|
||||
Warning, file /include/eigen3/Eigen/src/Core/util/IntegralConstant.h was not indexed or was modified since last indexation (in which case cross-reference links may be missing, inaccurate or erroneous).
0001 // This file is part of Eigen, a lightweight C++ template library 0002 // for linear algebra. 0003 // 0004 // Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr> 0005 // 0006 // This Source Code Form is subject to the terms of the Mozilla 0007 // Public License v. 2.0. If a copy of the MPL was not distributed 0008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 0009 0010 0011 #ifndef EIGEN_INTEGRAL_CONSTANT_H 0012 #define EIGEN_INTEGRAL_CONSTANT_H 0013 0014 namespace Eigen { 0015 0016 namespace internal { 0017 0018 template<int N> class FixedInt; 0019 template<int N> class VariableAndFixedInt; 0020 0021 /** \internal 0022 * \class FixedInt 0023 * 0024 * This class embeds a compile-time integer \c N. 0025 * 0026 * It is similar to c++11 std::integral_constant<int,N> but with some additional features 0027 * such as: 0028 * - implicit conversion to int 0029 * - arithmetic and some bitwise operators: -, +, *, /, %, &, | 0030 * - c++98/14 compatibility with fix<N> and fix<N>() syntax to define integral constants. 0031 * 0032 * It is strongly discouraged to directly deal with this class FixedInt. Instances are expcected to 0033 * be created by the user using Eigen::fix<N> or Eigen::fix<N>(). In C++98-11, the former syntax does 0034 * not create a FixedInt<N> instance but rather a point to function that needs to be \em cleaned-up 0035 * using the generic helper: 0036 * \code 0037 * internal::cleanup_index_type<T>::type 0038 * internal::cleanup_index_type<T,DynamicKey>::type 0039 * \endcode 0040 * where T can a FixedInt<N>, a pointer to function FixedInt<N> (*)(), or numerous other integer-like representations. 0041 * \c DynamicKey is either Dynamic (default) or DynamicIndex and used to identify true compile-time values. 0042 * 0043 * For convenience, you can extract the compile-time value \c N in a generic way using the following helper: 0044 * \code 0045 * internal::get_fixed_value<T,DefaultVal>::value 0046 * \endcode 0047 * that will give you \c N if T equals FixedInt<N> or FixedInt<N> (*)(), and \c DefaultVal if T does not embed any compile-time value (e.g., T==int). 0048 * 0049 * \sa fix<N>, class VariableAndFixedInt 0050 */ 0051 template<int N> class FixedInt 0052 { 0053 public: 0054 static const int value = N; 0055 EIGEN_CONSTEXPR operator int() const { return value; } 0056 FixedInt() {} 0057 FixedInt( VariableAndFixedInt<N> other) { 0058 #ifndef EIGEN_INTERNAL_DEBUGGING 0059 EIGEN_UNUSED_VARIABLE(other); 0060 #endif 0061 eigen_internal_assert(int(other)==N); 0062 } 0063 0064 FixedInt<-N> operator-() const { return FixedInt<-N>(); } 0065 template<int M> 0066 FixedInt<N+M> operator+( FixedInt<M>) const { return FixedInt<N+M>(); } 0067 template<int M> 0068 FixedInt<N-M> operator-( FixedInt<M>) const { return FixedInt<N-M>(); } 0069 template<int M> 0070 FixedInt<N*M> operator*( FixedInt<M>) const { return FixedInt<N*M>(); } 0071 template<int M> 0072 FixedInt<N/M> operator/( FixedInt<M>) const { return FixedInt<N/M>(); } 0073 template<int M> 0074 FixedInt<N%M> operator%( FixedInt<M>) const { return FixedInt<N%M>(); } 0075 template<int M> 0076 FixedInt<N|M> operator|( FixedInt<M>) const { return FixedInt<N|M>(); } 0077 template<int M> 0078 FixedInt<N&M> operator&( FixedInt<M>) const { return FixedInt<N&M>(); } 0079 0080 #if EIGEN_HAS_CXX14_VARIABLE_TEMPLATES 0081 // Needed in C++14 to allow fix<N>(): 0082 FixedInt operator() () const { return *this; } 0083 0084 VariableAndFixedInt<N> operator() (int val) const { return VariableAndFixedInt<N>(val); } 0085 #else 0086 FixedInt ( FixedInt<N> (*)() ) {} 0087 #endif 0088 0089 #if EIGEN_HAS_CXX11 0090 FixedInt(std::integral_constant<int,N>) {} 0091 #endif 0092 }; 0093 0094 /** \internal 0095 * \class VariableAndFixedInt 0096 * 0097 * This class embeds both a compile-time integer \c N and a runtime integer. 0098 * Both values are supposed to be equal unless the compile-time value \c N has a special 0099 * value meaning that the runtime-value should be used. Depending on the context, this special 0100 * value can be either Eigen::Dynamic (for positive quantities) or Eigen::DynamicIndex (for 0101 * quantities that can be negative). 0102 * 0103 * It is the return-type of the function Eigen::fix<N>(int), and most of the time this is the only 0104 * way it is used. It is strongly discouraged to directly deal with instances of VariableAndFixedInt. 0105 * Indeed, in order to write generic code, it is the responsibility of the callee to properly convert 0106 * it to either a true compile-time quantity (i.e. a FixedInt<N>), or to a runtime quantity (e.g., an Index) 0107 * using the following generic helper: 0108 * \code 0109 * internal::cleanup_index_type<T>::type 0110 * internal::cleanup_index_type<T,DynamicKey>::type 0111 * \endcode 0112 * where T can be a template instantiation of VariableAndFixedInt or numerous other integer-like representations. 0113 * \c DynamicKey is either Dynamic (default) or DynamicIndex and used to identify true compile-time values. 0114 * 0115 * For convenience, you can also extract the compile-time value \c N using the following helper: 0116 * \code 0117 * internal::get_fixed_value<T,DefaultVal>::value 0118 * \endcode 0119 * that will give you \c N if T equals VariableAndFixedInt<N>, and \c DefaultVal if T does not embed any compile-time value (e.g., T==int). 0120 * 0121 * \sa fix<N>(int), class FixedInt 0122 */ 0123 template<int N> class VariableAndFixedInt 0124 { 0125 public: 0126 static const int value = N; 0127 operator int() const { return m_value; } 0128 VariableAndFixedInt(int val) { m_value = val; } 0129 protected: 0130 int m_value; 0131 }; 0132 0133 template<typename T, int Default=Dynamic> struct get_fixed_value { 0134 static const int value = Default; 0135 }; 0136 0137 template<int N,int Default> struct get_fixed_value<FixedInt<N>,Default> { 0138 static const int value = N; 0139 }; 0140 0141 #if !EIGEN_HAS_CXX14 0142 template<int N,int Default> struct get_fixed_value<FixedInt<N> (*)(),Default> { 0143 static const int value = N; 0144 }; 0145 #endif 0146 0147 template<int N,int Default> struct get_fixed_value<VariableAndFixedInt<N>,Default> { 0148 static const int value = N ; 0149 }; 0150 0151 template<typename T, int N, int Default> 0152 struct get_fixed_value<variable_if_dynamic<T,N>,Default> { 0153 static const int value = N; 0154 }; 0155 0156 template<typename T> EIGEN_DEVICE_FUNC Index get_runtime_value(const T &x) { return x; } 0157 #if !EIGEN_HAS_CXX14 0158 template<int N> EIGEN_DEVICE_FUNC Index get_runtime_value(FixedInt<N> (*)()) { return N; } 0159 #endif 0160 0161 // Cleanup integer/FixedInt/VariableAndFixedInt/etc types: 0162 0163 // By default, no cleanup: 0164 template<typename T, int DynamicKey=Dynamic, typename EnableIf=void> struct cleanup_index_type { typedef T type; }; 0165 0166 // Convert any integral type (e.g., short, int, unsigned int, etc.) to Eigen::Index 0167 template<typename T, int DynamicKey> struct cleanup_index_type<T,DynamicKey,typename internal::enable_if<internal::is_integral<T>::value>::type> { typedef Index type; }; 0168 0169 #if !EIGEN_HAS_CXX14 0170 // In c++98/c++11, fix<N> is a pointer to function that we better cleanup to a true FixedInt<N>: 0171 template<int N, int DynamicKey> struct cleanup_index_type<FixedInt<N> (*)(), DynamicKey> { typedef FixedInt<N> type; }; 0172 #endif 0173 0174 // If VariableAndFixedInt does not match DynamicKey, then we turn it to a pure compile-time value: 0175 template<int N, int DynamicKey> struct cleanup_index_type<VariableAndFixedInt<N>, DynamicKey> { typedef FixedInt<N> type; }; 0176 // If VariableAndFixedInt matches DynamicKey, then we turn it to a pure runtime-value (aka Index): 0177 template<int DynamicKey> struct cleanup_index_type<VariableAndFixedInt<DynamicKey>, DynamicKey> { typedef Index type; }; 0178 0179 #if EIGEN_HAS_CXX11 0180 template<int N, int DynamicKey> struct cleanup_index_type<std::integral_constant<int,N>, DynamicKey> { typedef FixedInt<N> type; }; 0181 #endif 0182 0183 } // end namespace internal 0184 0185 #ifndef EIGEN_PARSED_BY_DOXYGEN 0186 0187 #if EIGEN_HAS_CXX14_VARIABLE_TEMPLATES 0188 template<int N> 0189 static const internal::FixedInt<N> fix{}; 0190 #else 0191 template<int N> 0192 inline internal::FixedInt<N> fix() { return internal::FixedInt<N>(); } 0193 0194 // The generic typename T is mandatory. Otherwise, a code like fix<N> could refer to either the function above or this next overload. 0195 // This way a code like fix<N> can only refer to the previous function. 0196 template<int N,typename T> 0197 inline internal::VariableAndFixedInt<N> fix(T val) { return internal::VariableAndFixedInt<N>(internal::convert_index<int>(val)); } 0198 #endif 0199 0200 #else // EIGEN_PARSED_BY_DOXYGEN 0201 0202 /** \var fix<N>() 0203 * \ingroup Core_Module 0204 * 0205 * This \em identifier permits to construct an object embedding a compile-time integer \c N. 0206 * 0207 * \tparam N the compile-time integer value 0208 * 0209 * It is typically used in conjunction with the Eigen::seq and Eigen::seqN functions to pass compile-time values to them: 0210 * \code 0211 * seqN(10,fix<4>,fix<-3>) // <=> [10 7 4 1] 0212 * \endcode 0213 * 0214 * See also the function fix(int) to pass both a compile-time and runtime value. 0215 * 0216 * In c++14, it is implemented as: 0217 * \code 0218 * template<int N> static const internal::FixedInt<N> fix{}; 0219 * \endcode 0220 * where internal::FixedInt<N> is an internal template class similar to 0221 * <a href="http://en.cppreference.com/w/cpp/types/integral_constant">\c std::integral_constant </a><tt> <int,N> </tt> 0222 * Here, \c fix<N> is thus an object of type \c internal::FixedInt<N>. 0223 * 0224 * In c++98/11, it is implemented as a function: 0225 * \code 0226 * template<int N> inline internal::FixedInt<N> fix(); 0227 * \endcode 0228 * Here internal::FixedInt<N> is thus a pointer to function. 0229 * 0230 * If for some reason you want a true object in c++98 then you can write: \code fix<N>() \endcode which is also valid in c++14. 0231 * 0232 * \sa fix<N>(int), seq, seqN 0233 */ 0234 template<int N> 0235 static const auto fix(); 0236 0237 /** \fn fix<N>(int) 0238 * \ingroup Core_Module 0239 * 0240 * This function returns an object embedding both a compile-time integer \c N, and a fallback runtime value \a val. 0241 * 0242 * \tparam N the compile-time integer value 0243 * \param val the fallback runtime integer value 0244 * 0245 * This function is a more general version of the \ref fix identifier/function that can be used in template code 0246 * where the compile-time value could turn out to actually mean "undefined at compile-time". For positive integers 0247 * such as a size or a dimension, this case is identified by Eigen::Dynamic, whereas runtime signed integers 0248 * (e.g., an increment/stride) are identified as Eigen::DynamicIndex. In such a case, the runtime value \a val 0249 * will be used as a fallback. 0250 * 0251 * A typical use case would be: 0252 * \code 0253 * template<typename Derived> void foo(const MatrixBase<Derived> &mat) { 0254 * const int N = Derived::RowsAtCompileTime==Dynamic ? Dynamic : Derived::RowsAtCompileTime/2; 0255 * const int n = mat.rows()/2; 0256 * ... mat( seqN(0,fix<N>(n) ) ...; 0257 * } 0258 * \endcode 0259 * In this example, the function Eigen::seqN knows that the second argument is expected to be a size. 0260 * If the passed compile-time value N equals Eigen::Dynamic, then the proxy object returned by fix will be dissmissed, and converted to an Eigen::Index of value \c n. 0261 * Otherwise, the runtime-value \c n will be dissmissed, and the returned ArithmeticSequence will be of the exact same type as <tt> seqN(0,fix<N>) </tt>. 0262 * 0263 * \sa fix, seqN, class ArithmeticSequence 0264 */ 0265 template<int N> 0266 static const auto fix(int val); 0267 0268 #endif // EIGEN_PARSED_BY_DOXYGEN 0269 0270 } // end namespace Eigen 0271 0272 #endif // EIGEN_INTEGRAL_CONSTANT_H
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |