File indexing completed on 2025-04-04 08:48:40
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #ifndef EIGEN_KLUSUPPORT_H
0011 #define EIGEN_KLUSUPPORT_H
0012
0013 namespace Eigen {
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034 inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B [ ], klu_common *Common, double) {
0035 return klu_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B, Common);
0036 }
0037
0038 inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double>B[], klu_common *Common, std::complex<double>) {
0039 return klu_z_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), &numext::real_ref(B[0]), Common);
0040 }
0041
0042 inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], klu_common *Common, double) {
0043 return klu_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B, Common);
0044 }
0045
0046 inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double>B[], klu_common *Common, std::complex<double>) {
0047 return klu_z_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), &numext::real_ref(B[0]), 0, Common);
0048 }
0049
0050 inline klu_numeric* klu_factor(int Ap [ ], int Ai [ ], double Ax [ ], klu_symbolic *Symbolic, klu_common *Common, double) {
0051 return klu_factor(Ap, Ai, Ax, Symbolic, Common);
0052 }
0053
0054 inline klu_numeric* klu_factor(int Ap[], int Ai[], std::complex<double> Ax[], klu_symbolic *Symbolic, klu_common *Common, std::complex<double>) {
0055 return klu_z_factor(Ap, Ai, &numext::real_ref(Ax[0]), Symbolic, Common);
0056 }
0057
0058
0059 template<typename _MatrixType>
0060 class KLU : public SparseSolverBase<KLU<_MatrixType> >
0061 {
0062 protected:
0063 typedef SparseSolverBase<KLU<_MatrixType> > Base;
0064 using Base::m_isInitialized;
0065 public:
0066 using Base::_solve_impl;
0067 typedef _MatrixType MatrixType;
0068 typedef typename MatrixType::Scalar Scalar;
0069 typedef typename MatrixType::RealScalar RealScalar;
0070 typedef typename MatrixType::StorageIndex StorageIndex;
0071 typedef Matrix<Scalar,Dynamic,1> Vector;
0072 typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
0073 typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
0074 typedef SparseMatrix<Scalar> LUMatrixType;
0075 typedef SparseMatrix<Scalar,ColMajor,int> KLUMatrixType;
0076 typedef Ref<const KLUMatrixType, StandardCompressedFormat> KLUMatrixRef;
0077 enum {
0078 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
0079 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
0080 };
0081
0082 public:
0083
0084 KLU()
0085 : m_dummy(0,0), mp_matrix(m_dummy)
0086 {
0087 init();
0088 }
0089
0090 template<typename InputMatrixType>
0091 explicit KLU(const InputMatrixType& matrix)
0092 : mp_matrix(matrix)
0093 {
0094 init();
0095 compute(matrix);
0096 }
0097
0098 ~KLU()
0099 {
0100 if(m_symbolic) klu_free_symbolic(&m_symbolic,&m_common);
0101 if(m_numeric) klu_free_numeric(&m_numeric,&m_common);
0102 }
0103
0104 EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return mp_matrix.rows(); }
0105 EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return mp_matrix.cols(); }
0106
0107
0108
0109
0110
0111
0112 ComputationInfo info() const
0113 {
0114 eigen_assert(m_isInitialized && "Decomposition is not initialized.");
0115 return m_info;
0116 }
0117 #if 0
0118 inline const LUMatrixType& matrixL() const
0119 {
0120 if (m_extractedDataAreDirty) extractData();
0121 return m_l;
0122 }
0123
0124 inline const LUMatrixType& matrixU() const
0125 {
0126 if (m_extractedDataAreDirty) extractData();
0127 return m_u;
0128 }
0129
0130 inline const IntColVectorType& permutationP() const
0131 {
0132 if (m_extractedDataAreDirty) extractData();
0133 return m_p;
0134 }
0135
0136 inline const IntRowVectorType& permutationQ() const
0137 {
0138 if (m_extractedDataAreDirty) extractData();
0139 return m_q;
0140 }
0141 #endif
0142
0143
0144
0145
0146 template<typename InputMatrixType>
0147 void compute(const InputMatrixType& matrix)
0148 {
0149 if(m_symbolic) klu_free_symbolic(&m_symbolic, &m_common);
0150 if(m_numeric) klu_free_numeric(&m_numeric, &m_common);
0151 grab(matrix.derived());
0152 analyzePattern_impl();
0153 factorize_impl();
0154 }
0155
0156
0157
0158
0159
0160
0161
0162 template<typename InputMatrixType>
0163 void analyzePattern(const InputMatrixType& matrix)
0164 {
0165 if(m_symbolic) klu_free_symbolic(&m_symbolic, &m_common);
0166 if(m_numeric) klu_free_numeric(&m_numeric, &m_common);
0167
0168 grab(matrix.derived());
0169
0170 analyzePattern_impl();
0171 }
0172
0173
0174
0175
0176
0177
0178 inline const klu_common& kluCommon() const
0179 {
0180 return m_common;
0181 }
0182
0183
0184
0185
0186
0187
0188
0189 inline klu_common& kluCommon()
0190 {
0191 return m_common;
0192 }
0193
0194
0195
0196
0197
0198
0199
0200 template<typename InputMatrixType>
0201 void factorize(const InputMatrixType& matrix)
0202 {
0203 eigen_assert(m_analysisIsOk && "KLU: you must first call analyzePattern()");
0204 if(m_numeric)
0205 klu_free_numeric(&m_numeric,&m_common);
0206
0207 grab(matrix.derived());
0208
0209 factorize_impl();
0210 }
0211
0212
0213 template<typename BDerived,typename XDerived>
0214 bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
0215
0216 #if 0
0217 Scalar determinant() const;
0218
0219 void extractData() const;
0220 #endif
0221
0222 protected:
0223
0224 void init()
0225 {
0226 m_info = InvalidInput;
0227 m_isInitialized = false;
0228 m_numeric = 0;
0229 m_symbolic = 0;
0230 m_extractedDataAreDirty = true;
0231
0232 klu_defaults(&m_common);
0233 }
0234
0235 void analyzePattern_impl()
0236 {
0237 m_info = InvalidInput;
0238 m_analysisIsOk = false;
0239 m_factorizationIsOk = false;
0240 m_symbolic = klu_analyze(internal::convert_index<int>(mp_matrix.rows()),
0241 const_cast<StorageIndex*>(mp_matrix.outerIndexPtr()), const_cast<StorageIndex*>(mp_matrix.innerIndexPtr()),
0242 &m_common);
0243 if (m_symbolic) {
0244 m_isInitialized = true;
0245 m_info = Success;
0246 m_analysisIsOk = true;
0247 m_extractedDataAreDirty = true;
0248 }
0249 }
0250
0251 void factorize_impl()
0252 {
0253
0254 m_numeric = klu_factor(const_cast<StorageIndex*>(mp_matrix.outerIndexPtr()), const_cast<StorageIndex*>(mp_matrix.innerIndexPtr()), const_cast<Scalar*>(mp_matrix.valuePtr()),
0255 m_symbolic, &m_common, Scalar());
0256
0257
0258 m_info = m_numeric ? Success : NumericalIssue;
0259 m_factorizationIsOk = m_numeric ? 1 : 0;
0260 m_extractedDataAreDirty = true;
0261 }
0262
0263 template<typename MatrixDerived>
0264 void grab(const EigenBase<MatrixDerived> &A)
0265 {
0266 mp_matrix.~KLUMatrixRef();
0267 ::new (&mp_matrix) KLUMatrixRef(A.derived());
0268 }
0269
0270 void grab(const KLUMatrixRef &A)
0271 {
0272 if(&(A.derived()) != &mp_matrix)
0273 {
0274 mp_matrix.~KLUMatrixRef();
0275 ::new (&mp_matrix) KLUMatrixRef(A);
0276 }
0277 }
0278
0279
0280 #if 0
0281 mutable LUMatrixType m_l;
0282 mutable LUMatrixType m_u;
0283 mutable IntColVectorType m_p;
0284 mutable IntRowVectorType m_q;
0285 #endif
0286
0287 KLUMatrixType m_dummy;
0288 KLUMatrixRef mp_matrix;
0289
0290 klu_numeric* m_numeric;
0291 klu_symbolic* m_symbolic;
0292 klu_common m_common;
0293 mutable ComputationInfo m_info;
0294 int m_factorizationIsOk;
0295 int m_analysisIsOk;
0296 mutable bool m_extractedDataAreDirty;
0297
0298 private:
0299 KLU(const KLU& ) { }
0300 };
0301
0302 #if 0
0303 template<typename MatrixType>
0304 void KLU<MatrixType>::extractData() const
0305 {
0306 if (m_extractedDataAreDirty)
0307 {
0308 eigen_assert(false && "KLU: extractData Not Yet Implemented");
0309
0310
0311 int lnz, unz, rows, cols, nz_udiag;
0312 umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
0313
0314
0315 m_l.resize(rows,(std::min)(rows,cols));
0316 m_l.resizeNonZeros(lnz);
0317
0318 m_u.resize((std::min)(rows,cols),cols);
0319 m_u.resizeNonZeros(unz);
0320
0321 m_p.resize(rows);
0322 m_q.resize(cols);
0323
0324
0325 umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
0326 m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
0327 m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
0328
0329 m_extractedDataAreDirty = false;
0330 }
0331 }
0332
0333 template<typename MatrixType>
0334 typename KLU<MatrixType>::Scalar KLU<MatrixType>::determinant() const
0335 {
0336 eigen_assert(false && "KLU: extractData Not Yet Implemented");
0337 return Scalar();
0338 }
0339 #endif
0340
0341 template<typename MatrixType>
0342 template<typename BDerived,typename XDerived>
0343 bool KLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
0344 {
0345 Index rhsCols = b.cols();
0346 EIGEN_STATIC_ASSERT((XDerived::Flags&RowMajorBit)==0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
0347 eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");
0348
0349 x = b;
0350 int info = klu_solve(m_symbolic, m_numeric, b.rows(), rhsCols, x.const_cast_derived().data(), const_cast<klu_common*>(&m_common), Scalar());
0351
0352 m_info = info!=0 ? Success : NumericalIssue;
0353 return true;
0354 }
0355
0356 }
0357
0358 #endif