Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-01-19 09:51:46

0001 // This file is part of Eigen, a lightweight C++ template library
0002 // for linear algebra.
0003 //
0004 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
0005 //
0006 // This Source Code Form is subject to the terms of the Mozilla
0007 // Public License v. 2.0. If a copy of the MPL was not distributed
0008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
0009 
0010 #ifndef EIGEN_PACKET_MATH_SSE_H
0011 #define EIGEN_PACKET_MATH_SSE_H
0012 
0013 namespace Eigen {
0014 
0015 namespace internal {
0016 
0017 #ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
0018 #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
0019 #endif
0020 
0021 #if !defined(EIGEN_VECTORIZE_AVX) && !defined(EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS)
0022 // 32 bits =>  8 registers
0023 // 64 bits => 16 registers
0024 #define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*))
0025 #endif
0026 
0027 #ifdef EIGEN_VECTORIZE_FMA
0028 #ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
0029 #define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
0030 #endif
0031 #endif
0032 
0033 #if ((defined EIGEN_VECTORIZE_AVX) && (EIGEN_COMP_GNUC_STRICT || EIGEN_COMP_MINGW) && (__GXX_ABI_VERSION < 1004)) || EIGEN_OS_QNX
0034 // With GCC's default ABI version, a __m128 or __m256 are the same types and therefore we cannot
0035 // have overloads for both types without linking error.
0036 // One solution is to increase ABI version using -fabi-version=4 (or greater).
0037 // Otherwise, we workaround this inconvenience by wrapping 128bit types into the following helper
0038 // structure:
0039 typedef eigen_packet_wrapper<__m128>  Packet4f;
0040 typedef eigen_packet_wrapper<__m128d> Packet2d;
0041 #else
0042 typedef __m128  Packet4f;
0043 typedef __m128d Packet2d;
0044 #endif
0045 
0046 typedef eigen_packet_wrapper<__m128i, 0> Packet4i;
0047 typedef eigen_packet_wrapper<__m128i, 1> Packet16b;
0048 
0049 template<> struct is_arithmetic<__m128>  { enum { value = true }; };
0050 template<> struct is_arithmetic<__m128i> { enum { value = true }; };
0051 template<> struct is_arithmetic<__m128d> { enum { value = true }; };
0052 template<> struct is_arithmetic<Packet4i>  { enum { value = true }; };
0053 template<> struct is_arithmetic<Packet16b>  { enum { value = true }; };
0054 
0055 template<int p, int q, int r, int s>
0056 struct shuffle_mask{
0057  enum { mask = (s)<<6|(r)<<4|(q)<<2|(p) };
0058 };
0059 
0060 // TODO: change the implementation of all swizzle* ops from macro to template,
0061 #define vec4f_swizzle1(v,p,q,r,s) \
0062   Packet4f(_mm_castsi128_ps(_mm_shuffle_epi32( _mm_castps_si128(v), (shuffle_mask<p,q,r,s>::mask))))
0063 
0064 #define vec4i_swizzle1(v,p,q,r,s) \
0065   Packet4i(_mm_shuffle_epi32( v, (shuffle_mask<p,q,r,s>::mask)))
0066 
0067 #define vec2d_swizzle1(v,p,q) \
0068   Packet2d(_mm_castsi128_pd(_mm_shuffle_epi32( _mm_castpd_si128(v), (shuffle_mask<2*p,2*p+1,2*q,2*q+1>::mask))))
0069 
0070 #define vec4f_swizzle2(a,b,p,q,r,s) \
0071   Packet4f(_mm_shuffle_ps( (a), (b), (shuffle_mask<p,q,r,s>::mask)))
0072 
0073 #define vec4i_swizzle2(a,b,p,q,r,s) \
0074   Packet4i(_mm_castps_si128( (_mm_shuffle_ps( _mm_castsi128_ps(a), _mm_castsi128_ps(b), (shuffle_mask<p,q,r,s>::mask)))))
0075 
0076 EIGEN_STRONG_INLINE Packet4f vec4f_movelh(const Packet4f& a, const Packet4f& b)
0077 {
0078   return Packet4f(_mm_movelh_ps(a,b));
0079 }
0080 EIGEN_STRONG_INLINE Packet4f vec4f_movehl(const Packet4f& a, const Packet4f& b)
0081 {
0082   return Packet4f(_mm_movehl_ps(a,b));
0083 }
0084 EIGEN_STRONG_INLINE Packet4f vec4f_unpacklo(const Packet4f& a, const Packet4f& b)
0085 {
0086   return Packet4f(_mm_unpacklo_ps(a,b));
0087 }
0088 EIGEN_STRONG_INLINE Packet4f vec4f_unpackhi(const Packet4f& a, const Packet4f& b)
0089 {
0090   return Packet4f(_mm_unpackhi_ps(a,b));
0091 }
0092 #define vec4f_duplane(a,p) \
0093   vec4f_swizzle2(a,a,p,p,p,p)
0094 
0095 #define vec2d_swizzle2(a,b,mask) \
0096   Packet2d(_mm_shuffle_pd(a,b,mask))
0097 
0098 EIGEN_STRONG_INLINE Packet2d vec2d_unpacklo(const Packet2d& a, const Packet2d& b)
0099 {
0100   return Packet2d(_mm_unpacklo_pd(a,b));
0101 }
0102 EIGEN_STRONG_INLINE Packet2d vec2d_unpackhi(const Packet2d& a, const Packet2d& b)
0103 {
0104   return Packet2d(_mm_unpackhi_pd(a,b));
0105 }
0106 #define vec2d_duplane(a,p) \
0107   vec2d_swizzle2(a,a,(p<<1)|p)
0108 
0109 #define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
0110   const Packet4f p4f_##NAME = pset1<Packet4f>(X)
0111 
0112 #define _EIGEN_DECLARE_CONST_Packet2d(NAME,X) \
0113   const Packet2d p2d_##NAME = pset1<Packet2d>(X)
0114 
0115 #define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
0116   const Packet4f p4f_##NAME = pset1frombits<Packet4f>(X)
0117 
0118 #define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
0119   const Packet4i p4i_##NAME = pset1<Packet4i>(X)
0120 
0121 
0122 // Use the packet_traits defined in AVX/PacketMath.h instead if we're going
0123 // to leverage AVX instructions.
0124 #ifndef EIGEN_VECTORIZE_AVX
0125 template <>
0126 struct packet_traits<float> : default_packet_traits {
0127   typedef Packet4f type;
0128   typedef Packet4f half;
0129   enum {
0130     Vectorizable = 1,
0131     AlignedOnScalar = 1,
0132     size = 4,
0133     HasHalfPacket = 0,
0134 
0135     HasCmp  = 1,
0136     HasDiv = 1,
0137     HasSin = EIGEN_FAST_MATH,
0138     HasCos = EIGEN_FAST_MATH,
0139     HasLog = 1,
0140     HasLog1p = 1,
0141     HasExpm1 = 1,
0142     HasNdtri = 1,
0143     HasExp = 1,
0144     HasBessel = 1,
0145     HasSqrt = 1,
0146     HasRsqrt = 1,
0147     HasTanh = EIGEN_FAST_MATH,
0148     HasErf = EIGEN_FAST_MATH,
0149     HasBlend = 1,
0150     HasCeil = 1,
0151     HasFloor = 1,
0152 #ifdef EIGEN_VECTORIZE_SSE4_1
0153     HasRound = 1,
0154 #endif
0155     HasRint = 1
0156   };
0157 };
0158 template <>
0159 struct packet_traits<double> : default_packet_traits {
0160   typedef Packet2d type;
0161   typedef Packet2d half;
0162   enum {
0163     Vectorizable = 1,
0164     AlignedOnScalar = 1,
0165     size=2,
0166     HasHalfPacket = 0,
0167 
0168     HasCmp  = 1,
0169     HasDiv  = 1,
0170     HasLog  = 1,
0171     HasExp  = 1,
0172     HasSqrt = 1,
0173     HasRsqrt = 1,
0174     HasBlend = 1,
0175     HasFloor = 1,
0176     HasCeil = 1,
0177 #ifdef EIGEN_VECTORIZE_SSE4_1
0178     HasRound = 1,
0179 #endif
0180     HasRint = 1
0181   };
0182 };
0183 #endif
0184 template<> struct packet_traits<int>    : default_packet_traits
0185 {
0186   typedef Packet4i type;
0187   typedef Packet4i half;
0188   enum {
0189     Vectorizable = 1,
0190     AlignedOnScalar = 1,
0191     size=4,
0192 
0193     HasShift = 1,
0194     HasBlend = 1
0195   };
0196 };
0197 
0198 template<> struct packet_traits<bool> : default_packet_traits
0199 {
0200   typedef Packet16b type;
0201   typedef Packet16b half;
0202   enum {
0203     Vectorizable = 1,
0204     AlignedOnScalar = 1,
0205     HasHalfPacket = 0,
0206     size=16,
0207 
0208     HasAdd       = 1,
0209     HasSub       = 1,
0210     HasShift     = 0,
0211     HasMul       = 1,
0212     HasNegate    = 1,
0213     HasAbs       = 0,
0214     HasAbs2      = 0,
0215     HasMin       = 0,
0216     HasMax       = 0,
0217     HasConj      = 0,
0218     HasSqrt      = 1
0219   };
0220 };
0221 
0222 template<> struct unpacket_traits<Packet4f> {
0223   typedef float     type;
0224   typedef Packet4f  half;
0225   typedef Packet4i  integer_packet;
0226   enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false};
0227 };
0228 template<> struct unpacket_traits<Packet2d> {
0229   typedef double    type;
0230   typedef Packet2d  half;
0231   enum {size=2, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false};
0232 };
0233 template<> struct unpacket_traits<Packet4i> {
0234   typedef int       type;
0235   typedef Packet4i  half;
0236   enum {size=4, alignment=Aligned16, vectorizable=false, masked_load_available=false, masked_store_available=false};
0237 };
0238 template<> struct unpacket_traits<Packet16b> {
0239   typedef bool       type;
0240   typedef Packet16b  half;
0241   enum {size=16, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false};
0242 };
0243 
0244 #ifndef EIGEN_VECTORIZE_AVX
0245 template<> struct scalar_div_cost<float,true> { enum { value = 7 }; };
0246 template<> struct scalar_div_cost<double,true> { enum { value = 8 }; };
0247 #endif
0248 
0249 #if EIGEN_COMP_MSVC==1500
0250 // Workaround MSVC 9 internal compiler error.
0251 // TODO: It has been detected with win64 builds (amd64), so let's check whether it also happens in 32bits+SSE mode
0252 // TODO: let's check whether there does not exist a better fix, like adding a pset0() function. (it crashed on pset1(0)).
0253 template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float&  from) { return _mm_set_ps(from,from,from,from); }
0254 template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set_pd(from,from); }
0255 template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int&    from) { return _mm_set_epi32(from,from,from,from); }
0256 #else
0257 template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float&  from) { return _mm_set_ps1(from); }
0258 template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set1_pd(from); }
0259 template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int&    from) { return _mm_set1_epi32(from); }
0260 #endif
0261 template<> EIGEN_STRONG_INLINE Packet16b pset1<Packet16b>(const bool&    from) { return _mm_set1_epi8(static_cast<char>(from)); }
0262 
0263 template<> EIGEN_STRONG_INLINE Packet4f pset1frombits<Packet4f>(unsigned int from) { return _mm_castsi128_ps(pset1<Packet4i>(from)); }
0264 template<> EIGEN_STRONG_INLINE Packet2d pset1frombits<Packet2d>(uint64_t from) { return _mm_castsi128_pd(_mm_set1_epi64x(from)); }
0265 
0266 template<> EIGEN_STRONG_INLINE Packet4f peven_mask(const Packet4f& /*a*/) { return _mm_castsi128_ps(_mm_set_epi32(0, -1, 0, -1)); }
0267 template<> EIGEN_STRONG_INLINE Packet4i peven_mask(const Packet4i& /*a*/) { return _mm_set_epi32(0, -1, 0, -1); }
0268 template<> EIGEN_STRONG_INLINE Packet2d peven_mask(const Packet2d& /*a*/) { return _mm_castsi128_pd(_mm_set_epi32(0, 0, -1, -1)); }
0269 
0270 template<> EIGEN_STRONG_INLINE Packet4f pzero(const Packet4f& /*a*/) { return _mm_setzero_ps(); }
0271 template<> EIGEN_STRONG_INLINE Packet2d pzero(const Packet2d& /*a*/) { return _mm_setzero_pd(); }
0272 template<> EIGEN_STRONG_INLINE Packet4i pzero(const Packet4i& /*a*/) { return _mm_setzero_si128(); }
0273 
0274 // GCC generates a shufps instruction for _mm_set1_ps/_mm_load1_ps instead of the more efficient pshufd instruction.
0275 // However, using inrinsics for pset1 makes gcc to generate crappy code in some cases (see bug 203)
0276 // Using inline assembly is also not an option because then gcc fails to reorder properly the instructions.
0277 // Therefore, we introduced the pload1 functions to be used in product kernels for which bug 203 does not apply.
0278 // Also note that with AVX, we want it to generate a vbroadcastss.
0279 #if EIGEN_COMP_GNUC_STRICT && (!defined __AVX__)
0280 template<> EIGEN_STRONG_INLINE Packet4f pload1<Packet4f>(const float *from) {
0281   return vec4f_swizzle1(_mm_load_ss(from),0,0,0,0);
0282 }
0283 #endif
0284 
0285 template<> EIGEN_STRONG_INLINE Packet4f plset<Packet4f>(const float& a) { return _mm_add_ps(pset1<Packet4f>(a), _mm_set_ps(3,2,1,0)); }
0286 template<> EIGEN_STRONG_INLINE Packet2d plset<Packet2d>(const double& a) { return _mm_add_pd(pset1<Packet2d>(a),_mm_set_pd(1,0)); }
0287 template<> EIGEN_STRONG_INLINE Packet4i plset<Packet4i>(const int& a) { return _mm_add_epi32(pset1<Packet4i>(a),_mm_set_epi32(3,2,1,0)); }
0288 
0289 template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_add_ps(a,b); }
0290 template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_add_pd(a,b); }
0291 template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_add_epi32(a,b); }
0292 
0293 template<> EIGEN_STRONG_INLINE Packet16b padd<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_or_si128(a,b); }
0294 
0295 template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_sub_ps(a,b); }
0296 template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_sub_pd(a,b); }
0297 template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_sub_epi32(a,b); }
0298 template<> EIGEN_STRONG_INLINE Packet16b psub<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_xor_si128(a,b); }
0299 
0300 template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b);
0301 template<> EIGEN_STRONG_INLINE Packet4f paddsub<Packet4f>(const Packet4f& a, const Packet4f& b)
0302 {
0303 #ifdef EIGEN_VECTORIZE_SSE3
0304   return _mm_addsub_ps(a,b);
0305 #else
0306   const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x0,0x80000000,0x0));
0307   return padd(a, pxor(mask, b));
0308 #endif
0309 }
0310 
0311 template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& , const Packet2d& );
0312 template<> EIGEN_STRONG_INLINE Packet2d paddsub<Packet2d>(const Packet2d& a, const Packet2d& b) 
0313 {
0314 #ifdef EIGEN_VECTORIZE_SSE3  
0315   return _mm_addsub_pd(a,b); 
0316 #else
0317   const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x80000000,0x0,0x0)); 
0318   return padd(a, pxor(mask, b));
0319 #endif
0320 }
0321 
0322 template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a)
0323 {
0324   const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000));
0325   return _mm_xor_ps(a,mask);
0326 }
0327 template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a)
0328 {
0329   const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x80000000,0x0,0x80000000));
0330   return _mm_xor_pd(a,mask);
0331 }
0332 template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a)
0333 {
0334   return psub(Packet4i(_mm_setr_epi32(0,0,0,0)), a);
0335 }
0336 
0337 template<> EIGEN_STRONG_INLINE Packet16b pnegate(const Packet16b& a)
0338 {
0339   return psub(pset1<Packet16b>(false), a);
0340 }
0341 
0342 template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
0343 template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; }
0344 template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
0345 
0346 template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_mul_ps(a,b); }
0347 template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_mul_pd(a,b); }
0348 template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b)
0349 {
0350 #ifdef EIGEN_VECTORIZE_SSE4_1
0351   return _mm_mullo_epi32(a,b);
0352 #else
0353   // this version is slightly faster than 4 scalar products
0354   return vec4i_swizzle1(
0355             vec4i_swizzle2(
0356               _mm_mul_epu32(a,b),
0357               _mm_mul_epu32(vec4i_swizzle1(a,1,0,3,2),
0358                             vec4i_swizzle1(b,1,0,3,2)),
0359               0,2,0,2),
0360             0,2,1,3);
0361 #endif
0362 }
0363 
0364 template<> EIGEN_STRONG_INLINE Packet16b pmul<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_and_si128(a,b); }
0365 
0366 template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_div_ps(a,b); }
0367 template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_div_pd(a,b); }
0368 
0369 // for some weird raisons, it has to be overloaded for packet of integers
0370 template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); }
0371 #ifdef EIGEN_VECTORIZE_FMA
0372 template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return _mm_fmadd_ps(a,b,c); }
0373 template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return _mm_fmadd_pd(a,b,c); }
0374 #endif
0375 
0376 #ifdef EIGEN_VECTORIZE_SSE4_1
0377 template<> EIGEN_DEVICE_FUNC inline Packet4f pselect(const Packet4f& mask, const Packet4f& a, const Packet4f& b) {
0378   return _mm_blendv_ps(b,a,mask);
0379 }
0380 
0381 template<> EIGEN_DEVICE_FUNC inline Packet4i pselect(const Packet4i& mask, const Packet4i& a, const Packet4i& b) {
0382   return _mm_castps_si128(_mm_blendv_ps(_mm_castsi128_ps(b),_mm_castsi128_ps(a),_mm_castsi128_ps(mask)));
0383 }
0384 
0385 template<> EIGEN_DEVICE_FUNC inline Packet2d pselect(const Packet2d& mask, const Packet2d& a, const Packet2d& b) {  return _mm_blendv_pd(b,a,mask); }
0386 
0387 template<> EIGEN_DEVICE_FUNC inline Packet16b pselect(const Packet16b& mask, const Packet16b& a, const Packet16b& b) {
0388   return _mm_blendv_epi8(b,a,mask);
0389 }
0390 #else
0391 template<> EIGEN_DEVICE_FUNC inline Packet16b pselect(const Packet16b& mask, const Packet16b& a, const Packet16b& b) {
0392   Packet16b a_part = _mm_and_si128(mask, a);
0393   Packet16b b_part = _mm_andnot_si128(mask, b);
0394   return _mm_or_si128(a_part, b_part);
0395 }
0396 #endif
0397 
0398 template<> EIGEN_STRONG_INLINE Packet4i ptrue<Packet4i>(const Packet4i& a) { return _mm_cmpeq_epi32(a, a); }
0399 template<> EIGEN_STRONG_INLINE Packet16b ptrue<Packet16b>(const Packet16b& a) { return _mm_cmpeq_epi8(a, a); }
0400 template<> EIGEN_STRONG_INLINE Packet4f
0401 ptrue<Packet4f>(const Packet4f& a) {
0402   Packet4i b = _mm_castps_si128(a);
0403   return _mm_castsi128_ps(_mm_cmpeq_epi32(b, b));
0404 }
0405 template<> EIGEN_STRONG_INLINE Packet2d
0406 ptrue<Packet2d>(const Packet2d& a) {
0407   Packet4i b = _mm_castpd_si128(a);
0408   return _mm_castsi128_pd(_mm_cmpeq_epi32(b, b));
0409 }
0410 
0411 
0412 template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_and_ps(a,b); }
0413 template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_and_pd(a,b); }
0414 template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_and_si128(a,b); }
0415 template<> EIGEN_STRONG_INLINE Packet16b pand<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_and_si128(a,b); }
0416 
0417 template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_or_ps(a,b); }
0418 template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_or_pd(a,b); }
0419 template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_or_si128(a,b); }
0420 template<> EIGEN_STRONG_INLINE Packet16b por<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_or_si128(a,b); }
0421 
0422 template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_xor_ps(a,b); }
0423 template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_xor_pd(a,b); }
0424 template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_xor_si128(a,b); }
0425 template<> EIGEN_STRONG_INLINE Packet16b pxor<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_xor_si128(a,b); }
0426 
0427 template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_andnot_ps(b,a); }
0428 template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_andnot_pd(b,a); }
0429 template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_andnot_si128(b,a); }
0430 
0431 template<> EIGEN_STRONG_INLINE Packet4f pcmp_le(const Packet4f& a, const Packet4f& b) { return _mm_cmple_ps(a,b); }
0432 template<> EIGEN_STRONG_INLINE Packet4f pcmp_lt(const Packet4f& a, const Packet4f& b) { return _mm_cmplt_ps(a,b); }
0433 template<> EIGEN_STRONG_INLINE Packet4f pcmp_lt_or_nan(const Packet4f& a, const Packet4f& b) { return _mm_cmpnge_ps(a,b); }
0434 template<> EIGEN_STRONG_INLINE Packet4f pcmp_eq(const Packet4f& a, const Packet4f& b) { return _mm_cmpeq_ps(a,b); }
0435 
0436 template<> EIGEN_STRONG_INLINE Packet2d pcmp_le(const Packet2d& a, const Packet2d& b) { return _mm_cmple_pd(a,b); }
0437 template<> EIGEN_STRONG_INLINE Packet2d pcmp_lt(const Packet2d& a, const Packet2d& b) { return _mm_cmplt_pd(a,b); }
0438 template<> EIGEN_STRONG_INLINE Packet2d pcmp_lt_or_nan(const Packet2d& a, const Packet2d& b) { return _mm_cmpnge_pd(a,b); }
0439 template<> EIGEN_STRONG_INLINE Packet2d pcmp_eq(const Packet2d& a, const Packet2d& b) { return _mm_cmpeq_pd(a,b); }
0440 
0441 template<> EIGEN_STRONG_INLINE Packet4i pcmp_lt(const Packet4i& a, const Packet4i& b) { return _mm_cmplt_epi32(a,b); }
0442 template<> EIGEN_STRONG_INLINE Packet4i pcmp_eq(const Packet4i& a, const Packet4i& b) { return _mm_cmpeq_epi32(a,b); }
0443 template<> EIGEN_STRONG_INLINE Packet16b pcmp_eq(const Packet16b& a, const Packet16b& b) { return _mm_cmpeq_epi8(a,b); }
0444 template<> EIGEN_STRONG_INLINE Packet4i pcmp_le(const Packet4i& a, const Packet4i& b) { return por(pcmp_lt(a,b), pcmp_eq(a,b)); }
0445 
0446 template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) {
0447 #if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
0448   // There appears to be a bug in GCC, by which the optimizer may
0449   // flip the argument order in calls to _mm_min_ps, so we have to
0450   // resort to inline ASM here. This is supposed to be fixed in gcc6.3,
0451   // see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867
0452   #ifdef EIGEN_VECTORIZE_AVX
0453   Packet4f res;
0454   asm("vminps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
0455   #else
0456   Packet4f res = b;
0457   asm("minps %[a], %[res]" : [res] "+x" (res) : [a] "x" (a));
0458   #endif
0459   return res;
0460 #else
0461   // Arguments are reversed to match NaN propagation behavior of std::min.
0462   return _mm_min_ps(b, a);
0463 #endif
0464 }
0465 template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) {
0466 #if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
0467   // There appears to be a bug in GCC, by which the optimizer may
0468   // flip the argument order in calls to _mm_min_pd, so we have to
0469   // resort to inline ASM here. This is supposed to be fixed in gcc6.3,
0470   // see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867
0471   #ifdef EIGEN_VECTORIZE_AVX
0472   Packet2d res;
0473   asm("vminpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
0474   #else
0475   Packet2d res = b;
0476   asm("minpd %[a], %[res]" : [res] "+x" (res) : [a] "x" (a));
0477   #endif
0478   return res;
0479 #else
0480   // Arguments are reversed to match NaN propagation behavior of std::min.
0481   return _mm_min_pd(b, a);
0482 #endif
0483 }
0484 template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b)
0485 {
0486 #ifdef EIGEN_VECTORIZE_SSE4_1
0487   return _mm_min_epi32(a,b);
0488 #else
0489   // after some bench, this version *is* faster than a scalar implementation
0490   Packet4i mask = _mm_cmplt_epi32(a,b);
0491   return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
0492 #endif
0493 }
0494 
0495 
0496 template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) {
0497 #if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
0498   // There appears to be a bug in GCC, by which the optimizer may
0499   // flip the argument order in calls to _mm_max_ps, so we have to
0500   // resort to inline ASM here. This is supposed to be fixed in gcc6.3,
0501   // see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867
0502   #ifdef EIGEN_VECTORIZE_AVX
0503   Packet4f res;
0504   asm("vmaxps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
0505   #else
0506   Packet4f res = b;
0507   asm("maxps %[a], %[res]" : [res] "+x" (res) : [a] "x" (a));
0508   #endif
0509   return res;
0510 #else
0511   // Arguments are reversed to match NaN propagation behavior of std::max.
0512   return _mm_max_ps(b, a);
0513 #endif
0514 }
0515 template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) {
0516 #if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
0517   // There appears to be a bug in GCC, by which the optimizer may
0518   // flip the argument order in calls to _mm_max_pd, so we have to
0519   // resort to inline ASM here. This is supposed to be fixed in gcc6.3,
0520   // see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867
0521   #ifdef EIGEN_VECTORIZE_AVX
0522   Packet2d res;
0523   asm("vmaxpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b));
0524   #else
0525   Packet2d res = b;
0526   asm("maxpd %[a], %[res]" : [res] "+x" (res) : [a] "x" (a));
0527   #endif
0528   return res;
0529 #else
0530   // Arguments are reversed to match NaN propagation behavior of std::max.
0531   return _mm_max_pd(b, a);
0532 #endif
0533 }
0534 template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b)
0535 {
0536 #ifdef EIGEN_VECTORIZE_SSE4_1
0537   return _mm_max_epi32(a,b);
0538 #else
0539   // after some bench, this version *is* faster than a scalar implementation
0540   Packet4i mask = _mm_cmpgt_epi32(a,b);
0541   return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
0542 #endif
0543 }
0544 
0545 template <typename Packet, typename Op>
0546 EIGEN_STRONG_INLINE Packet pminmax_propagate_numbers(const Packet& a, const Packet& b, Op op) {
0547   // In this implementation, we take advantage of the fact that pmin/pmax for SSE
0548   // always return a if either a or b is NaN.
0549   Packet not_nan_mask_a = pcmp_eq(a, a);
0550   Packet m = op(a, b);
0551   return pselect<Packet>(not_nan_mask_a, m, b);
0552 }
0553 
0554 template <typename Packet, typename Op>
0555 EIGEN_STRONG_INLINE Packet pminmax_propagate_nan(const Packet& a, const Packet& b, Op op) {
0556   // In this implementation, we take advantage of the fact that pmin/pmax for SSE
0557   // always return a if either a or b is NaN.
0558   Packet not_nan_mask_a = pcmp_eq(a, a);
0559   Packet m = op(b, a);
0560   return pselect<Packet>(not_nan_mask_a, m, a);
0561 }
0562 
0563 // Add specializations for min/max with prescribed NaN progation.
0564 template<>
0565 EIGEN_STRONG_INLINE Packet4f pmin<PropagateNumbers, Packet4f>(const Packet4f& a, const Packet4f& b) {
0566   return pminmax_propagate_numbers(a, b, pmin<Packet4f>);
0567 }
0568 template<>
0569 EIGEN_STRONG_INLINE Packet2d pmin<PropagateNumbers, Packet2d>(const Packet2d& a, const Packet2d& b) {
0570   return pminmax_propagate_numbers(a, b, pmin<Packet2d>);
0571 }
0572 template<>
0573 EIGEN_STRONG_INLINE Packet4f pmax<PropagateNumbers, Packet4f>(const Packet4f& a, const Packet4f& b) {
0574   return pminmax_propagate_numbers(a, b, pmax<Packet4f>);
0575 }
0576 template<>
0577 EIGEN_STRONG_INLINE Packet2d pmax<PropagateNumbers, Packet2d>(const Packet2d& a, const Packet2d& b) {
0578   return pminmax_propagate_numbers(a, b, pmax<Packet2d>);
0579 }
0580 template<>
0581 EIGEN_STRONG_INLINE Packet4f pmin<PropagateNaN, Packet4f>(const Packet4f& a, const Packet4f& b) {
0582   return pminmax_propagate_nan(a, b, pmin<Packet4f>);
0583 }
0584 template<>
0585 EIGEN_STRONG_INLINE Packet2d pmin<PropagateNaN, Packet2d>(const Packet2d& a, const Packet2d& b) {
0586   return pminmax_propagate_nan(a, b, pmin<Packet2d>);
0587 }
0588 template<>
0589 EIGEN_STRONG_INLINE Packet4f pmax<PropagateNaN, Packet4f>(const Packet4f& a, const Packet4f& b) {
0590   return pminmax_propagate_nan(a, b, pmax<Packet4f>);
0591 }
0592 template<>
0593 EIGEN_STRONG_INLINE Packet2d pmax<PropagateNaN, Packet2d>(const Packet2d& a, const Packet2d& b) {
0594   return pminmax_propagate_nan(a, b, pmax<Packet2d>);
0595 }
0596 
0597 template<int N> EIGEN_STRONG_INLINE Packet4i parithmetic_shift_right(const Packet4i& a) { return _mm_srai_epi32(a,N); }
0598 template<int N> EIGEN_STRONG_INLINE Packet4i plogical_shift_right   (const Packet4i& a) { return _mm_srli_epi32(a,N); }
0599 template<int N> EIGEN_STRONG_INLINE Packet4i plogical_shift_left    (const Packet4i& a) { return _mm_slli_epi32(a,N); }
0600 
0601 template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a)
0602 {
0603   const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF));
0604   return _mm_and_ps(a,mask);
0605 }
0606 template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a)
0607 {
0608   const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF));
0609   return _mm_and_pd(a,mask);
0610 }
0611 template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a)
0612 {
0613   #ifdef EIGEN_VECTORIZE_SSSE3
0614   return _mm_abs_epi32(a);
0615   #else
0616   Packet4i aux = _mm_srai_epi32(a,31);
0617   return _mm_sub_epi32(_mm_xor_si128(a,aux),aux);
0618   #endif
0619 }
0620 
0621 #ifdef EIGEN_VECTORIZE_SSE4_1
0622 template<> EIGEN_STRONG_INLINE Packet4f pround<Packet4f>(const Packet4f& a)
0623 {
0624   // Unfortunatly _mm_round_ps doesn't have a rounding mode to implement numext::round.
0625   const Packet4f mask = pset1frombits<Packet4f>(0x80000000u);
0626   const Packet4f prev0dot5 = pset1frombits<Packet4f>(0x3EFFFFFFu);
0627   return _mm_round_ps(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO);
0628 }
0629 
0630 template<> EIGEN_STRONG_INLINE Packet2d pround<Packet2d>(const Packet2d& a)
0631 {
0632   const Packet2d mask = _mm_castsi128_pd(_mm_set_epi64x(0x8000000000000000ull, 0x8000000000000000ull));
0633   const Packet2d prev0dot5 = _mm_castsi128_pd(_mm_set_epi64x(0x3FDFFFFFFFFFFFFFull, 0x3FDFFFFFFFFFFFFFull));
0634   return _mm_round_pd(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO);
0635 }
0636 
0637 template<> EIGEN_STRONG_INLINE Packet4f print<Packet4f>(const Packet4f& a) { return _mm_round_ps(a, _MM_FROUND_CUR_DIRECTION); }
0638 template<> EIGEN_STRONG_INLINE Packet2d print<Packet2d>(const Packet2d& a) { return _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); }
0639 
0640 template<> EIGEN_STRONG_INLINE Packet4f pceil<Packet4f>(const Packet4f& a) { return _mm_ceil_ps(a); }
0641 template<> EIGEN_STRONG_INLINE Packet2d pceil<Packet2d>(const Packet2d& a) { return _mm_ceil_pd(a); }
0642 
0643 template<> EIGEN_STRONG_INLINE Packet4f pfloor<Packet4f>(const Packet4f& a) { return _mm_floor_ps(a); }
0644 template<> EIGEN_STRONG_INLINE Packet2d pfloor<Packet2d>(const Packet2d& a) { return _mm_floor_pd(a); }
0645 #else
0646 template<> EIGEN_STRONG_INLINE Packet4f print(const Packet4f& a) {
0647   // Adds and subtracts signum(a) * 2^23 to force rounding.
0648   const Packet4f limit = pset1<Packet4f>(static_cast<float>(1<<23));
0649   const Packet4f abs_a = pabs(a);
0650   Packet4f r = padd(abs_a, limit);
0651   // Don't compile-away addition and subtraction.
0652   EIGEN_OPTIMIZATION_BARRIER(r);
0653   r = psub(r, limit);
0654   // If greater than limit, simply return a.  Otherwise, account for sign.
0655   r = pselect(pcmp_lt(abs_a, limit),
0656               pselect(pcmp_lt(a, pzero(a)), pnegate(r), r), a);
0657   return r;
0658 }
0659 
0660 template<> EIGEN_STRONG_INLINE Packet2d print(const Packet2d& a) {
0661   // Adds and subtracts signum(a) * 2^52 to force rounding.
0662   const Packet2d limit = pset1<Packet2d>(static_cast<double>(1ull<<52));
0663   const Packet2d abs_a = pabs(a);
0664   Packet2d r = padd(abs_a, limit);
0665   // Don't compile-away addition and subtraction.
0666   EIGEN_OPTIMIZATION_BARRIER(r);
0667   r = psub(r, limit);
0668   // If greater than limit, simply return a.  Otherwise, account for sign.
0669   r = pselect(pcmp_lt(abs_a, limit),
0670               pselect(pcmp_lt(a, pzero(a)), pnegate(r), r), a);
0671   return r;
0672 }
0673 
0674 template<> EIGEN_STRONG_INLINE Packet4f pfloor<Packet4f>(const Packet4f& a)
0675 {
0676   const Packet4f cst_1 = pset1<Packet4f>(1.0f);
0677   Packet4f tmp  = print<Packet4f>(a);
0678   // If greater, subtract one.
0679   Packet4f mask = _mm_cmpgt_ps(tmp, a);
0680   mask = pand(mask, cst_1);
0681   return psub(tmp, mask);
0682 }
0683 
0684 template<> EIGEN_STRONG_INLINE Packet2d pfloor<Packet2d>(const Packet2d& a)
0685 {
0686   const Packet2d cst_1 = pset1<Packet2d>(1.0);
0687   Packet2d tmp  = print<Packet2d>(a);
0688   // If greater, subtract one.
0689   Packet2d mask = _mm_cmpgt_pd(tmp, a);
0690   mask = pand(mask, cst_1);
0691   return psub(tmp, mask);
0692 }
0693 
0694 template<> EIGEN_STRONG_INLINE Packet4f pceil<Packet4f>(const Packet4f& a)
0695 {
0696   const Packet4f cst_1 = pset1<Packet4f>(1.0f);
0697   Packet4f tmp  = print<Packet4f>(a);
0698   // If smaller, add one.
0699   Packet4f mask = _mm_cmplt_ps(tmp, a);
0700   mask = pand(mask, cst_1);
0701   return padd(tmp, mask);
0702 }
0703 
0704 template<> EIGEN_STRONG_INLINE Packet2d pceil<Packet2d>(const Packet2d& a)
0705 {
0706   const Packet2d cst_1 = pset1<Packet2d>(1.0);
0707   Packet2d tmp  = print<Packet2d>(a);
0708   // If smaller, add one.
0709   Packet2d mask = _mm_cmplt_pd(tmp, a);
0710   mask = pand(mask, cst_1);
0711   return padd(tmp, mask);
0712 }
0713 #endif
0714 
0715 template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float*   from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_ps(from); }
0716 template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double*  from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_pd(from); }
0717 template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int*     from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast<const __m128i*>(from)); }
0718 template<> EIGEN_STRONG_INLINE Packet16b pload<Packet16b>(const bool*     from) { EIGEN_DEBUG_ALIGNED_LOAD return  _mm_load_si128(reinterpret_cast<const __m128i*>(from)); }
0719 
0720 #if EIGEN_COMP_MSVC
0721   template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float*  from) {
0722     EIGEN_DEBUG_UNALIGNED_LOAD
0723     #if (EIGEN_COMP_MSVC==1600)
0724     // NOTE Some version of MSVC10 generates bad code when using _mm_loadu_ps
0725     // (i.e., it does not generate an unaligned load!!
0726     __m128 res = _mm_loadl_pi(_mm_set1_ps(0.0f), (const __m64*)(from));
0727     res = _mm_loadh_pi(res, (const __m64*)(from+2));
0728     return res;
0729     #else
0730     return _mm_loadu_ps(from);
0731     #endif
0732   }
0733 #else
0734 // NOTE: with the code below, MSVC's compiler crashes!
0735 
0736 template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from)
0737 {
0738   EIGEN_DEBUG_UNALIGNED_LOAD
0739   return _mm_loadu_ps(from);
0740 }
0741 #endif
0742 
0743 template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from)
0744 {
0745   EIGEN_DEBUG_UNALIGNED_LOAD
0746   return _mm_loadu_pd(from);
0747 }
0748 template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)
0749 {
0750   EIGEN_DEBUG_UNALIGNED_LOAD
0751   return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from));
0752 }
0753 template<> EIGEN_STRONG_INLINE Packet16b ploadu<Packet16b>(const bool*     from) {
0754   EIGEN_DEBUG_UNALIGNED_LOAD
0755   return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from));
0756 }
0757 
0758 
0759 template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float*   from)
0760 {
0761   return vec4f_swizzle1(_mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(from))), 0, 0, 1, 1);
0762 }
0763 template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double*  from)
0764 { return pset1<Packet2d>(from[0]); }
0765 template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int*     from)
0766 {
0767   Packet4i tmp;
0768   tmp = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(from));
0769   return vec4i_swizzle1(tmp, 0, 0, 1, 1);
0770 }
0771 
0772 // Loads 8 bools from memory and returns the packet
0773 // {b0, b0, b1, b1, b2, b2, b3, b3, b4, b4, b5, b5, b6, b6, b7, b7}
0774 template<> EIGEN_STRONG_INLINE Packet16b ploaddup<Packet16b>(const bool*     from)
0775 {
0776   __m128i tmp = _mm_castpd_si128(pload1<Packet2d>(reinterpret_cast<const double*>(from)));
0777   return  _mm_unpacklo_epi8(tmp, tmp);
0778 }
0779 
0780 // Loads 4 bools from memory and returns the packet
0781 // {b0, b0  b0, b0, b1, b1, b1, b1, b2, b2, b2, b2, b3, b3, b3, b3}
0782 template<> EIGEN_STRONG_INLINE Packet16b
0783 ploadquad<Packet16b>(const bool* from) {
0784   __m128i tmp = _mm_castps_si128(pload1<Packet4f>(reinterpret_cast<const float*>(from)));
0785   tmp = _mm_unpacklo_epi8(tmp, tmp);
0786   return  _mm_unpacklo_epi16(tmp, tmp);
0787 }
0788 
0789 template<> EIGEN_STRONG_INLINE void pstore<float>(float*   to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_ps(to, from); }
0790 template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_pd(to, from); }
0791 template<> EIGEN_STRONG_INLINE void pstore<int>(int*       to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<__m128i*>(to), from); }
0792 template<> EIGEN_STRONG_INLINE void pstore<bool>(bool*     to, const Packet16b& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<__m128i*>(to), from); }
0793 
0794 template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_pd(to, from); }
0795 template<> EIGEN_STRONG_INLINE void pstoreu<float>(float*   to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_ps(to, from); }
0796 template<> EIGEN_STRONG_INLINE void pstoreu<int>(int*       to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); }
0797 template<> EIGEN_STRONG_INLINE void pstoreu<bool>(bool*     to, const Packet16b& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); }
0798 
0799 template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, Index stride)
0800 {
0801  return _mm_set_ps(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
0802 }
0803 template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, Index stride)
0804 {
0805  return _mm_set_pd(from[1*stride], from[0*stride]);
0806 }
0807 template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, Index stride)
0808 {
0809  return _mm_set_epi32(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
0810 }
0811 
0812 template<> EIGEN_DEVICE_FUNC inline Packet16b pgather<bool, Packet16b>(const bool* from, Index stride)
0813 {
0814   return _mm_set_epi8(from[15*stride], from[14*stride], from[13*stride], from[12*stride],
0815                       from[11*stride], from[10*stride], from[9*stride], from[8*stride],
0816                       from[7*stride], from[6*stride], from[5*stride], from[4*stride],
0817                       from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
0818 }
0819 
0820 template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, Index stride)
0821 {
0822   to[stride*0] = _mm_cvtss_f32(from);
0823   to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 1));
0824   to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 2));
0825   to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 3));
0826 }
0827 template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, Index stride)
0828 {
0829   to[stride*0] = _mm_cvtsd_f64(from);
0830   to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(from, from, 1));
0831 }
0832 template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, Index stride)
0833 {
0834   to[stride*0] = _mm_cvtsi128_si32(from);
0835   to[stride*1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 1));
0836   to[stride*2] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 2));
0837   to[stride*3] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 3));
0838 }
0839 template<> EIGEN_DEVICE_FUNC inline void pscatter<bool, Packet16b>(bool* to, const Packet16b& from, Index stride)
0840 {
0841   to[4*stride*0] = _mm_cvtsi128_si32(from);
0842   to[4*stride*1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 1));
0843   to[4*stride*2] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 2));
0844   to[4*stride*3] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 3));
0845 }
0846 
0847 
0848 // some compilers might be tempted to perform multiple moves instead of using a vector path.
0849 template<> EIGEN_STRONG_INLINE void pstore1<Packet4f>(float* to, const float& a)
0850 {
0851   Packet4f pa = _mm_set_ss(a);
0852   pstore(to, Packet4f(vec4f_swizzle1(pa,0,0,0,0)));
0853 }
0854 // some compilers might be tempted to perform multiple moves instead of using a vector path.
0855 template<> EIGEN_STRONG_INLINE void pstore1<Packet2d>(double* to, const double& a)
0856 {
0857   Packet2d pa = _mm_set_sd(a);
0858   pstore(to, Packet2d(vec2d_swizzle1(pa,0,0)));
0859 }
0860 
0861 #if EIGEN_COMP_PGI && EIGEN_COMP_PGI < 1900
0862 typedef const void * SsePrefetchPtrType;
0863 #else
0864 typedef const char * SsePrefetchPtrType;
0865 #endif
0866 
0867 #ifndef EIGEN_VECTORIZE_AVX
0868 template<> EIGEN_STRONG_INLINE void prefetch<float>(const float*   addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
0869 template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
0870 template<> EIGEN_STRONG_INLINE void prefetch<int>(const int*       addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
0871 #endif
0872 
0873 #if EIGEN_COMP_MSVC_STRICT && EIGEN_OS_WIN64
0874 // The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
0875 // Direct of the struct members fixed bug #62.
0876 template<> EIGEN_STRONG_INLINE float  pfirst<Packet4f>(const Packet4f& a) { return a.m128_f32[0]; }
0877 template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return a.m128d_f64[0]; }
0878 template<> EIGEN_STRONG_INLINE int    pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
0879 #elif EIGEN_COMP_MSVC_STRICT
0880 // The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
0881 template<> EIGEN_STRONG_INLINE float  pfirst<Packet4f>(const Packet4f& a) { float x = _mm_cvtss_f32(a); return x; }
0882 template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { double x = _mm_cvtsd_f64(a); return x; }
0883 template<> EIGEN_STRONG_INLINE int    pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
0884 #else
0885 template<> EIGEN_STRONG_INLINE float  pfirst<Packet4f>(const Packet4f& a) { return _mm_cvtss_f32(a); }
0886 template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return _mm_cvtsd_f64(a); }
0887 template<> EIGEN_STRONG_INLINE int    pfirst<Packet4i>(const Packet4i& a) { return _mm_cvtsi128_si32(a); }
0888 #endif
0889 template<> EIGEN_STRONG_INLINE bool   pfirst<Packet16b>(const Packet16b& a) { int x = _mm_cvtsi128_si32(a); return static_cast<bool>(x & 1); }
0890 
0891 template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) { return _mm_shuffle_ps(a,a,0x1B); }
0892 template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) { return _mm_shuffle_pd(a,a,0x1); }
0893 template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) { return _mm_shuffle_epi32(a,0x1B); }
0894 template<> EIGEN_STRONG_INLINE Packet16b preverse(const Packet16b& a) {
0895 #ifdef EIGEN_VECTORIZE_SSSE3
0896   __m128i mask = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
0897   return _mm_shuffle_epi8(a, mask);
0898 #else
0899   Packet16b tmp = _mm_shuffle_epi32(a, _MM_SHUFFLE(0, 1, 2, 3));
0900   tmp = _mm_shufflehi_epi16(_mm_shufflelo_epi16(tmp, _MM_SHUFFLE(2, 3, 0, 1)), _MM_SHUFFLE(2, 3, 0, 1));
0901   return _mm_or_si128(_mm_slli_epi16(tmp, 8), _mm_srli_epi16(tmp, 8));
0902 #endif
0903 }
0904 
0905 template<> EIGEN_STRONG_INLINE Packet4f pfrexp<Packet4f>(const Packet4f& a, Packet4f& exponent) {
0906   return pfrexp_generic(a,exponent);
0907 }
0908 
0909 // Extract exponent without existence of Packet2l.
0910 template<>
0911 EIGEN_STRONG_INLINE  
0912 Packet2d pfrexp_generic_get_biased_exponent(const Packet2d& a) {
0913   const Packet2d cst_exp_mask  = pset1frombits<Packet2d>(static_cast<uint64_t>(0x7ff0000000000000ull));
0914   __m128i a_expo = _mm_srli_epi64(_mm_castpd_si128(pand(a, cst_exp_mask)), 52);
0915   return _mm_cvtepi32_pd(vec4i_swizzle1(a_expo, 0, 2, 1, 3));
0916 }
0917 
0918 template<> EIGEN_STRONG_INLINE Packet2d pfrexp<Packet2d>(const Packet2d& a, Packet2d& exponent) {
0919   return pfrexp_generic(a, exponent);
0920 }
0921 
0922 template<> EIGEN_STRONG_INLINE Packet4f pldexp<Packet4f>(const Packet4f& a, const Packet4f& exponent) {
0923   return pldexp_generic(a,exponent);
0924 }
0925 
0926 // We specialize pldexp here, since the generic implementation uses Packet2l, which is not well
0927 // supported by SSE, and has more range than is needed for exponents.
0928 template<> EIGEN_STRONG_INLINE Packet2d pldexp<Packet2d>(const Packet2d& a, const Packet2d& exponent) {
0929   // Clamp exponent to [-2099, 2099]
0930   const Packet2d max_exponent = pset1<Packet2d>(2099.0);
0931   const Packet2d e = pmin(pmax(exponent, pnegate(max_exponent)), max_exponent);
0932   
0933   // Convert e to integer and swizzle to low-order bits.
0934   const Packet4i ei = vec4i_swizzle1(_mm_cvtpd_epi32(e), 0, 3, 1, 3);
0935   
0936   // Split 2^e into four factors and multiply:
0937   const Packet4i bias = _mm_set_epi32(0, 1023, 0, 1023);
0938   Packet4i b = parithmetic_shift_right<2>(ei);  // floor(e/4)
0939   Packet2d c = _mm_castsi128_pd(_mm_slli_epi64(padd(b, bias), 52));  // 2^b
0940   Packet2d out = pmul(pmul(pmul(a, c), c), c); // a * 2^(3b)
0941   b = psub(psub(psub(ei, b), b), b);  // e - 3b
0942   c = _mm_castsi128_pd(_mm_slli_epi64(padd(b, bias), 52));  // 2^(e - 3b)
0943   out = pmul(out, c);  // a * 2^e
0944   return out;
0945 }
0946 
0947 // with AVX, the default implementations based on pload1 are faster
0948 #ifndef __AVX__
0949 template<> EIGEN_STRONG_INLINE void
0950 pbroadcast4<Packet4f>(const float *a,
0951                       Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3)
0952 {
0953   a3 = pload<Packet4f>(a);
0954   a0 = vec4f_swizzle1(a3, 0,0,0,0);
0955   a1 = vec4f_swizzle1(a3, 1,1,1,1);
0956   a2 = vec4f_swizzle1(a3, 2,2,2,2);
0957   a3 = vec4f_swizzle1(a3, 3,3,3,3);
0958 }
0959 template<> EIGEN_STRONG_INLINE void
0960 pbroadcast4<Packet2d>(const double *a,
0961                       Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3)
0962 {
0963 #ifdef EIGEN_VECTORIZE_SSE3
0964   a0 = _mm_loaddup_pd(a+0);
0965   a1 = _mm_loaddup_pd(a+1);
0966   a2 = _mm_loaddup_pd(a+2);
0967   a3 = _mm_loaddup_pd(a+3);
0968 #else
0969   a1 = pload<Packet2d>(a);
0970   a0 = vec2d_swizzle1(a1, 0,0);
0971   a1 = vec2d_swizzle1(a1, 1,1);
0972   a3 = pload<Packet2d>(a+2);
0973   a2 = vec2d_swizzle1(a3, 0,0);
0974   a3 = vec2d_swizzle1(a3, 1,1);
0975 #endif
0976 }
0977 #endif
0978 
0979 EIGEN_STRONG_INLINE void punpackp(Packet4f* vecs)
0980 {
0981   vecs[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x55));
0982   vecs[2] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xAA));
0983   vecs[3] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xFF));
0984   vecs[0] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x00));
0985 }
0986 
0987 template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
0988 {
0989   // Disable SSE3 _mm_hadd_pd that is extremely slow on all existing Intel's architectures
0990   // (from Nehalem to Haswell)
0991 // #ifdef EIGEN_VECTORIZE_SSE3
0992 //   Packet4f tmp = _mm_add_ps(a, vec4f_swizzle1(a,2,3,2,3));
0993 //   return pfirst<Packet4f>(_mm_hadd_ps(tmp, tmp));
0994 // #else
0995   Packet4f tmp = _mm_add_ps(a, _mm_movehl_ps(a,a));
0996   return pfirst<Packet4f>(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
0997 // #endif
0998 }
0999 
1000 template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a)
1001 {
1002   // Disable SSE3 _mm_hadd_pd that is extremely slow on all existing Intel's architectures
1003   // (from Nehalem to Haswell)
1004 // #ifdef EIGEN_VECTORIZE_SSE3
1005 //   return pfirst<Packet2d>(_mm_hadd_pd(a, a));
1006 // #else
1007   return pfirst<Packet2d>(_mm_add_sd(a, _mm_unpackhi_pd(a,a)));
1008 // #endif
1009 }
1010 
1011 #ifdef EIGEN_VECTORIZE_SSSE3
1012 template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
1013 {
1014   Packet4i tmp0 = _mm_hadd_epi32(a,a);
1015   return pfirst<Packet4i>(_mm_hadd_epi32(tmp0,tmp0));
1016 }
1017 
1018 #else
1019 template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
1020 {
1021   Packet4i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a));
1022   return pfirst(tmp) + pfirst<Packet4i>(_mm_shuffle_epi32(tmp, 1));
1023 }
1024 #endif
1025 
1026 template<> EIGEN_STRONG_INLINE bool predux<Packet16b>(const Packet16b& a) {
1027   Packet4i tmp = _mm_or_si128(a, _mm_unpackhi_epi64(a,a));
1028   return (pfirst(tmp) != 0) || (pfirst<Packet4i>(_mm_shuffle_epi32(tmp, 1)) != 0);
1029 }
1030 
1031 // Other reduction functions:
1032 
1033 
1034 // mul
1035 template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
1036 {
1037   Packet4f tmp = _mm_mul_ps(a, _mm_movehl_ps(a,a));
1038   return pfirst<Packet4f>(_mm_mul_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
1039 }
1040 template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a)
1041 {
1042   return pfirst<Packet2d>(_mm_mul_sd(a, _mm_unpackhi_pd(a,a)));
1043 }
1044 template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
1045 {
1046   // after some experiments, it is seems this is the fastest way to implement it
1047   // for GCC (eg., reusing pmul is very slow !)
1048   // TODO try to call _mm_mul_epu32 directly
1049   EIGEN_ALIGN16 int aux[4];
1050   pstore(aux, a);
1051   return  (aux[0] * aux[1]) * (aux[2] * aux[3]);
1052 }
1053 
1054 template<> EIGEN_STRONG_INLINE bool predux_mul<Packet16b>(const Packet16b& a) {
1055   Packet4i tmp = _mm_and_si128(a, _mm_unpackhi_epi64(a,a));
1056   return ((pfirst<Packet4i>(tmp) == 0x01010101) &&
1057           (pfirst<Packet4i>(_mm_shuffle_epi32(tmp, 1)) == 0x01010101));
1058 }
1059 
1060 // min
1061 template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
1062 {
1063   Packet4f tmp = _mm_min_ps(a, _mm_movehl_ps(a,a));
1064   return pfirst<Packet4f>(_mm_min_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
1065 }
1066 template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a)
1067 {
1068   return pfirst<Packet2d>(_mm_min_sd(a, _mm_unpackhi_pd(a,a)));
1069 }
1070 template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
1071 {
1072 #ifdef EIGEN_VECTORIZE_SSE4_1
1073   Packet4i tmp = _mm_min_epi32(a, _mm_shuffle_epi32(a, _MM_SHUFFLE(0,0,3,2)));
1074   return pfirst<Packet4i>(_mm_min_epi32(tmp,_mm_shuffle_epi32(tmp, 1)));
1075 #else
1076   // after some experiments, it is seems this is the fastest way to implement it
1077   // for GCC (eg., it does not like using std::min after the pstore !!)
1078   EIGEN_ALIGN16 int aux[4];
1079   pstore(aux, a);
1080   int aux0 = aux[0]<aux[1] ? aux[0] : aux[1];
1081   int aux2 = aux[2]<aux[3] ? aux[2] : aux[3];
1082   return aux0<aux2 ? aux0 : aux2;
1083 #endif // EIGEN_VECTORIZE_SSE4_1
1084 }
1085 
1086 // max
1087 template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
1088 {
1089   Packet4f tmp = _mm_max_ps(a, _mm_movehl_ps(a,a));
1090   return pfirst<Packet4f>(_mm_max_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
1091 }
1092 template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a)
1093 {
1094   return pfirst<Packet2d>(_mm_max_sd(a, _mm_unpackhi_pd(a,a)));
1095 }
1096 template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
1097 {
1098 #ifdef EIGEN_VECTORIZE_SSE4_1
1099   Packet4i tmp = _mm_max_epi32(a, _mm_shuffle_epi32(a, _MM_SHUFFLE(0,0,3,2)));
1100   return pfirst<Packet4i>(_mm_max_epi32(tmp,_mm_shuffle_epi32(tmp, 1)));
1101 #else
1102   // after some experiments, it is seems this is the fastest way to implement it
1103   // for GCC (eg., it does not like using std::min after the pstore !!)
1104   EIGEN_ALIGN16 int aux[4];
1105   pstore(aux, a);
1106   int aux0 = aux[0]>aux[1] ? aux[0] : aux[1];
1107   int aux2 = aux[2]>aux[3] ? aux[2] : aux[3];
1108   return aux0>aux2 ? aux0 : aux2;
1109 #endif // EIGEN_VECTORIZE_SSE4_1
1110 }
1111 
1112 // not needed yet
1113 // template<> EIGEN_STRONG_INLINE bool predux_all(const Packet4f& x)
1114 // {
1115 //   return _mm_movemask_ps(x) == 0xF;
1116 // }
1117 
1118 template<> EIGEN_STRONG_INLINE bool predux_any(const Packet4f& x)
1119 {
1120   return _mm_movemask_ps(x) != 0x0;
1121 }
1122 
1123 EIGEN_DEVICE_FUNC inline void
1124 ptranspose(PacketBlock<Packet4f,4>& kernel) {
1125   _MM_TRANSPOSE4_PS(kernel.packet[0], kernel.packet[1], kernel.packet[2], kernel.packet[3]);
1126 }
1127 
1128 EIGEN_DEVICE_FUNC inline void
1129 ptranspose(PacketBlock<Packet2d,2>& kernel) {
1130   __m128d tmp = _mm_unpackhi_pd(kernel.packet[0], kernel.packet[1]);
1131   kernel.packet[0] = _mm_unpacklo_pd(kernel.packet[0], kernel.packet[1]);
1132   kernel.packet[1] = tmp;
1133 }
1134 
1135 EIGEN_DEVICE_FUNC inline void
1136 ptranspose(PacketBlock<Packet4i,4>& kernel) {
1137   __m128i T0 = _mm_unpacklo_epi32(kernel.packet[0], kernel.packet[1]);
1138   __m128i T1 = _mm_unpacklo_epi32(kernel.packet[2], kernel.packet[3]);
1139   __m128i T2 = _mm_unpackhi_epi32(kernel.packet[0], kernel.packet[1]);
1140   __m128i T3 = _mm_unpackhi_epi32(kernel.packet[2], kernel.packet[3]);
1141 
1142   kernel.packet[0] = _mm_unpacklo_epi64(T0, T1);
1143   kernel.packet[1] = _mm_unpackhi_epi64(T0, T1);
1144   kernel.packet[2] = _mm_unpacklo_epi64(T2, T3);
1145   kernel.packet[3] = _mm_unpackhi_epi64(T2, T3);
1146 }
1147 
1148 EIGEN_DEVICE_FUNC inline void
1149 ptranspose(PacketBlock<Packet16b,4>& kernel) {
1150   __m128i T0 =  _mm_unpacklo_epi8(kernel.packet[0], kernel.packet[1]);
1151   __m128i T1 =  _mm_unpackhi_epi8(kernel.packet[0], kernel.packet[1]);
1152   __m128i T2 =  _mm_unpacklo_epi8(kernel.packet[2], kernel.packet[3]);
1153   __m128i T3 =  _mm_unpackhi_epi8(kernel.packet[2], kernel.packet[3]);
1154   kernel.packet[0] = _mm_unpacklo_epi16(T0, T2);
1155   kernel.packet[1] = _mm_unpackhi_epi16(T0, T2);
1156   kernel.packet[2] = _mm_unpacklo_epi16(T1, T3);
1157   kernel.packet[3] = _mm_unpackhi_epi16(T1, T3);
1158 }
1159 
1160 EIGEN_DEVICE_FUNC inline void
1161 ptranspose(PacketBlock<Packet16b,16>& kernel) {
1162   // If we number the elements in the input thus:
1163   // kernel.packet[ 0] = {00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0a, 0b, 0c, 0d, 0e, 0f}
1164   // kernel.packet[ 1] = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1a, 1b, 1c, 1d, 1e, 1f}
1165   // ...
1166   // kernel.packet[15] = {f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, fa, fb, fc, fd, fe, ff},
1167   //
1168   // the desired output is:
1169   // kernel.packet[ 0] = {00, 10, 20, 30, 40, 50, 60, 70, 80, 90, a0, b0, c0, d0, e0, f0}
1170   // kernel.packet[ 1] = {01, 11, 21, 31, 41, 51, 61, 71, 81, 91, a1, b1, c1, d1, e1, f1}
1171   // ...
1172   // kernel.packet[15] = {0f, 1f, 2f, 3f, 4f, 5f, 6f, 7f, 8f, 9f, af, bf, cf, df, ef, ff},
1173   __m128i t0 =  _mm_unpacklo_epi8(kernel.packet[0], kernel.packet[1]); // 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17
1174   __m128i t1 =  _mm_unpackhi_epi8(kernel.packet[0], kernel.packet[1]); // 08 18 09 19 0a 1a 0b 1b 0c 1c 0d 1d 0e 1e 0f 1f
1175   __m128i t2 =  _mm_unpacklo_epi8(kernel.packet[2], kernel.packet[3]); // 20 30 21 31 22 32 ...                     27 37
1176   __m128i t3 =  _mm_unpackhi_epi8(kernel.packet[2], kernel.packet[3]); // 28 38 29 39 2a 3a ...                     2f 3f
1177   __m128i t4 =  _mm_unpacklo_epi8(kernel.packet[4], kernel.packet[5]); // 40 50 41 51 42 52                         47 57
1178   __m128i t5 =  _mm_unpackhi_epi8(kernel.packet[4], kernel.packet[5]); // 48 58 49 59 4a 5a
1179   __m128i t6 =  _mm_unpacklo_epi8(kernel.packet[6], kernel.packet[7]);
1180   __m128i t7 =  _mm_unpackhi_epi8(kernel.packet[6], kernel.packet[7]);
1181   __m128i t8 =  _mm_unpacklo_epi8(kernel.packet[8], kernel.packet[9]);
1182   __m128i t9 =  _mm_unpackhi_epi8(kernel.packet[8], kernel.packet[9]);
1183   __m128i ta =  _mm_unpacklo_epi8(kernel.packet[10], kernel.packet[11]);
1184   __m128i tb =  _mm_unpackhi_epi8(kernel.packet[10], kernel.packet[11]);
1185   __m128i tc =  _mm_unpacklo_epi8(kernel.packet[12], kernel.packet[13]);
1186   __m128i td =  _mm_unpackhi_epi8(kernel.packet[12], kernel.packet[13]);
1187   __m128i te =  _mm_unpacklo_epi8(kernel.packet[14], kernel.packet[15]);
1188   __m128i tf =  _mm_unpackhi_epi8(kernel.packet[14], kernel.packet[15]);
1189 
1190   __m128i s0 =  _mm_unpacklo_epi16(t0, t2); // 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33
1191   __m128i s1 =  _mm_unpackhi_epi16(t0, t2); // 04 14 24 34
1192   __m128i s2 =  _mm_unpacklo_epi16(t1, t3); // 08 18 28 38 ...
1193   __m128i s3 =  _mm_unpackhi_epi16(t1, t3); // 0c 1c 2c 3c ...
1194   __m128i s4 =  _mm_unpacklo_epi16(t4, t6); // 40 50 60 70 41 51 61 71 42 52 62 72 43 53 63 73
1195   __m128i s5 =  _mm_unpackhi_epi16(t4, t6); // 44 54 64 74 ...
1196   __m128i s6 =  _mm_unpacklo_epi16(t5, t7);
1197   __m128i s7 =  _mm_unpackhi_epi16(t5, t7);
1198   __m128i s8 =  _mm_unpacklo_epi16(t8, ta);
1199   __m128i s9 =  _mm_unpackhi_epi16(t8, ta);
1200   __m128i sa =  _mm_unpacklo_epi16(t9, tb);
1201   __m128i sb =  _mm_unpackhi_epi16(t9, tb);
1202   __m128i sc =  _mm_unpacklo_epi16(tc, te);
1203   __m128i sd =  _mm_unpackhi_epi16(tc, te);
1204   __m128i se =  _mm_unpacklo_epi16(td, tf);
1205   __m128i sf =  _mm_unpackhi_epi16(td, tf);
1206 
1207   __m128i u0 =  _mm_unpacklo_epi32(s0, s4); // 00 10 20 30 40 50 60 70 01 11 21 31 41 51 61 71
1208   __m128i u1 =  _mm_unpackhi_epi32(s0, s4); // 02 12 22 32 42 52 62 72 03 13 23 33 43 53 63 73
1209   __m128i u2 =  _mm_unpacklo_epi32(s1, s5);
1210   __m128i u3 =  _mm_unpackhi_epi32(s1, s5);
1211   __m128i u4 =  _mm_unpacklo_epi32(s2, s6);
1212   __m128i u5 =  _mm_unpackhi_epi32(s2, s6);
1213   __m128i u6 =  _mm_unpacklo_epi32(s3, s7);
1214   __m128i u7 =  _mm_unpackhi_epi32(s3, s7);
1215   __m128i u8 =  _mm_unpacklo_epi32(s8, sc);
1216   __m128i u9 =  _mm_unpackhi_epi32(s8, sc);
1217   __m128i ua =  _mm_unpacklo_epi32(s9, sd);
1218   __m128i ub =  _mm_unpackhi_epi32(s9, sd);
1219   __m128i uc =  _mm_unpacklo_epi32(sa, se);
1220   __m128i ud =  _mm_unpackhi_epi32(sa, se);
1221   __m128i ue =  _mm_unpacklo_epi32(sb, sf);
1222   __m128i uf =  _mm_unpackhi_epi32(sb, sf);
1223 
1224   kernel.packet[0]  = _mm_unpacklo_epi64(u0, u8);
1225   kernel.packet[1]  = _mm_unpackhi_epi64(u0, u8);
1226   kernel.packet[2]  = _mm_unpacklo_epi64(u1, u9);
1227   kernel.packet[3]  = _mm_unpackhi_epi64(u1, u9);
1228   kernel.packet[4]  = _mm_unpacklo_epi64(u2, ua);
1229   kernel.packet[5]  = _mm_unpackhi_epi64(u2, ua);
1230   kernel.packet[6]  = _mm_unpacklo_epi64(u3, ub);
1231   kernel.packet[7]  = _mm_unpackhi_epi64(u3, ub);
1232   kernel.packet[8]  = _mm_unpacklo_epi64(u4, uc);
1233   kernel.packet[9]  = _mm_unpackhi_epi64(u4, uc);
1234   kernel.packet[10] = _mm_unpacklo_epi64(u5, ud);
1235   kernel.packet[11] = _mm_unpackhi_epi64(u5, ud);
1236   kernel.packet[12] = _mm_unpacklo_epi64(u6, ue);
1237   kernel.packet[13] = _mm_unpackhi_epi64(u6, ue);
1238   kernel.packet[14] = _mm_unpacklo_epi64(u7, uf);
1239   kernel.packet[15] = _mm_unpackhi_epi64(u7, uf);
1240 }
1241 
1242 template<> EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, const Packet4i& elsePacket) {
1243   const __m128i zero = _mm_setzero_si128();
1244   const __m128i select = _mm_set_epi32(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
1245   __m128i false_mask = _mm_cmpeq_epi32(select, zero);
1246 #ifdef EIGEN_VECTORIZE_SSE4_1
1247   return _mm_blendv_epi8(thenPacket, elsePacket, false_mask);
1248 #else
1249   return _mm_or_si128(_mm_andnot_si128(false_mask, thenPacket), _mm_and_si128(false_mask, elsePacket));
1250 #endif
1251 }
1252 template<> EIGEN_STRONG_INLINE Packet4f pblend(const Selector<4>& ifPacket, const Packet4f& thenPacket, const Packet4f& elsePacket) {
1253   const __m128 zero = _mm_setzero_ps();
1254   const __m128 select = _mm_set_ps(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
1255   __m128 false_mask = _mm_cmpeq_ps(select, zero);
1256 #ifdef EIGEN_VECTORIZE_SSE4_1
1257   return _mm_blendv_ps(thenPacket, elsePacket, false_mask);
1258 #else
1259   return _mm_or_ps(_mm_andnot_ps(false_mask, thenPacket), _mm_and_ps(false_mask, elsePacket));
1260 #endif
1261 }
1262 template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) {
1263   const __m128d zero = _mm_setzero_pd();
1264   const __m128d select = _mm_set_pd(ifPacket.select[1], ifPacket.select[0]);
1265   __m128d false_mask = _mm_cmpeq_pd(select, zero);
1266 #ifdef EIGEN_VECTORIZE_SSE4_1
1267   return _mm_blendv_pd(thenPacket, elsePacket, false_mask);
1268 #else
1269   return _mm_or_pd(_mm_andnot_pd(false_mask, thenPacket), _mm_and_pd(false_mask, elsePacket));
1270 #endif
1271 }
1272 
1273 // Scalar path for pmadd with FMA to ensure consistency with vectorized path.
1274 #ifdef EIGEN_VECTORIZE_FMA
1275 template<> EIGEN_STRONG_INLINE float pmadd(const float& a, const float& b, const float& c) {
1276   return ::fmaf(a,b,c);
1277 }
1278 template<> EIGEN_STRONG_INLINE double pmadd(const double& a, const double& b, const double& c) {
1279   return ::fma(a,b,c);
1280 }
1281 #endif
1282 
1283 
1284 // Packet math for Eigen::half
1285 // Disable the following code since it's broken on too many platforms / compilers.
1286 //#elif defined(EIGEN_VECTORIZE_SSE) && (!EIGEN_ARCH_x86_64) && (!EIGEN_COMP_MSVC)
1287 #if 0
1288 
1289 typedef struct {
1290   __m64 x;
1291 } Packet4h;
1292 
1293 
1294 template<> struct is_arithmetic<Packet4h> { enum { value = true }; };
1295 
1296 template <>
1297 struct packet_traits<Eigen::half> : default_packet_traits {
1298   typedef Packet4h type;
1299   // There is no half-size packet for Packet4h.
1300   typedef Packet4h half;
1301   enum {
1302     Vectorizable = 1,
1303     AlignedOnScalar = 1,
1304     size = 4,
1305     HasHalfPacket = 0,
1306     HasAdd    = 1,
1307     HasSub    = 1,
1308     HasMul    = 1,
1309     HasDiv    = 1,
1310     HasNegate = 0,
1311     HasAbs    = 0,
1312     HasAbs2   = 0,
1313     HasMin    = 0,
1314     HasMax    = 0,
1315     HasConj   = 0,
1316     HasSetLinear = 0,
1317     HasSqrt = 0,
1318     HasRsqrt = 0,
1319     HasExp = 0,
1320     HasLog = 0,
1321     HasBlend = 0
1322   };
1323 };
1324 
1325 
1326 template<> struct unpacket_traits<Packet4h> { typedef Eigen::half type; enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet4h half; };
1327 
1328 template<> EIGEN_STRONG_INLINE Packet4h pset1<Packet4h>(const Eigen::half& from) {
1329   Packet4h result;
1330   result.x = _mm_set1_pi16(from.x);
1331   return result;
1332 }
1333 
1334 template<> EIGEN_STRONG_INLINE Eigen::half pfirst<Packet4h>(const Packet4h& from) {
1335   return half_impl::raw_uint16_to_half(static_cast<unsigned short>(_mm_cvtsi64_si32(from.x)));
1336 }
1337 
1338 template<> EIGEN_STRONG_INLINE Packet4h pconj(const Packet4h& a) { return a; }
1339 
1340 template<> EIGEN_STRONG_INLINE Packet4h padd<Packet4h>(const Packet4h& a, const Packet4h& b) {
1341   __int64_t a64 = _mm_cvtm64_si64(a.x);
1342   __int64_t b64 = _mm_cvtm64_si64(b.x);
1343 
1344   Eigen::half h[4];
1345 
1346   Eigen::half ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64));
1347   Eigen::half hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64));
1348   h[0] = ha + hb;
1349   ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16));
1350   hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 16));
1351   h[1] = ha + hb;
1352   ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32));
1353   hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 32));
1354   h[2] = ha + hb;
1355   ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48));
1356   hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 48));
1357   h[3] = ha + hb;
1358   Packet4h result;
1359   result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x);
1360   return result;
1361 }
1362 
1363 template<> EIGEN_STRONG_INLINE Packet4h psub<Packet4h>(const Packet4h& a, const Packet4h& b) {
1364   __int64_t a64 = _mm_cvtm64_si64(a.x);
1365   __int64_t b64 = _mm_cvtm64_si64(b.x);
1366 
1367   Eigen::half h[4];
1368 
1369   Eigen::half ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64));
1370   Eigen::half hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64));
1371   h[0] = ha - hb;
1372   ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16));
1373   hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 16));
1374   h[1] = ha - hb;
1375   ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32));
1376   hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 32));
1377   h[2] = ha - hb;
1378   ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48));
1379   hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 48));
1380   h[3] = ha - hb;
1381   Packet4h result;
1382   result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x);
1383   return result;
1384 }
1385 
1386 template<> EIGEN_STRONG_INLINE Packet4h pmul<Packet4h>(const Packet4h& a, const Packet4h& b) {
1387   __int64_t a64 = _mm_cvtm64_si64(a.x);
1388   __int64_t b64 = _mm_cvtm64_si64(b.x);
1389 
1390   Eigen::half h[4];
1391 
1392   Eigen::half ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64));
1393   Eigen::half hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64));
1394   h[0] = ha * hb;
1395   ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16));
1396   hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 16));
1397   h[1] = ha * hb;
1398   ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32));
1399   hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 32));
1400   h[2] = ha * hb;
1401   ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48));
1402   hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 48));
1403   h[3] = ha * hb;
1404   Packet4h result;
1405   result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x);
1406   return result;
1407 }
1408 
1409 template<> EIGEN_STRONG_INLINE Packet4h pdiv<Packet4h>(const Packet4h& a, const Packet4h& b) {
1410   __int64_t a64 = _mm_cvtm64_si64(a.x);
1411   __int64_t b64 = _mm_cvtm64_si64(b.x);
1412 
1413   Eigen::half h[4];
1414 
1415   Eigen::half ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64));
1416   Eigen::half hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64));
1417   h[0] = ha / hb;
1418   ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16));
1419   hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 16));
1420   h[1] = ha / hb;
1421   ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32));
1422   hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 32));
1423   h[2] = ha / hb;
1424   ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48));
1425   hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 48));
1426   h[3] = ha / hb;
1427   Packet4h result;
1428   result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x);
1429   return result;
1430 }
1431 
1432 template<> EIGEN_STRONG_INLINE Packet4h pload<Packet4h>(const Eigen::half* from) {
1433   Packet4h result;
1434   result.x = _mm_cvtsi64_m64(*reinterpret_cast<const __int64_t*>(from));
1435   return result;
1436 }
1437 
1438 template<> EIGEN_STRONG_INLINE Packet4h ploadu<Packet4h>(const Eigen::half* from) {
1439   Packet4h result;
1440   result.x = _mm_cvtsi64_m64(*reinterpret_cast<const __int64_t*>(from));
1441   return result;
1442 }
1443 
1444 template<> EIGEN_STRONG_INLINE void pstore<Eigen::half>(Eigen::half* to, const Packet4h& from) {
1445   __int64_t r = _mm_cvtm64_si64(from.x);
1446   *(reinterpret_cast<__int64_t*>(to)) = r;
1447 }
1448 
1449 template<> EIGEN_STRONG_INLINE void pstoreu<Eigen::half>(Eigen::half* to, const Packet4h& from) {
1450   __int64_t r = _mm_cvtm64_si64(from.x);
1451   *(reinterpret_cast<__int64_t*>(to)) = r;
1452 }
1453 
1454 template<> EIGEN_STRONG_INLINE Packet4h
1455 ploadquad<Packet4h>(const Eigen::half* from) {
1456   return pset1<Packet4h>(*from);
1457 }
1458 
1459 template<> EIGEN_STRONG_INLINE Packet4h pgather<Eigen::half, Packet4h>(const Eigen::half* from, Index stride)
1460 {
1461   Packet4h result;
1462   result.x = _mm_set_pi16(from[3*stride].x, from[2*stride].x, from[1*stride].x, from[0*stride].x);
1463   return result;
1464 }
1465 
1466 template<> EIGEN_STRONG_INLINE void pscatter<Eigen::half, Packet4h>(Eigen::half* to, const Packet4h& from, Index stride)
1467 {
1468   __int64_t a = _mm_cvtm64_si64(from.x);
1469   to[stride*0].x = static_cast<unsigned short>(a);
1470   to[stride*1].x = static_cast<unsigned short>(a >> 16);
1471   to[stride*2].x = static_cast<unsigned short>(a >> 32);
1472   to[stride*3].x = static_cast<unsigned short>(a >> 48);
1473 }
1474 
1475 EIGEN_STRONG_INLINE void
1476 ptranspose(PacketBlock<Packet4h,4>& kernel) {
1477   __m64 T0 = _mm_unpacklo_pi16(kernel.packet[0].x, kernel.packet[1].x);
1478   __m64 T1 = _mm_unpacklo_pi16(kernel.packet[2].x, kernel.packet[3].x);
1479   __m64 T2 = _mm_unpackhi_pi16(kernel.packet[0].x, kernel.packet[1].x);
1480   __m64 T3 = _mm_unpackhi_pi16(kernel.packet[2].x, kernel.packet[3].x);
1481 
1482   kernel.packet[0].x = _mm_unpacklo_pi32(T0, T1);
1483   kernel.packet[1].x = _mm_unpackhi_pi32(T0, T1);
1484   kernel.packet[2].x = _mm_unpacklo_pi32(T2, T3);
1485   kernel.packet[3].x = _mm_unpackhi_pi32(T2, T3);
1486 }
1487 
1488 #endif
1489 
1490 
1491 } // end namespace internal
1492 
1493 } // end namespace Eigen
1494 
1495 #if EIGEN_COMP_PGI && EIGEN_COMP_PGI < 1900
1496 // PGI++ does not define the following intrinsics in C++ mode.
1497 static inline __m128  _mm_castpd_ps   (__m128d x) { return reinterpret_cast<__m128&>(x);  }
1498 static inline __m128i _mm_castpd_si128(__m128d x) { return reinterpret_cast<__m128i&>(x); }
1499 static inline __m128d _mm_castps_pd   (__m128  x) { return reinterpret_cast<__m128d&>(x); }
1500 static inline __m128i _mm_castps_si128(__m128  x) { return reinterpret_cast<__m128i&>(x); }
1501 static inline __m128  _mm_castsi128_ps(__m128i x) { return reinterpret_cast<__m128&>(x);  }
1502 static inline __m128d _mm_castsi128_pd(__m128i x) { return reinterpret_cast<__m128d&>(x); }
1503 #endif
1504 
1505 #endif // EIGEN_PACKET_MATH_SSE_H