev*fCur>Literal(0);
0846 while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
0847 {
0848 ++m_numIters;
0849
0850
0851 RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev);
0852 RealScalar b = fCur - a / muCur;
0853
0854 RealScalar muZero = -a/b;
0855 RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift);
0856
0857 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
0858 assert((numext::isfinite)(fZero));
0859 #endif
0860
0861 muPrev = muCur;
0862 fPrev = fCur;
0863 muCur = muZero;
0864 fCur = fZero;
0865
0866 if (shift == left && (muCur < Literal(0) || muCur > right - left)) useBisection = true;
0867 if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true;
0868 if (abs(fCur)>abs(fPrev)) useBisection = true;
0869 }
0870
0871
0872 if (useBisection)
0873 {
0874 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0875 std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n";
0876 #endif
0877 RealScalar leftShifted, rightShifted;
0878 if (shift == left)
0879 {
0880
0881
0882 leftShifted = numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
0883
0884
0885 eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) );
0886
0887
0888 rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51));
0889 }
0890 else
0891 {
0892 leftShifted = -(right - left) * RealScalar(0.51);
0893 if(k+1<n)
0894 rightShifted = -numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
0895 else
0896 rightShifted = -(std::numeric_limits<RealScalar>::min)();
0897 }
0898
0899 RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift);
0900 eigen_internal_assert(fLeft<Literal(0));
0901
0902 #if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_SANITY_CHECKS
0903 RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift);
0904 #endif
0905
0906 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
0907 if(!(numext::isfinite)(fLeft))
0908 std::cout << "f(" << leftShifted << ") =" << fLeft << " ; " << left << " " << shift << " " << right << "\n";
0909 assert((numext::isfinite)(fLeft));
0910
0911 if(!(numext::isfinite)(fRight))
0912 std::cout << "f(" << rightShifted << ") =" << fRight << " ; " << left << " " << shift << " " << right << "\n";
0913
0914 #endif
0915
0916 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0917 if(!(fLeft * fRight<0))
0918 {
0919 std::cout << "f(leftShifted) using leftShifted=" << leftShifted << " ; diagShifted(1:10):" << diagShifted.head(10).transpose() << "\n ; "
0920 << "left==shift=" << bool(left==shift) << " ; left-shift = " << (left-shift) << "\n";
0921 std::cout << "k=" << k << ", " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; "
0922 << "[" << left << " .. " << right << "] -> [" << leftShifted << " " << rightShifted << "], shift=" << shift
0923 << " , f(right)=" << secularEq(0, col0, diag, perm, diagShifted, shift)
0924 << " == " << secularEq(right, col0, diag, perm, diag, 0) << " == " << fRight << "\n";
0925 }
0926 #endif
0927 eigen_internal_assert(fLeft * fRight < Literal(0));
0928
0929 if(fLeft<Literal(0))
0930 {
0931 while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
0932 {
0933 RealScalar midShifted = (leftShifted + rightShifted) / Literal(2);
0934 fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
0935 eigen_internal_assert((numext::isfinite)(fMid));
0936
0937 if (fLeft * fMid < Literal(0))
0938 {
0939 rightShifted = midShifted;
0940 }
0941 else
0942 {
0943 leftShifted = midShifted;
0944 fLeft = fMid;
0945 }
0946 }
0947 muCur = (leftShifted + rightShifted) / Literal(2);
0948 }
0949 else
0950 {
0951
0952
0953
0954
0955 muCur = (right - left) * RealScalar(0.5);
0956 if(shift == right)
0957 muCur = -muCur;
0958 }
0959 }
0960
0961 singVals[k] = shift + muCur;
0962 shifts[k] = shift;
0963 mus[k] = muCur;
0964
0965 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
0966 if(k+1<n)
0967 std::cout << "found " << singVals[k] << " == " << shift << " + " << muCur << " from " << diag(k) << " .. " << diag(k+1) << "\n";
0968 #endif
0969 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
0970 assert(k==0 || singVals[k]>=singVals[k-1]);
0971 assert(singVals[k]>=diag(k));
0972 #endif
0973
0974
0975
0976
0977
0978
0979 }
0980 }
0981
0982
0983
0984 template <typename MatrixType>
0985 void BDCSVD<MatrixType>::perturbCol0
0986 (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
0987 const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat)
0988 {
0989 using std::sqrt;
0990 Index n = col0.size();
0991 Index m = perm.size();
0992 if(m==0)
0993 {
0994 zhat.setZero();
0995 return;
0996 }
0997 Index lastIdx = perm(m-1);
0998
0999 for (Index k = 0; k < n; ++k)
1000 {
1001 if (col0(k) == Literal(0))
1002 zhat(k) = Literal(0);
1003 else
1004 {
1005
1006 RealScalar dk = diag(k);
1007 RealScalar prod = (singVals(lastIdx) + dk) * (mus(lastIdx) + (shifts(lastIdx) - dk));
1008 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1009 if(prod<0) {
1010 std::cout << "k = " << k << " ; z(k)=" << col0(k) << ", diag(k)=" << dk << "\n";
1011 std::cout << "prod = " << "(" << singVals(lastIdx) << " + " << dk << ") * (" << mus(lastIdx) << " + (" << shifts(lastIdx) << " - " << dk << "))" << "\n";
1012 std::cout << " = " << singVals(lastIdx) + dk << " * " << mus(lastIdx) + (shifts(lastIdx) - dk) << "\n";
1013 }
1014 assert(prod>=0);
1015 #endif
1016
1017 for(Index l = 0; l<m; ++l)
1018 {
1019 Index i = perm(l);
1020 if(i!=k)
1021 {
1022 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1023 if(i>=k && (l==0 || l-1>=m))
1024 {
1025 std::cout << "Error in perturbCol0\n";
1026 std::cout << " " << k << "/" << n << " " << l << "/" << m << " " << i << "/" << n << " ; " << col0(k) << " " << diag(k) << " " << "\n";
1027 std::cout << " " <<diag(i) << "\n";
1028 Index j = (i<k ) ? i : perm(l-1);
1029 std::cout << " " << "j=" << j << "\n";
1030 }
1031 #endif
1032 Index j = i<k ? i : perm(l-1);
1033 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1034 if(!(dk!=Literal(0) || diag(i)!=Literal(0)))
1035 {
1036 std::cout << "k=" << k << ", i=" << i << ", l=" << l << ", perm.size()=" << perm.size() << "\n";
1037 }
1038 assert(dk!=Literal(0) || diag(i)!=Literal(0));
1039 #endif
1040 prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk)));
1041 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1042 assert(prod>=0);
1043 #endif
1044 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1045 if(i!=k && numext::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 )
1046 std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk))
1047 << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n";
1048 #endif
1049 }
1050 }
1051 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1052 std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(lastIdx) + dk) << " * " << mus(lastIdx) + shifts(lastIdx) << " - " << dk << "\n";
1053 #endif
1054 RealScalar tmp = sqrt(prod);
1055 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1056 assert((numext::isfinite)(tmp));
1057 #endif
1058 zhat(k) = col0(k) > Literal(0) ? RealScalar(tmp) : RealScalar(-tmp);
1059 }
1060 }
1061 }
1062
1063
1064 template <typename MatrixType>
1065 void BDCSVD<MatrixType>::computeSingVecs
1066 (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
1067 const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V)
1068 {
1069 Index n = zhat.size();
1070 Index m = perm.size();
1071
1072 for (Index k = 0; k < n; ++k)
1073 {
1074 if (zhat(k) == Literal(0))
1075 {
1076 U.col(k) = VectorType::Unit(n+1, k);
1077 if (m_compV) V.col(k) = VectorType::Unit(n, k);
1078 }
1079 else
1080 {
1081 U.col(k).setZero();
1082 for(Index l=0;l<m;++l)
1083 {
1084 Index i = perm(l);
1085 U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
1086 }
1087 U(n,k) = Literal(0);
1088 U.col(k).normalize();
1089
1090 if (m_compV)
1091 {
1092 V.col(k).setZero();
1093 for(Index l=1;l<m;++l)
1094 {
1095 Index i = perm(l);
1096 V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
1097 }
1098 V(0,k) = Literal(-1);
1099 V.col(k).normalize();
1100 }
1101 }
1102 }
1103 U.col(n) = VectorType::Unit(n+1, n);
1104 }
1105
1106
1107
1108
1109
1110 template <typename MatrixType>
1111 void BDCSVD<MatrixType>::deflation43(Eigen::Index firstCol, Eigen::Index shift, Eigen::Index i, Eigen::Index size)
1112 {
1113 using std::abs;
1114 using std::sqrt;
1115 using std::pow;
1116 Index start = firstCol + shift;
1117 RealScalar c = m_computed(start, start);
1118 RealScalar s = m_computed(start+i, start);
1119 RealScalar r = numext::hypot(c,s);
1120 if (r == Literal(0))
1121 {
1122 m_computed(start+i, start+i) = Literal(0);
1123 return;
1124 }
1125 m_computed(start,start) = r;
1126 m_computed(start+i, start) = Literal(0);
1127 m_computed(start+i, start+i) = Literal(0);
1128
1129 JacobiRotation<RealScalar> J(c/r,-s/r);
1130 if (m_compU) m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J);
1131 else m_naiveU.applyOnTheRight(firstCol, firstCol+i, J);
1132 }
1133
1134
1135
1136
1137
1138
1139 template <typename MatrixType>
1140 void BDCSVD<MatrixType>::deflation44(Eigen::Index firstColu , Eigen::Index firstColm, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index i, Eigen::Index j, Eigen::Index size)
1141 {
1142 using std::abs;
1143 using std::sqrt;
1144 using std::conj;
1145 using std::pow;
1146 RealScalar c = m_computed(firstColm+i, firstColm);
1147 RealScalar s = m_computed(firstColm+j, firstColm);
1148 RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
1149 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1150 std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; "
1151 << m_computed(firstColm + i-1, firstColm) << " "
1152 << m_computed(firstColm + i, firstColm) << " "
1153 << m_computed(firstColm + i+1, firstColm) << " "
1154 << m_computed(firstColm + i+2, firstColm) << "\n";
1155 std::cout << m_computed(firstColm + i-1, firstColm + i-1) << " "
1156 << m_computed(firstColm + i, firstColm+i) << " "
1157 << m_computed(firstColm + i+1, firstColm+i+1) << " "
1158 << m_computed(firstColm + i+2, firstColm+i+2) << "\n";
1159 #endif
1160 if (r==Literal(0))
1161 {
1162 m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
1163 return;
1164 }
1165 c/=r;
1166 s/=r;
1167 m_computed(firstColm + i, firstColm) = r;
1168 m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
1169 m_computed(firstColm + j, firstColm) = Literal(0);
1170
1171 JacobiRotation<RealScalar> J(c,-s);
1172 if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J);
1173 else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J);
1174 if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J);
1175 }
1176
1177
1178
1179 template <typename MatrixType>
1180 void BDCSVD<MatrixType>::deflation(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index k, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
1181 {
1182 using std::sqrt;
1183 using std::abs;
1184 const Index length = lastCol + 1 - firstCol;
1185
1186 Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1);
1187 Diagonal<MatrixXr> fulldiag(m_computed);
1188 VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length);
1189
1190 const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
1191 RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff();
1192 RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag);
1193 RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag);
1194
1195 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1196 assert(m_naiveU.allFinite());
1197 assert(m_naiveV.allFinite());
1198 assert(m_computed.allFinite());
1199 #endif
1200
1201 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1202 std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n";
1203 #endif
1204
1205
1206 if (diag(0) < epsilon_coarse)
1207 {
1208 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1209 std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n";
1210 #endif
1211 diag(0) = epsilon_coarse;
1212 }
1213
1214
1215 for (Index i=1;i<length;++i)
1216 if (abs(col0(i)) < epsilon_strict)
1217 {
1218 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1219 std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << " (diag(" << i << ")=" << diag(i) << ")\n";
1220 #endif
1221 col0(i) = Literal(0);
1222 }
1223
1224
1225 for (Index i=1;i<length; i++)
1226 if (diag(i) < epsilon_coarse)
1227 {
1228 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1229 std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n";
1230 #endif
1231 deflation43(firstCol, shift, i, length);
1232 }
1233
1234 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1235 assert(m_naiveU.allFinite());
1236 assert(m_naiveV.allFinite());
1237 assert(m_computed.allFinite());
1238 #endif
1239 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1240 std::cout << "to be sorted: " << diag.transpose() << "\n\n";
1241 std::cout << " : " << col0.transpose() << "\n\n";
1242 #endif
1243 {
1244
1245
1246 bool total_deflation = (col0.tail(length-1).array()<considerZero).all();
1247
1248
1249
1250 Index *permutation = m_workspaceI.data();
1251 {
1252 permutation[0] = 0;
1253 Index p = 1;
1254
1255
1256 for(Index i=1; i<length; ++i)
1257 if(abs(diag(i))<considerZero)
1258 permutation[p++] = i;
1259
1260 Index i=1, j=k+1;
1261 for( ; p < length; ++p)
1262 {
1263 if (i > k) permutation[p] = j++;
1264 else if (j >= length) permutation[p] = i++;
1265 else if (diag(i) < diag(j)) permutation[p] = j++;
1266 else permutation[p] = i++;
1267 }
1268 }
1269
1270
1271 if(total_deflation)
1272 {
1273 for(Index i=1; i<length; ++i)
1274 {
1275 Index pi = permutation[i];
1276 if(abs(diag(pi))<considerZero || diag(0)<diag(pi))
1277 permutation[i-1] = permutation[i];
1278 else
1279 {
1280 permutation[i-1] = 0;
1281 break;
1282 }
1283 }
1284 }
1285
1286
1287 Index *realInd = m_workspaceI.data()+length;
1288 Index *realCol = m_workspaceI.data()+2*length;
1289
1290 for(int pos = 0; pos< length; pos++)
1291 {
1292 realCol[pos] = pos;
1293 realInd[pos] = pos;
1294 }
1295
1296 for(Index i = total_deflation?0:1; i < length; i++)
1297 {
1298 const Index pi = permutation[length - (total_deflation ? i+1 : i)];
1299 const Index J = realCol[pi];
1300
1301 using std::swap;
1302
1303 swap(diag(i), diag(J));
1304 if(i!=0 && J!=0) swap(col0(i), col0(J));
1305
1306
1307 if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1));
1308 else m_naiveU.col(firstCol+i).segment(0, 2) .swap(m_naiveU.col(firstCol+J).segment(0, 2));
1309 if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length));
1310
1311
1312 const Index realI = realInd[i];
1313 realCol[realI] = J;
1314 realCol[pi] = i;
1315 realInd[J] = realI;
1316 realInd[i] = pi;
1317 }
1318 }
1319 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1320 std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n";
1321 std::cout << " : " << col0.transpose() << "\n\n";
1322 #endif
1323
1324
1325 {
1326 Index i = length-1;
1327 while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i;
1328 for(; i>1;--i)
1329 if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag )
1330 {
1331 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1332 std::cout << "deflation 4.4 with i = " << i << " because " << diag(i) << " - " << diag(i-1) << " == " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*maxDiag << "\n";
1333 #endif
1334 eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted");
1335 deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length);
1336 }
1337 }
1338
1339 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1340 for(Index j=2;j<length;++j)
1341 assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero);
1342 #endif
1343
1344 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1345 assert(m_naiveU.allFinite());
1346 assert(m_naiveV.allFinite());
1347 assert(m_computed.allFinite());
1348 #endif
1349 }
1350
1351
1352
1353
1354
1355
1356
1357 template<typename Derived>
1358 BDCSVD<typename MatrixBase<Derived>::PlainObject>
1359 MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
1360 {
1361 return BDCSVD<PlainObject>(*this, computationOptions);
1362 }
1363
1364 }
1365
1366 #endif